Organic solutes

Organic solutes

Choline chloride

Choline chloride osmotic pressure vs. molality at 25 degrees Celsius

Reference

Please use the following references when using this data. 

Shumilin, Ilan, Ahmad Tanbuz, and Daniel Harries. "Deep Eutectic Solvents for Efficient Drug Solvation: Optimizing Composition and Ratio for Solubility of β-Cyclodextrin." Pharmaceutics 15, no. 5 (2023): 1462. https://doi.org/10.3390/pharmaceutics15051462.

Shumilin et al
molality, mol/kgOsmolality, Osmolal
0.9921.721
1.9933.408
4.0057.596
5.99012.640
7.84317.904
9.73123.464
14.59138.099
20.18053.945
23.18261.702

This data set is adequately captured by the cubic fit:
Osmolal = -0.00291*m^3 + 0.11547*m^2 + 1.54144*m

 

 

Glycerol

Glycerol water activity and osmotic pressure

References

Please cite the following references when using this data. 

Olgenblum, Gil I., Neta Carmon, and Daniel Harries. "Not always sticky: Specificity of protein stabilization by sugars is conferred by protein–water hydrogen bonds." Journal of the American Chemical Society 145, no. 42 (2023): 23308-23320. https://doi.org/10.1021/jacs.3c08702

1) Glycerol water activity and its temperature dependance

Olgenblum et al
molalactivity, 15°Cactivity, 25°Cactivity, 45°C
1.221270.97780.97770.9785
1.801210.96780.96730.9679
2.419940.95660.9570.9572
2.952610.9470.94830.9488
3.544140.93630.93680.939
4.218880.92560.92580.9264
4.747220.91510.91580.9184

2) Glycerol osmotic pressure

Olgenblum et al
molalityOsmolality, Osmolal
0.280.2783
0.60.612
0.9210.924
1.2211.246
1.5161.502
1.8011.802
2.12.063

 

Glycine Betaine

Glycine Betaine  osmotic pressure vs. molality at 25 degrees Celsius

References

Please cite the following references when using this data:

Shakhman, Yuri, and Daniel Harries. "How glycine betaine modifies lipid membrane interactions." ChemSystemsChem 3, no. 5 (2021): e2100010. https://doi.org/10.1002/syst.202100010

Osmotic pressure was measured using VAPRO 5520 Wescor osmometer. 

Shakhman et al
[molality], mol/kgOsmolality, Osmolal
0.0090.001
0.0190.011
0.1000.099
0.1110.098
0.2010.199
0.2130.199
0.3010.314
0.3060.308
0.3990.426
0.4070.422
0.5040.546
0.5050.534
0.7010.782
0.7030.763
0.8440.934
0.8500.955
0.9911.115
0.9951.132
1.2081.394
1.4661.725
1.5031.785
1.7532.112
1.9662.375
1.9992.398
2.4793.359
2.4983.145

The osmolality in this concentration range fits the following quadratic polynom: Osmolality=0.117*m^2 + 1.003*m. 

The molality of betaine in water can be estimated from the refractive index at 25 degrees Celsius according to the following term:

[Betaine], mol/kg = 496.892*RI^2 - 1266.500*RI + 805.356

TMAO

Trimethylamine N-oxide (TMAO) osmotic pressure at 25 degrees Celsius

References

Please cite the following references when using this data. 

a - Sukenik, Shahar, Shaked Dunsky, Avishai Barnoy, Ilan Shumilin, and Daniel Harries. “TMAO mediates effective attraction between lipid membranes by partitioning unevenly between bulk and lipid domain.” Physical Chemistry Chemical Physics 19 (2017): 29862-29871.

b - Shakhman, Yuri, Ilan Shumilin, and Daniel Harries. "Urea counteracts trimethylamine N-oxide (TMAO) compaction of lipid membranes by modifying van der Waals interactions." Journal of Colloid and Interface Science 629 (2023): 165-172. https://doi.org/10.1016/j.jcis.2022.08.123

Sukenik et al.aShakhman et al.b
[TMAO], mol/kgOsmolality, Osmolal[TMAO], mol/kgOsmolality, Osmolal
0.20.1990.0500.051
0.50.5390.0500.049
11.1610.1500.145
1.51.8100.1500.150
  0.2500.252
  0.2500.256
  0.3010.306
  0.4000.424
  0.4000.422
  0.4020.414
  0.5500.601
  0.5500.594
  0.7000.780
  0.7000.774
  0.8500.964
  0.8500.959
  1.0001.157
  1.0001.149
  1.2001.373

In this TMAO molal (m) concentration range, the following quadratic polynom adequately reproduces the osmotic pressure:

 

Osmolality = 0.1305*m^2 + 1.0121*m

 

Urea

Urea osmotic pressure vs. molality at different temperatures

Reference: Stokes, R. H. "Thermodynamics of aqueous urea solutions." Australian Journal of Chemistry 20, no. 10 (1967): 2087-2100.https://doi.org/10.1071/CH9672087

Robert Harold Stokes
molality, mol/kg20C50C100C200C250C300C400C
0.50.4870.4870.4880.4890.4900.4910.491
10.9500.9520.9550.9600.9620.9640.968
1.51.3941.3981.4051.4161.4201.4251.432
21.8231.8301.8411.8591.8661.8731.885
2.52.2392.2502.2652.2912.3022.3122.330
32.6452.6592.6792.7142.7292.7432.766
3.53.0413.0593.0853.1293.1483.1663.197
43.4303.4513.4833.5383.5623.5833.621
54.1884.2174.2624.3394.3724.4024.455
64.9244.9635.0215.1205.1645.2045.274
75.6455.6925.7645.8885.9435.9936.081
86.3546.4106.4966.6466.7106.7706.877
9 7.1247.2237.3947.4697.5387.662
10 7.8417.9508.1398.2218.2978.431
11   8.8818.9669.0449.180
12   9.6299.7079.7789.899

Urea osmotic pressure vs. molality at 25 degrees Celsius

Reference: Shumilin, Ilan, Ahmad Tanbuz, and Daniel Harries. "Deep Eutectic Solvents for Efficient Drug Solvation: Optimizing Composition and Ratio for Solubility of β-Cyclodextrin." Pharmaceutics 15, no. 5 (2023): 1462. https://10.3390/pharmaceutics15051462

Shumilin et al.
molality, mol/kgOsmolality, Osmolal
0.1010.091
0.1770.151
0.2530.227
0.5060.479
0.7630.717
0.9980.924
1.0120.939
1.2001.094
1.2711.166
1.4001.258
1.5201.370
1.6011.423
1.7651.574
1.8031.584
1.9971.745
2.0001.821
2.0171.783
2.1231.900
2.5132.148
2.9932.616
2.9962.481
4.0133.479
4.9924.277
6.0325.139
7.0005.838
7.9866.665
8.9967.422
9.9738.144
11.0058.902
11.9709.739

The data set is adequately captured by the quadratic fit:
Osmolal = -0.00711m^2 + 0.89132m.