Choline chloride osmotic pressure vs. molality at 25 degrees Celsius
Reference
Please use the following references when using this data.
Shumilin, Ilan, Ahmad Tanbuz, and Daniel Harries. "Deep Eutectic Solvents for Efficient Drug Solvation: Optimizing Composition and Ratio for Solubility of β-Cyclodextrin." Pharmaceutics 15, no. 5 (2023): 1462. https://doi.org/10.3390/pharmaceutics15051462.
Shumilin et al | |
molality, mol/kg | Osmolality, Osmolal |
0.992 | 1.721 |
1.993 | 3.408 |
4.005 | 7.596 |
5.990 | 12.640 |
7.843 | 17.904 |
9.731 | 23.464 |
14.591 | 38.099 |
20.180 | 53.945 |
23.182 | 61.702 |
This data set is adequately captured by the cubic fit:
Osmolal = -0.00291*m^3 + 0.11547*m^2 + 1.54144*m
Glycerol water activity and osmotic pressure
References
Please cite the following references when using this data.
Olgenblum, Gil I., Neta Carmon, and Daniel Harries. "Not always sticky: Specificity of protein stabilization by sugars is conferred by protein–water hydrogen bonds." Journal of the American Chemical Society 145, no. 42 (2023): 23308-23320. https://doi.org/10.1021/jacs.3c08702.
1) Glycerol water activity and its temperature dependance
Olgenblum et al. | |||
molal | activity, 15°C | activity, 25°C | activity, 45°C |
1.22127 | 0.9778 | 0.9777 | 0.9785 |
1.80121 | 0.9678 | 0.9673 | 0.9679 |
2.41994 | 0.9566 | 0.957 | 0.9572 |
2.95261 | 0.947 | 0.9483 | 0.9488 |
3.54414 | 0.9363 | 0.9368 | 0.939 |
4.21888 | 0.9256 | 0.9258 | 0.9264 |
4.74722 | 0.9151 | 0.9158 | 0.9184 |
2) Glycerol osmotic pressure
Olgenblum et al. | |
molality | Osmolality, Osmolal |
0.28 | 0.2783 |
0.6 | 0.612 |
0.921 | 0.924 |
1.221 | 1.246 |
1.516 | 1.502 |
1.801 | 1.802 |
2.1 | 2.063 |
Glycine Betaine osmotic pressure vs. molality at 25 degrees Celsius
References
Please cite the following references when using this data:
Shakhman, Yuri, and Daniel Harries. "How glycine betaine modifies lipid membrane interactions." ChemSystemsChem 3, no. 5 (2021): e2100010. https://doi.org/10.1002/syst.202100010.
Osmotic pressure was measured using VAPRO 5520 Wescor osmometer.
Shakhman et al | |
[molality], mol/kg | Osmolality, Osmolal |
0.009 | 0.001 |
0.019 | 0.011 |
0.100 | 0.099 |
0.111 | 0.098 |
0.201 | 0.199 |
0.213 | 0.199 |
0.301 | 0.314 |
0.306 | 0.308 |
0.399 | 0.426 |
0.407 | 0.422 |
0.504 | 0.546 |
0.505 | 0.534 |
0.701 | 0.782 |
0.703 | 0.763 |
0.844 | 0.934 |
0.850 | 0.955 |
0.991 | 1.115 |
0.995 | 1.132 |
1.208 | 1.394 |
1.466 | 1.725 |
1.503 | 1.785 |
1.753 | 2.112 |
1.966 | 2.375 |
1.999 | 2.398 |
2.479 | 3.359 |
2.498 | 3.145 |
The osmolality in this concentration range fits the following quadratic polynom: Osmolality=0.117*m^2 + 1.003*m.
The molality of betaine in water can be estimated from the refractive index at 25 degrees Celsius according to the following term:
[Betaine], mol/kg = 496.892*RI^2 - 1266.500*RI + 805.356
Trimethylamine N-oxide (TMAO) osmotic pressure at 25 degrees Celsius
References
Please cite the following references when using this data.
a - Sukenik, Shahar, Shaked Dunsky, Avishai Barnoy, Ilan Shumilin, and Daniel Harries. “TMAO mediates effective attraction between lipid membranes by partitioning unevenly between bulk and lipid domain.” Physical Chemistry Chemical Physics 19 (2017): 29862-29871.
b - Shakhman, Yuri, Ilan Shumilin, and Daniel Harries. "Urea counteracts trimethylamine N-oxide (TMAO) compaction of lipid membranes by modifying van der Waals interactions." Journal of Colloid and Interface Science 629 (2023): 165-172. https://doi.org/10.1016/j.jcis.2022.08.123.
Sukenik et al.a | Shakhman et al.b | ||
[TMAO], mol/kg | Osmolality, Osmolal | [TMAO], mol/kg | Osmolality, Osmolal |
0.2 | 0.199 | 0.050 | 0.051 |
0.5 | 0.539 | 0.050 | 0.049 |
1 | 1.161 | 0.150 | 0.145 |
1.5 | 1.810 | 0.150 | 0.150 |
0.250 | 0.252 | ||
0.250 | 0.256 | ||
0.301 | 0.306 | ||
0.400 | 0.424 | ||
0.400 | 0.422 | ||
0.402 | 0.414 | ||
0.550 | 0.601 | ||
0.550 | 0.594 | ||
0.700 | 0.780 | ||
0.700 | 0.774 | ||
0.850 | 0.964 | ||
0.850 | 0.959 | ||
1.000 | 1.157 | ||
1.000 | 1.149 | ||
1.200 | 1.373 |
In this TMAO molal (m) concentration range, the following quadratic polynom adequately reproduces the osmotic pressure:
Osmolality = 0.1305*m^2 + 1.0121*m
Urea osmotic pressure vs. molality at different temperatures
Reference: Stokes, R. H. "Thermodynamics of aqueous urea solutions." Australian Journal of Chemistry 20, no. 10 (1967): 2087-2100.https://doi.org/10.1071/CH9672087.
Robert Harold Stokes | |||||||
molality, mol/kg | 20C | 50C | 100C | 200C | 250C | 300C | 400C |
0.5 | 0.487 | 0.487 | 0.488 | 0.489 | 0.490 | 0.491 | 0.491 |
1 | 0.950 | 0.952 | 0.955 | 0.960 | 0.962 | 0.964 | 0.968 |
1.5 | 1.394 | 1.398 | 1.405 | 1.416 | 1.420 | 1.425 | 1.432 |
2 | 1.823 | 1.830 | 1.841 | 1.859 | 1.866 | 1.873 | 1.885 |
2.5 | 2.239 | 2.250 | 2.265 | 2.291 | 2.302 | 2.312 | 2.330 |
3 | 2.645 | 2.659 | 2.679 | 2.714 | 2.729 | 2.743 | 2.766 |
3.5 | 3.041 | 3.059 | 3.085 | 3.129 | 3.148 | 3.166 | 3.197 |
4 | 3.430 | 3.451 | 3.483 | 3.538 | 3.562 | 3.583 | 3.621 |
5 | 4.188 | 4.217 | 4.262 | 4.339 | 4.372 | 4.402 | 4.455 |
6 | 4.924 | 4.963 | 5.021 | 5.120 | 5.164 | 5.204 | 5.274 |
7 | 5.645 | 5.692 | 5.764 | 5.888 | 5.943 | 5.993 | 6.081 |
8 | 6.354 | 6.410 | 6.496 | 6.646 | 6.710 | 6.770 | 6.877 |
9 | 7.124 | 7.223 | 7.394 | 7.469 | 7.538 | 7.662 | |
10 | 7.841 | 7.950 | 8.139 | 8.221 | 8.297 | 8.431 | |
11 | 8.881 | 8.966 | 9.044 | 9.180 | |||
12 | 9.629 | 9.707 | 9.778 | 9.899 |
Urea osmotic pressure vs. molality at 25 degrees Celsius
Reference: Shumilin, Ilan, Ahmad Tanbuz, and Daniel Harries. "Deep Eutectic Solvents for Efficient Drug Solvation: Optimizing Composition and Ratio for Solubility of β-Cyclodextrin." Pharmaceutics 15, no. 5 (2023): 1462. https://10.3390/pharmaceutics15051462.
Shumilin et al. | |
molality, mol/kg | Osmolality, Osmolal |
0.101 | 0.091 |
0.177 | 0.151 |
0.253 | 0.227 |
0.506 | 0.479 |
0.763 | 0.717 |
0.998 | 0.924 |
1.012 | 0.939 |
1.200 | 1.094 |
1.271 | 1.166 |
1.400 | 1.258 |
1.520 | 1.370 |
1.601 | 1.423 |
1.765 | 1.574 |
1.803 | 1.584 |
1.997 | 1.745 |
2.000 | 1.821 |
2.017 | 1.783 |
2.123 | 1.900 |
2.513 | 2.148 |
2.993 | 2.616 |
2.996 | 2.481 |
4.013 | 3.479 |
4.992 | 4.277 |
6.032 | 5.139 |
7.000 | 5.838 |
7.986 | 6.665 |
8.996 | 7.422 |
9.973 | 8.144 |
11.005 | 8.902 |
11.970 | 9.739 |
The data set is adequately captured by the quadratic fit:
Osmolal = -0.00711m^2 + 0.89132m.