Nanoparticle Imprinted Matrices as Sensing Layers forSize-Selective Recognition of Silver Nanoparticles.

Citation:

Witt J, Mandler D, Wittstock G. Nanoparticle Imprinted Matrices as Sensing Layers forSize-Selective Recognition of Silver Nanoparticles. ChemElectroChemChemElectroChem. 2016 :Ahead of Print.

Date Published:

2016///

Abstract:

This study extends the concept of nanoparticle imprinted matrixes (NAIMs) to systems, in which template nanoparticles (NPs) are immobilized on a conducting surface and a polymer matrix is built around them before the release of the template NPs. Specifically, citrate-stabilized AuNPs, 40 nm in diam., were bound to a 3-aminopropyltriethoxysilane (APTES)-modified indium tin oxide (ITO) electrode at pH 5. Subsequently, a polymer matrix was generated by electropolymn. of self-inhibiting poly(phenol) (PPh) layer. The template AuNPs were removed either by electrooxidn. of the Au core during linear sweep voltammetry (LSV) in Cl--contg. aq. soln. or by chem. oxidn. in aq. KCN soln. After template removal, nanocavities were left behind, which showed size-selective in the competitive reuptake of analyte NPs demonstrated by the preference for citrate-stabilized silver nanoparticles (AgNPs) with 20 nm diam. over AuNPs with 50 nm diam. The remaining nanocavities and their size-recognition ability were examd. by SEM and LSV. Complementing studies by X ray photoelectron spectroscopy and scanning force microscopy corroborated the template embedding, template release and analyte NP uptake. [on SciFinder(R)]

Notes:

CAPLUS AN 2016:1294211(Journal)