Bruchiel-Spanier N, Giordano G, Vakahi A, Guglielmi M, Mandler D.
Electrochemically Deposited Sol-Gel Based Nanoparticle-Imprinted Matrices for the Size-Selective Detection of Gold Nanoparticles. ACS APPLIED NANO MATERIALS. 2018;1 (10) :5612-5619.
AbstractNanoparticles imprinted matrices (NAIMs) is a new approach, in which nanoparticles (NPs) are imprinted in a matrix followed by their removal to form highly selective voids that can recognize the original NPs. In this study, the effect of a sol-gel matrix on the imprinting and reuptake of gold nanoparticles (AuNPs) is examined. Specifically, indium tin oxide (ITO) films were modified with a positively charged polymer, on which the negatively charged AuNPs stabilized with citrate (AuNPs-cit) were adsorbed. This was followed by the electrochemical deposition of sol-gel matrices with different thicknesses and functional groups onto the ITO/AuNPs-cit. Electrochemical oxidation dissolved the AuNPs-cit and formed cavities in the sol-gel films, which fit both the size and shape of the AuNPs-cit. Reuptake of these NPs from an aqueous solution was successful using the imprinted films, whereas the non-imprinted films did not re-uptake the AuNPs-cit. Furthermore, the thickness of the sol-gel layers as well as the type of the silanes that were deposited play an important role on the recognition ability of the NAIM. Finally, we found that the NAIMs are selective, and larger AuNPs-cit were not recognized by the imprinted matrix.
Leader A, Mandler D, Reches M.
The role of hydrophobic, aromatic and electrostatic interactions between amino acid residues and a titanium dioxide surface. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 2018;20 (47) :29811-29816.
AbstractUnderstanding the nature of interactions between inorganic surfaces and biomolecules, such as amino acids and peptides, can enhance the development of new materials. Here, we present single molecule force spectroscopy (SMFS) measurements of the interactions between an atomic force microscopy (AFM) probe, modified with various amino acids, and a titanium dioxide surface. Specifically, we study the affinity of amino acids toward a titanium dioxide surface bearing hydrophobic (Leu), aromatic (Phe) and hydrophilic (Orn) residues. We find that aromatic interactions dominate over aliphatic in their affinity to the titanium dioxide surface. In addition, we show that by combining aromatic and hydrophilic moieties in a single amino acid (NH2-Phe), the adhesion of the latter to the surface increases. Furthermore, the affinity of positively charged amino acids to the titanium dioxide surface is higher than that of uncharged, and can be increased more, with elevating the pH of the buffer above the pK(a) of the basic residues. The kinetic and thermodynamic parameters imply that the dynamics of the surface-amino acid interface are mostly governed by hydrophobic interactions.
Xu Y, Lei W, Su J, Hu J, Yu X, Zhou T, Yang Y, Mandler D, Hao Q.
A high-performance electrochemical sensor based on g-C3N4-E-PEDOT for the determination of acetaminophen. ELECTROCHIMICA ACTA. 2018;259 :994-1003.
AbstractA fast, ultrasensitive electrochemical sensing platform based on graphitic carbon nitride-electrochemically deposited-poly(3,4-ethylenedioxythiophene) (g-C3N4-E-PEDOT) composite was constructed by in-situ electropolymerization and applied for the quantitative determination of acetaminophen (AP). E-PEDOT was introduced as the conducting matrix for developing g-C3N4 composite to complement the poor conductivity disadvantage of g-C3N4. The strong affinity and synergetic effect between g-C3N4 and E-PEDOT, which were analyzed by PM6 computational calculation, highly improved the electron transfer property and remarkably enhanced the electrochemical catalytic activity of the composite. The g-C3N4-E-PEDOT modified glassy carbon electrode (GCE) demonstrated better electrocatalytic activity towards the oxidation of AP than bare, g-C3N4 and E-PEDOT modified ones. Under the optimized conditions, the oxidation peak currents at the g-C3N4-E-PEDOT/GCE increased linearly in the concentration range of AP from 0.01 to 2 mu M and 2-100 mu M, and an ultra-low limit of detection (LOD) of 34.28 nM was obtained (S/N = 3). In addition, the g-C3N4-E-PEDOT/GCE was successfully applied for the AP determination in the clinical human serum, and also exhibited excellent selectivity, reproducibility and stability. Except the novel AP determination approach, moreover, this work provided a new electrochemical application angle of graphitic carbon nitride theoretically as well as experimentally. (C) 2017 Elsevier Ltd. All rights reserved.
Liu C, Wang S, Zhou Y, Yang H, Lu Q, Mandler D, Magdassi S, Tay CY, Long Y.
Index-tunable anti-reflection coatings: Maximizing solar modulation ability for vanadium dioxide-based smart thermochromic glazing. JOURNAL OF ALLOYS AND COMPOUNDS. 2018;731 :1197-1207.
AbstractVanadium dioxide (VO2) nanoparticles with reversible semiconductor-metal phase transition holds the tremendous potential as a thermochromic material for the energy-saving smart glazing. However, the trade-off between improving the luminous transmittance (T-lum) while sacrificing the solar modulation ability (Delta T-sol) hampers its bench-to-market translation. Previous studies of anti-reflection coatings (ARCs) focused primarily on increasing Tlum while neglecting DTsol, which is a key energy-saving determinant. The intrinsically low Delta T-sol (< 16%) is due to the fact that VO2 has a higher refractive index (RI) from 500 nm to 2200 nm wavelength (lambda) below its critical transition temperature (tau(c)), which causes excessive reflection at a lower temperature. This study aims to investigate ARCs with tunable RI (1.47-1.92 at lambda = 550 nm) to improve the antireflection effect at a lower temperature, thereby maximizing Delta T-sol for various VO2 nanosubstrates, e.g. continuous thin films, nanocomposites, and periodic micro-patterning films. We showed that the best performing coatings could maximize Delta T-sol (from 15.7% to 18.9%) and increase T-lum(avg) (from 39% to 44%) simultaneously, which surpasses the current benchmark specifications ever reported for ARC-coated VO2 smart glazing. In addition, the cytotoxicity analyses evidence that ARCs are feasible to improve the cyto-compatibility of VO2 nanoparticles-based nanocomposites. The presented RI-tunable ARC, which circumvents the complex materials selection and optical design, not only paves the way for practical applications of VO2-based smart windows but also has extensive applications in the field of solar cells, optical lenses, smart display, etc. (C) 2017 Elsevier B.V. All rights reserved.