Date Published:
2017///Abstract:
Additive manufg. processes enable fabrication of complex and functional three-dimensional (3D) objects ranging from engine parts to artificial organs. Photopolymn., which is the most versatile technol. enabling such processes through 3D printing, utilizes photoinitiators that break into radicals upon light absorption. We report on a new family of photoinitiators for 3D printing based on hybrid semiconductor-metal nanoparticles. Unlike conventional photoinitiators that are consumed upon irradn., these particles form radicals through a photocatalytic process. Light absorption by the semiconductor nanorod is followed by charge sepn. and electron transfer to the metal tip, enabling redox reactions to form radicals in aerobic conditions. In particular, we demonstrate their use in 3D printing in water, where they simultaneously form hydroxyl radicals for the polymn. and consume dissolved oxygen that is a known inhibitor. We also demonstrate their potential for two-photon polymn. due to their giant two-photon absorption cross section. [on SciFinder(R)]Notes:
CAPLUS AN 2017:998408(Journal; Online Computer File)