Revealing Cation Exchange Induced Phase Transformations in Multi-Elemental Chalcogenide Nanoparticles.

Citation:

Tan JMR, Scott M, Hao W, Baikie T, Nelson CT, Pedireddy S, Tao R, Ling X, Magdassi S, White T, et al. Revealing Cation Exchange Induced Phase Transformations in Multi-Elemental Chalcogenide Nanoparticles. Chem. Mater.Chemistry of Materials. 2017 :Ahead of Print.

Date Published:

2017///

Abstract:

To control the process of cation exchange (CE) in multi-elemental system, a detailed understanding of structural changes at microscopic level is imperative. However, the synthesis of multi-elemental system has so far relied on the CE phenomenon of binary system which does not necessarily extend to the higher order systems. Here, a direct exptl. evidence supported by theor. calcns. reveal a growth model of binary Cu-S to ternary Cu-Sn-S to quaternary Cu-Zn-Sn-S which shows that cations preferentially diffuse along specific lattice plane with the preservation of sulfuric anionic framework. In addn., we also discover that unlike the commonly accepted structure (P63mc), the metastable crystal structure of Cu-Zn-Sn-S phase possesses fixed Sn occupancy sites. By revealing the preferential nature of cations diffusion and growth mechanism, our work provides insight to control the stoichiometry and phase purity of novel multi-elemental materials. [on SciFinder(R)]

Notes:

CAPLUS AN 2017:1607078(Journal)