Quantum dots are clusters of atoms (or molecules) that are small enough that their electronic states are discrete. They can be prepared with a variety of compositions and covering ligands but Bare not quite identical. In particular, the dots will have a variable size. The study of the properties of individual dots is an active subject in its own right. Here we examine the electronic structure of assemblies of dots, where the dots are near enough that they interact. For the purpose of an elementary discussion, metallic dots are regarded as ``atoms'' with one valence orbital. The key point is at they are ``designer'' atoms because their electronic properties be controlled through the synthetic method that is used to prepare the dots. Of direct concerns to us are the size of the dot and the nature of the ligands used to passivate the dots so that they do not coalesce. An important parameter is the energy cost, I, of adding an electron to a dot. The large size of the dots means that, unlike ordinary atoms, the Coulomb repulsion of the added electron is low. Other experimental control parameters are externally applied and include the ability to compress an assembly S of dots, and thereby change the distance between them, or to subject them to static or alternating electromagnetic fields. The response to spectral probes:for the electronic structure is discussed with special emphasis on: new features, such as the onset of conjugation or the insulator-to-metallic transition made accessible by the low charging energy of the dots. We propose a-phased diagram of electronic isomers that can be: accessed under realistic conditions.
The role of ferritin expression on the labile iron pool of cells and its implications for the control of cell proliferation were assessed. Antisense oligodeoxynucleotides were used as tools for modulating the expression of heavy and light ferritin subunits of K562 cells. mRNA and protein levels of each subunit were markedly reduced by 2-day treatment with antisense probes against the respective subunit. Although the combined action of antisense probes against both subunits reduced their protein expression, antisense repression of one subunit led to an increased protein expression of the other. Antisense treatment led to a rise in the steady-state labile iron pool, a rise in the production of reactive oxygen species after pro-oxidative challenges and in protein oxidation, and the down-regulation of transferrin receptors. When compared to the repression of individual subunits, co-repression of each subunit evoked a more than additive increase in the labile iron pool and the extent of protein oxidation. These treatments had no detectable effects on the long-term growth of cells. However, repression of ferritin synthesis facilitated the renewal of growth and the proliferation of cells pre-arrested at the G(1)/S phase. Renewed cell growth was significantly less dependent on external iron supply when ferritin synthesis was repressed and its degradation inhibited by lysosomal antiproteases. This study provides experimental evidence that links the effect of ferritin repression on growth stimulation to the expansion of the labile iron pool.
The role of ferritin in the modulation of the labile iron pool was examined by repressing the heavy subunit of ferritin in K562 cells transfected with an antisense construct. Repression of the heavy ferritin subunit evoked an increase in the chemical levels and pro-oxidant activity of the labile iron pool and, in turn, caused a reduced expression of transferrin receptors and increased expression of the light ferritin subunit.
At times, a pronounced trough of low barometric pressure extends from equatorial Africa northward, over the Red Sea and the eastern Mediterranean countries, i.e., the Red Sea Trough. The associated weather is usually hot and dry, and consequently the atmosphere becomes conditionally unstable. In cases in which additional moisture is supplied and dynamic conditions become supportive, as the case analyzed here, intense thunderstorms occur, with extreme rain rates, hail and floods. The storm herein analyzed caused extensive damage both in casualties and property and evolved in two main consecutive phases: In the first a Mesoscale Convective System that moved from Sinai northward over Israel dominated, and in the second deep convection was organized mainly along a cold front. Data analysis indicates several synoptic-scale factors that had a supportive effect on the storm formation and intensification: Conditional instability established by the Red Sea trough, mid-level moisture transport from Northern Africa, and upper-level divergence imparted by both polar and subtropical jet streams over the Middle-East. Mesoscale features were further investigated by means of a hydro-meteorological observational analysis with high spatio-temporal resolution using raingauge and radar data, and satellite imagery. It is shown that local factors, particularly topographic effects, play a major role in the evolution, intensity and spatial organization of the convective activity. Our findings support results of a numerical study of another autumn rainstorm associated with the Red Sea trough. In the present case we identify an additional contributing factor, i.e., a mid-latitude upper-level trough that further intensified the storm as it was approaching the Middle-East.
At times, a pronounced trough of low barometric pressure extends from equatorial Africa northward, over the Red Sea and the eastern Mediterranean countries, i.e., the Red Sea Trough. The associated weather is usually hot and dry, and consequently the atmosphere becomes conditionally unstable. In cases in which additional moisture is supplied and dynamic conditions become supportive, as the case analyzed here, intense thunderstorms occur, with extreme rain rates, hail and floods. The storm herein analyzed caused extensive damage both in casualties and property and evolved in two main consecutive phases: In the first a Mesoscale Convective System that moved from Sinai northward over Israel dominated, and in the second deep convection was organized mainly along a cold front. Data analysis indicates several synoptic-scale factors that had a supportive effect on the storm formation and intensification: Conditional instability established by the Red Sea trough, mid-level moisture transport from Northern Africa, and upper-level divergence imparted by both polar and subtropical jet streams over the Middle-East. Mesoscale features were further investigated by means of a hydro-meteorological observational analysis with high spatio-temporal resolution using raingauge and radar data, and satellite imagery. It is shown that local factors, particularly topographic effects, play a major role in the evolution, intensity and spatial organization of the convective activity. Our findings support results of a numerical study of another autumn rainstorm associated with the Red Sea trough. In the present case we identify an additional contributing factor, i.e., a mid-latitude upper-level trough that further intensified the storm as it was approaching the Middle-East.
The vibrational self-consistent field method is used to analyze the inhomogeneous spectral distribution of transitions caused by vacancies and thermally populated phonons, specializing to molecular iodine isolated in an Ar matrix. At experimentally relevant temperatures, for a vacancy concentration of 1.4%, both defect-induced and phonon-induced spectral shifts contribute to the spectral distribution. Both contributions scale linearly with vibrational overtone number. The predicted widths are consistent with reported resonant Raman spectra. In time-resolved coherent anti-Stokes Raman scattering (TRCARS) measurements, spectral indistinguishability implies that all members of the inhomogeneous ensemble contribute coherently to the detectable homodyne signal. The connection between spectral distribution and the observable in TRCARS is derived. The predicted polarization beats and free induction decay due to the inhomogeneous ensemble are in qualitative agreement with experiments. (C) 2001 American Institute of Physics.
Objective-To obtain theanatomic and morphometric data required for biomechanical analysis ofthehindlimb in dogs.
Animals-A healthy adult mixed-breed 23-kg male dog.
Procedure-Following euthanasia ofthe dog, all muscles ofthe right hind limb were identified and meticulously removed. Physiologic cross-sectional areas (PCSA) and architectural indices (Al) were calculated. The coordinates for the origin and insertion of each muscle were determined, using orthogonal right-handed coordinate systems embedded in the pelvis, femur, and tibia.
Results-PCSA and Al were calculated for 29 muscles, and coordinates for the origins and insertions ofthese muscles were determined.
Conclusions-Results provide themorphometric and anatomic data necessary for S-dimensional biomechanical studies ofthehind limb in dogs.
This study uses the Agent-Based Identity Repertoire model to investigate the ability of populations to adapt and learn in an unpredictable environment. The authors' findings highlight the trade-off between adaptation and diversity in the pursuit of performance but also show that this trade-off is far from straightforward Increasing sophistication improves the ability to adapt but reduces diversity, imposing high costs down the line. However, high levels of sophistication also produce small, stable homogeneous clusters of agents, which slow down declines in diversity. Innovative or entrepreneurial agents reacting more rapidly to environmental signals increase the prevalence of such clusters, helping diversity but hampering adaptability. The authors also show that more predictable environments facilitate successful adaptation, especially for populations of intermediate sophistication. Finally, the authors conclude that the trade-off between adaptation and diversity is such that in the present model, long-term learning is difficult to achieve.
Superexchange is a longer-range electron-transfer mediated by a nonresonant bridge between the donating and accepting states. We discuss a coupled set of donor/acceptor levels that are not resonant, with special reference to coupling of intermediate strengths. Examples of such systems are peptide cations or arrays of quantum dots. If the coupling is strong enough to overcome the gaps, charge can migrate. If the coupling is too weak, the charge remains localized. In the intermediate case, the charge is shown to be localized over a finite, connected, subset of sites. Degenerate perturbation theory provides a suitable zero-order basis for this intermediate regime. In a time dependent language, in the domain-localized regime, the charge migrates over a limited range of states. Also discussed is an effect of electron correlation, the so-called Coulomb blockade, on charge localization with computational examples. The experimental probing of the domain-localized regime is considered. Probes of the energy dependence of the local density of states such as scanning tunneling microscopy (STM) of arrays of quantum dots and photoelectron spectroscopy (PES) of chromophore bearing molecules are suggested.