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1. Introduction

Markov chains1 and Markov decision processes (MDPs) are special cases of
stochastic games. Markov chains describe the dynamics of the states of a
stochastic game where each player has a single action in each state. Simi-
larly, the dynamics of the states of a stochastic game form a Markov chain
whenever the players’ strategies are stationary. Markov decision processes
are stochastic games with a single player. In addition, the decision problem
faced by a player in a stochastic game when all other players choose a fixed
profile of stationary strategies is equivalent to an MDP.

The present chapter states classical results on Markov chains and Markov
decision processes. The proofs use methods that introduce the reader to
proofs of more general analog results on stochastic games.

2. Finite State Markov Chains

A transition matrix is an n× n matrix P such that all entries Pi,j of P are
nonnegative and for every 1 ≤ i ≤ n we have

∑n
j=1 Pi,j = 1.

A finite state stationary Markov chain, or Markov chain for short, is
a discrete stochastic process z1, . . . , zt, . . . with values zt in the finite set
S = {1, . . . , n} and such that

Pr(zt+1 = j | z1, . . . , zt = i) = Pi,j ,

where P is an n× n transition matrix.
An n × n transition matrix P together with an (initial) distribution µ

on S = {1, . . . , n} defines a discrete stochastic process (z1, . . . , zt, . . .) with

1We use the term Markov chain for the more explicitly termed stationary Markov
chain.
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values zt in S by the following formulas.

Pr(z1 = j) = µ(j)

and
Pr(zt+1 = j | z1, . . . , zt = i) = Pi,j .

The interpretation is that the initial state z1 ∈ S is chosen according
to the initial distribution µ and thereafter the state in stage t + 1 depends
stochastically on zt. The probability of moving from state i to state j equals
Pi,j .

It follows by induction on t that the probability of moving in t ≥ 0
stages from state i to state j, i.e., Pr(zs+t = j | z1, . . . , zs = i), equals
(P t)i,j . Indeed, it holds trivially for t = 0, 1. By the induction hypothesis
it follows that for t > 0 we have Pr(zs+t−1 = k | z1, . . . , zs = i) = (P t−1)i,k.
Therefore,

Pr(zs+t = j | . . . , zs = i) =
∑

k

Pr(zs+t = j and zs+t−1 = k | . . . , zs = i)

=
∑

k

Pr(zs+t−1 = k | . . . , zs = i)Pk,j

=
∑

k

(P t−1)i,kPk,j = (P t)i,j .

We proceed with a well-known and classical result.
Proposition 1 Let P be an n× n transition matrix.

(a) The sequence I+P+...+P k−1

k converges as k →∞ to a transition matrix
Q, and, moreover, the sequence I + P + . . . + P k−1 − kQ is bounded.

(b) rank (I − P ) + rank Q = n.
(c) For every n× 1 column vector c, the system of equations

Px = x, Qx = Qc

has a unique solution.
(d) I-(P-Q) is nonsingular, and

H(β) =
∑

t≥0

βt(P t −Q) →β→1− H = (I − P −Q)−1 −Q.

H(β)Q = QH(β) = HQ = QH = 0

and
(I − P )H = H(I − P ) = I −Q.
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3. Markov Decision Processes

A special subclass of stochastic games is the class of Markov decision pro-
cesses, i.e., stochastic games with a single player. This section reexamines
classical results on Markov decision processes.

A finite-state-and-action MDP consists of
− a finite set S, the set of states;
− for every z ∈ S a finite action set A(z);
− for every pair consisting of a state z in S and an action a ∈ A(z) a

reward r(z, a);
− for every pair consisting of a state z in S and an action a ∈ A(z) a

probability distribution p (z, a) on S;
− an initial distribution µ on S.

The interpretation is as follows. The set A(z) is the set of feasible actions
at state z. The initial distribution of the state z1 is according to µ. If at
stage t the state is zt and action at ∈ A(zt) is played, the decision-maker
gets a stage payoff of r(zt, at) at stage t and the conditional distribution
of the next state zt+1 given all past states and actions z1, a1, . . . , zt, at is
given by p (zt, at). We use the common notational convention denoting the
probability of zt+1 = z′ given zt = z and at = a, p (z, a)[z′], by p (z′ | z, a).

The quadruple 〈S,A, r, p〉 is called an MDP form.

3.1. STRATEGIES

A pure strategy2 of the decision-maker in an MDP is a function σ that
assigns to every finite string h = (z1, a1, . . . , zt) an action σ(h) in A(zt).
The set of all pure strategies is denoted Σ. A behavioral strategy is a func-
tion σ that assigns to every finite string h = (z1, a1, . . . , zt) a probability
distribution σ(h) on A(zt); σ(h)[a] stands for the probability that the be-
havioral strategy σ chooses the action a (in A(zt)) given the finite history
h = (z1, a1, . . . , zt). Obviously, when a pure strategy σ is seen as a map that
assigns to the finite history h the Dirac measure concentrated on σ(h), it
is also a behavioral strategy. Note that the definition of a strategy in an
MDP depends only on the state space S and the feasible action sets A(z),
z ∈ S.

Let H stand for the set of all finite histories (z1, a1, . . . , zt), where t
is a positive integer and for every s < t the action as is in A(zs). Given
h = (z1, a1, . . . , zt) ∈ H we denote by A(h) the set A(zt) of feasible actions
at state zt. A pure strategy σ is thus a point in the Cartesian product∏

h∈H A(h). This is a Cartesian product of countably many finite sets.
Therefore, it is a metrizable compact space. A mixed strategy is a probability

2The classical literature on MDPs often refers to a strategy as a policy (or plan).
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distribution on the space of pure strategies, i.e., an element of ∆(Σ) where
∆(B) stands for all probability distributions on B.

Let Ht be the set of all finite histories (z1, a1, . . . , zt), where for every
s < t the action as is in A(zs). Then H = ∪t≥1Ht. An infinite sequence
(z1, a1, . . . , zt, . . .) such that (z1, a1, . . . , zt) ∈ Ht for every t is called an
infinite play. The space of all infinite plays is denoted H∞. The algebra of
subsets of H∞ spanned by the coordinates z1, a1, . . . , zt is denoted Ht, and
the σ-algebra of subsets spanned by ∪t≥1Ht is denoted H∞.

A probability measure P on the measurable space (H∞,H∞) induces
a sequence of probability measures Pt on (H∞,Ht) by defining Pt to be
the restriction of P to the algebra Ht. Note that the restriction of Pt to
Hs where s ≤ t is equal to Ps. Also, if Pt is a sequence of probability
measures on (H∞,Ht) such that the restriction of Pt to the algebra of
subsets Hs is equal to Ps, then there is a unique measure P on (H∞,H∞)
whose restriction to (H∞,Ht) coincides with Pt. Therefore, a common way
to define a probability on the space of infinite plays (H∞,H∞) is to define
recursively a sequence of probability distributions Pt on (H∞,Ht) such
that the restriction of Pt to (H∞,Hs) (where s ≤ t) equals Ps. This last
compatibility condition is achieved by defining the conditional probability
of Pt+1 given Ht and thus implicitly stipulating that the restriction of Pt+1

to Ht coincides with Pt.
A pure or behavioral strategy σ together with the initial distribution µ

induces a probability distribution Pµ
σ , or Pσ for short, on the space H∞ as

follows.
Pσ(z1 = z) = µ(z)

Pσ(at = a | z1, a1, . . . , zt) = σ(z1, . . . , zt)[a]

Pσ(zt+1 = z | z1, a1, . . . , zt, at) = p (z | zt, at).

Note that the right-hand side of the first and last equalities above is inde-
pendent of σ.

A mixed strategy ν ∈ ∆(Σ) is a mixture of pure strategies and therefore
the probability Pν that it induces on H∞ is given by the following formula.
Let X be a measurable subset of H∞. Then

Pν(X) = Eν(Pσ(X)) =
∫

Pσ(X) dν(σ).

In particular,
Pν(z1 = z) = µ(z)

and
Pν(zt+1 = z | z1, a1, . . . , zt, at) = p (z | zt, at).
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In order to complete the definition of Pν by means of conditional probabil-
ities we have to derive the formula for Pν(at = a | z1, a1, . . . , zt).

For every finite history h = (z1, a1, . . . , zt), we denote by Σ(h) the set of
all pure strategies compatible with h, i.e., σ ∈ Σ(h) if and only if for every
s < t we have σ(z1, a1, . . . , zs) = as. Then

Pν(at = a | z1, a1, . . . , zt) =
ν({σ ∈ Σ(h) | σ(h) = a})

ν(Σ(h))

whenever ν(Σ(h)) 6= 0, where h = (z1, a1, . . . , zt). The above conditional
distribution when ν(Σ(h)) = 0 is immaterial for the reconstruction of Pν .

Given a mixed strategy ν ∈ ∆(Σ), we define the following behavioral
strategy τ . Let

τ(z1, a1, . . . , zt)[a] =
ν({σ ∈ Σ(h) | σ(h) = a})

ν(Σ(h))

if ν(Σ(h)) 6= 0 and τ(z1, a1, . . . , zt) is arbitrary if ν(Σ(h)) = 0.
The formulas defining Pν and Pτ by means of the conditional distribu-

tions are identical. Therefore, the probabilities induced on H∞ by ν and by
τ coincide. In addition, if τ is a behavioral strategy we can identify it with
a point in the product

∏
h∈H ∆(A(h)) and thus with a probability distribu-

tion ν on Σ =
∏

h∈H A(h). The probability induced on H∞ by the mixed
strategy ν and the behavioral strategy τ coincide. Therefore, any distribu-
tion on H∞ induced by a mixed strategy can be induced by a behavioral
strategy and vice versa.

In particular, maximizing (respectively, taking the supremum of) the
expectation of a bounded real-valued function defined on H∞ by means
of behavioral strategies or by means of mixed strategies (and therefore
also by means of pure strategies) leads to the same maximal (respectively,
supremum) value.

A special class of strategies is the class of stationary strategies. A behav-
ioral strategy σ is stationary if σ(z1, . . . , zt) depends only on the state zt.
Thus, a stationary strategy is represented by a function σ : S → ∪z∆(A(z))
such that σ(z) ∈ ∆(A(z)). Equivalently, a stationary strategy can be rep-
resented by a point σ ∈ ∏

z∈S ∆(A(z)).

3.2. PAYOFFS

The objective of the decision-maker in an MDP is to maximize a specific
evaluation of the stream r(z1, a1), . . . , r(zt, at), . . . of payoffs. In the present
chapter we confine ourselves to two evaluations: the discounted evaluation
and the limiting average evaluation.
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In the β-discounted model, Γβ, the payoff associated with the strategy
σ and the initial state z is

v(z, β, σ) := Ez
σ

(
(1− β)

∞∑

t=1

βt−1r(zt, at)

)

= (1− β)
∞∑

t=1

βt−1Ez
σ (r(zt, at)) ,

where Ez
σ stands for the expectation with respect to the distribution in-

duced by the initial state z and the strategy σ. The equality follows from
the uniform convergence of

∑T
t=1 βt−1r(zt, at), as T → ∞, to the infinite

sum
∑∞

t=1 βt−1r(zt, at).
For a pair consisting of an initial state z and a discount factor β < 1

we set

v(z, β) := max
σ

v(z, β, σ).

The existence of the max follows from the fact that the space of pure
strategies is a compact space and the function σ 7→ v(z, β, σ) is continuous
in σ. Indeed, for any two pure strategies σ and τ that coincide on all finite
histories of length ≤ t we have |v(z, β, σ) − v(z, β, τ)| ≤ 2βt‖r‖, where
‖r‖ = maxz,a |r(z, a)|. The existence of the max will follow also from the
result in Section 3.3.

Note that for every state z, strategy σ, and 1 > β > γ > 0 we have
|v(z, β, σ) − v(z, γ, σ)| ≤ ‖r‖∑∞

t=0 |(1 − β)βt − (1 − γ)γt|. By the triangle
inequality we have |(1 − β)βt − (1 − γ)γt| ≤ (β − γ)βt + (1 − γ)(βt − γt).
Therefore, |v(z, β, σ) − v(z, γ, σ)| ≤ 2‖r‖(β − γ)/(1− β). Therefore, the
functions γ 7→ v(z, γ, σ) and γ 7→ v(z, γ) are Lipschitz in the interval [0, β).

In the limiting average model, Γ∞, we wish to define the payoff asso-
ciated with an initial state z and a strategy σ as the expectation of the
limit of the average stage payoffs, 1

T

∑T
t=1 r(zt, at). However, the limit need

not exist. Therefore, optimality of a strategy in the limiting average model
needs careful definition.

For a pair consisting of a state z and a strategy σ we set

v(z, σ) := Ez
σ

(
lim inf
T→∞

1
T

T∑

t=1

r(zt, at)

)

u(z, σ) := lim inf
T→∞

1
T

T∑

t=1

Ez
σ (r(zt, at)) .

Note that (by Fatou’s lemma) u(z, σ) ≥ v(z, σ) with the possible strict
inequality. Consider for example the following MDP. The state space is
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S = {1, 2}, there are two actions, T and B, in each state (i.e., A(z) =
{T,B}), the payoff function is given by r(z, T ) = 1 and r(z, B) = 0, and
the transitions are described by p (1 | ·, ·) = .5 = p (2 | ·, ·). Let σ be the
pure strategy that at stage t ≥ 2 plays T if either z2 = 2 and (2n)! ≤
t < (2n + 1)! or z2 = 1 and (2n + 1)! ≤ t < (2n + 2)!, and σ plays B

otherwise. Then, u(·, σ) = 1/2. However, lim infk→∞ 1
k

∑k
t=1 r(zt, at) = 0

and therefore v(z, σ) = 0.
It will later be shown that in an MDP with finitely many states and

actions there exists a pure stationary strategy σ which satisfies the following
optimality conditions. There exists a constant C such that for every initial
state z and every strategy τ we have v(z, σ) ≥ u(z, τ) ≥ v(z, τ), and,
moreover,

v(z, σ) = Ez
σ

(
lim inf
T→∞

1
T

T∑

t=1

r(zt, at)

)
≥ Ez

τ

(
lim sup
T→∞

1
T

T∑

t=1

r(zt, at)

)
,

and

Ez
σ

(
k∑

t=1

r(zt, at)

)
≥ Ez

τ

(
k∑

t=1

r(zt, at)

)
− C ∀ k.

3.3. THE DISCOUNTED MDP

In this section we prove the classical result that the MDP with finitely
many states and actions and a fixed discount factor β has a pure stationary
strategy that is optimal for every initial state.

Consider the map Ψ from RS to itself defined by

(Ψx)[z] = max
a∈A(z)

(
(1− β)r(z, a) + β

∑

z′∈S

p (z′ | z, a)x(z′)

)
.

Two immediate properties of this map follow. Monotonicity,

x ≥ y ⇒ Ψx ≥ Ψy,

where for x, y ∈ RS we use the notation x ≥ y whenever x(z) ≥ y(z) for
every coordinate z, and

Ψ(c1 + x) = βc1 + Ψx,

where 1 stands for the vector with each of its coordinates equal to 1.
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Therefore, since x− ‖x− y‖1 ≤ y ≤ x + ‖x− y‖1, we have

Ψy ≤ Ψ(x + ‖x− y‖1) = β‖x− y‖1 + Ψx

and
Ψy ≥ Ψ(x− ‖x− y‖1) = −β‖x− y‖1 + Ψx.

The two inequalities imply that

‖Ψx−Ψy‖ ≤ β‖x− y‖.
Therefore, the map Ψ is a (uniformly) strict contraction of the (complete
metric) space RS and thus has a unique fixed point w. The (unique) fixed
point w satisfies the following equalities.

w(z) = max
a∈A(z)

(
(1− β)r(z, a) + β

∑

z′∈S

p (z′ | z, σ(z))w(z′)

)
. (1)

Therefore, there is a pure stationary strategy σ, i.e., a function σ : S →
∪zA(z) such that σ(z) ∈ A(z), such that

w(z) = (1− β)r(z, σ(z)) + β
∑

z′∈S

p (z′ | z, σ(z))w(z′). (2)

It follows from equation (2) that

Eσ ((1− β)r(zt, at) + βw(zt+1) | z1, a1, . . . , zt) = w(zt) (3)

and therefore by taking expectation of the conditional expectations in equa-
tion (3) and rearranging the terms we have

(1− β)Eσ (r(zt, at) | z1) = Eσ (w(zt) | z1)− βEσ (w(zt+1) | z1) . (4)

Multiplying equation (4) by βt−1 and summing over 1 ≤ t < k we deduce
that

(1−β)
k−1∑

t=1

βt−1Es (r(zt, at) | z1) = w(z1)−βkEσ (w(zk) | z1)) →k→∞ w(z1)

and therefore

(1− β)
∞∑

t=1

βt−1Eσ (r(zt, at) | z1) = w(z1).

Similarly, using equation (1) we have for every strategy τ that

Eτ ((1− β)r(zt, at) + βw(zt+1) | z1, a1, . . . , zt) ≤ w(zt) (5)
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and therefore by taking expectation of the conditional expectations in equa-
tion (5) and rearranging the terms we have

(1− β)Eτ (r(zt, at) | z1) ≤ Eτ (w(zt) | z1)− βEτ (w(zt+1) | z1) . (6)

Multiplying equation (6) by βt−1 and summing over t ≥ 1 we deduce that

(1− β)
∞∑

t=1

βt−1Eτ (r(zt, at) | z1) ≤ w(z1).

We conclude that for every strategy τ and every initial state z we have
v(z, β, σ) = w(z) ≥ v(z, β, τ). This proves
Proposition 2 (Blackwell [3]) For every MDP form 〈S, A, r, p〉 with finitely
many states and actions and every discount factor β < 1 there is a pure
stationary strategy σ such that for every initial state z and every strategy
τ we have

v(z, β, σ) ≥ v(z, β, τ).

Moreover, the stationary strategy σ obeys, for every state z,

v(z, β) = (1− β)r(z, σ(z)) + β
∑

z′∈S

p (z′ | z, σ(z))v(z′, β)

= max
a∈A(z)

(
1− β)r(z, a) + β

∑

z′∈S

p (z′ | z, σ(z))v(z′, β)

)
.

The next result provides a formula for the payoff of a Markov stationary
strategy (this result obviously applies to every stochastic game). For every
(pure or) behavioral stationary strategy σ let P denote the S × S matrix
where

Pz,z′ = p (z′ | z, σ(z)) :=
∑

a∈A(z)

(σ(z))[a] p (z′ | z, a)

and set
rσ(z) = r(z, σ(z)) :=

∑

a∈A(z)

(σ(z))[a] r(z, a).

Lemma 1 a) The S×S matrix I−βP is invertible and its inverse is given
by

(I − βP )−1 =
∞∑

t=0

(βP )t.

b) The payoff as a function of the initial state z, v(z, β, σ), is given by

v(z, β, σ) =
∑

z′∈S

(I − βP )−1
z,z′ rσ(z′).
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Proof. The series of finite sums
∑n

t=0 βtP t converges, as n →∞, to
the infinite sum

∑∞
t=0 βtP t. The product (I − βP )

∑n
t=0 βtP t equals I −

βn+1Pn+1, which converges, as n → ∞, to the identity matrix I, and
therefore

∑∞
t=0 βtP t is the inverse of the matrix I − βP , which proves (a).

Notice that Ez
σ(βt−1r(zt, at)) =

∑
z′∈S(βt−1P t−1)z,z′rσ(z′) and there-

fore v(z, β, σ) =
∑∞

t=1

∑
z′∈S(βt−1tP t−1)z,z′rσ(z′), which proves (b).

A corollary of the lemma is that, for every stationary strategy σ and
every state z, the payoff v(z, β, σ) of an MDP with finitely many states
and actions is a rational function of the discount factor β, the stage payoffs
r(z, a), z ∈ S and a ∈ A(z), and the transition probabilities p (z′ | z, a),
z, z′ ∈ S and a ∈ A(z). In what follows, the symbol ∀τ (respectively, ∀z)
means for every strategy τ (respectively, for every state z).

Proposition 3 For every MDP form 〈S, A, r, p〉, there is a pure stationary
strategy (policy) σ and a discount factor 0 < β0 < 1 such that
1) (Blackwell [3])

v(z, β, σ) ≥ v(z, β, τ) ∀β0 ≤ β < 1 ∀z ∀τ.

2) (Blackwell [3]) For every state z, the function β 7→ v(z, β) is a rational
function on the interval [β0, 1). In particular, the limit of v(z, β) as β → 1−
exists. Set v(z) := limβ↓1 v(z, β).
3) There is a positive constant C such that for every initial state z1, every
strategy τ , and every k > 1 we have

1
k

k∑

t=1

Ez1
τ (r(zt, at)) ≤ v(z1) +

C

k

≤ 1
k

k∑

t=1

Ez1
σ (r(zt, at)) +

2C

k
;

in particular, u(z, σ) ≥ u(z, τ).
4) For every initial state z1 and every strategy τ we have

Ez1
σ

(
lim inf
k→∞

1
k

k∑

t=1

r(zt, at)

)
≥ Ez1

τ

(
lim sup

k→∞
1
k

k∑

t=1

r(zt, at)

)
.

Proof. For every stationary strategy σ and every initial state z the
function β → v(z, β, σ) is a rational function of β. For every two rational
functions f and g defined on a left neighborhood of 1 there is γ < 1 such
that either f(β) > g(β) for all γ ≤ β < 1, or f(β) < g(β) for all γ ≤ β < 1,
or f(β) = g(β) for all γ ≤ β < 1. By Proposition 2, for every discount factor
β there is a pure stationary strategy σ such that for every initial state z
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and every pure (stationary) strategy τ we have v(z, β, σ) ≥ v(z, β, τ). There
are finitely many pure stationary strategies. Therefore, there is one pure
stationary strategy σ which is optimal in the βi discounted MDP, Γβi , for
a sequence of discount factors βi < 1 that converges to 1. Therefore, there
is a discount factor β0 < 1 such that for every pure stationary strategy τ
we have

v(µ, β, σ) ≥ v(µ, β, τ) ∀β0 ≤ β < 1 ∀µ ∈ ∆(S).

This completes the proof of 1).
In particular, for β0 ≤ β < 1, v(z, β) = v(z, β, σ), and using Part 2)

of Lemma 1 the function β 7→ v(z, β) is a rational function on [β0, 1). As
β 7→ v(z, β) is a bounded rational function in a left neighborhood of 1, its
limit as β ↓ 1 exists. This completes the proof of 2).

We prove 3) by induction on k. The function β 7→ v(z, β) is a bounded
rational function. Therefore, it is differentiable in a left neighborhood of 1
and its derivative there is bounded in absolute value, say by C1(z) ≤ C1.
Therefore, there is k0 such that for every 1− 1/k0 ≤ β < γ < 1 and every
state z we have |v(z, β)− v(z, γ)| ≤ C1|γ − β|. As the function β 7→ v(z, β)
is Lipschitz in the interval [0, 1 − 1/k0) there is a positive constant C2

such that for every 0 ≤ β < γ ≤ 1 − 1/k0 and every state z we have
|v(z, β)− v(z, γ)| ≤ C2|γ − β|. Therefore, if C ≥ max{C1, C2} we have

v(z, 1− 1
k
) ≤ v(z, 1− 1

k + 1
) +

C

k(k + 1)
∀ k ≥ 1. (7)

W.l.o.g. we assume that C ≥ 2‖r‖. Define the function α by α(k) =
C
k

∑
n≤k n−2. Observe that for every k we have

kα(k)
k + 1

+
C

(k + 1)2
= α(k + 1). (8)

We prove by induction on k that for every k ≥ 1 we have

Ez1
τ

(∑k
t=1 r(zt, at)

k

)
≤ v(z1, 1− 1

k
) + α(k) ∀ z1 ∀ τ. (9)

As α(1) = C ≥ 2‖r‖ ≥ ‖r‖+ v(·, ·), inequality (9) holds for k = 1. We will
show that if inequality (9) holds for some fixed k ≥ 1 then it also holds for
k + 1. As (9) holds for k, we have (using the equality Ez1

τ (Ez1
τ (· | H1)) =

Ez1
τ (·))

k

k + 1
Ez1

τ

(∑k+1
t=2 r(zt, at)

k

)
≤ k

k + 1
Ez1

τ

(
v(z2, 1− 1

k
)
)

+
kα(k)
k + 1

. (10)
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Recall that

Ez1
τ

(
r(z1, a1)
k + 1

+
k

k + 1
v(z2, 1− 1

k + 1
)
)
≤ v(z1, 1− 1

k + 1
). (11)

Inequality (7) implies that

Ez1
τ

(
k

k + 1
v(z2, 1− 1

k
)
)
≤ Ez1

τ

(
k

k + 1
v(z2, 1− 1

k + 1
)
)

+
C

(k + 1)2
. (12)

Summing inequalities (8), (10), (11) and (12) we deduce that

Ez1
τ

(∑k+1
t=1 r(zt, at)

k + 1

)
≤ v(z1, 1− 1

k + 1
) + α(k + 1),

which proves that (9) holds for k + 1, and thus (9) holds for every k ≥ 1.
As v(z, 1− 1

k ≤ v(z) + C/k and α(k) ≤ 2C/k, the first part of 3) follows.
Let (7*) (respectively, (9*), (10*), (11*) and (12*)) stand for (7) (re-

spectively, (9), (10), (11) and (12)) where v is replaced by w := −v, τ is
replaced by σ and r is replaced by g := −r. Then (7*), (11*) and (12*)
hold for every k. Inequality (9*) holds for k = 1. Therefore, if (9*) holds for
some k ≥ 1, then (10*) holds for k, and summing inequalities (8), (10*),
(11*) and (12*) we deduce that

Ez1
σ

(∑k+1
t=1 r(zt, at)

k + 1

)
≥ v(z1, 1− 1

k + 1
)− α(k + 1),

which proves that (9*) holds for k +1, and thus (9*) holds for every k ≥ 1.
As v(z, 1− 1

k ) ≥ v(z)−C/k and α(k) ≤ 2C/k, the second part of 3) follows.
This completes the proof of 3).

Fix β0 < 1 sufficiently large such that for all β0 ≤ β < 1

v(z, β) = (1− β) r(z, σ(z)) +
∑

z′
p (z′ | z, σ(z))βv(z′, β) ∀z (13)

= max
a∈A(z)

(1− β) r(z, a)) +
∑

z′
p (z′ | z, a)βv(z′, β) ∀z. (14)

Equation (13) implies that

Eσ((1− β)r(zt, at) + βv(zt+1, β) | Ht) = v(zt, β) ∀β0 ≤ β < 1, (15)

and equation (14) implies that for every strategy τ we have

Eτ ((1− β)r(zt, at) + βv(zt+1, β) | Ht) ≤ v(zt, β) ∀β0 ≤ β < 1. (16)
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Equation (16) implies (by going to the limit as β → 1−) that for every
strategy τ we have

Eτ (v(zt+1) | Ht) ≤ v(zt) = Eσ (v(zt+1) | Ht) . (17)

Therefore, the stochastic process (v(zt)) is a bounded supermartingale (re-
spectively, a martingale) w.r.t. the probability induced by τ (respectively,
by σ) and thus has a limit vτ (respectively, vσ) almost everywhere w.r.t.
the probability induced by τ (respectively, by σ), and

Ez1
τ (vτ ) ≤ Ez1

τ (v(zt)) ≤ v(z1) = Ez1
σ (vσ) = Ez1

σ (v(zt)).

Let ε > 0. By Part 3) of Proposition 3 there is k sufficiently large so
that for every m we have

Eτ

(
1
k

m+k∑

t=m+1

r(zt, at) | Hm

)
≤ v(zm+1) + ε. (18)

For every integer n ≥ 1 we set Zn := 1
k

∑kn
t=k(n−1)+1 r(zt, at), Yn := Zn −

Eτ (Zn | Hk(n−1)+1), and un := v(z(n−1)k+1). Equation (18) implies that for
every positive integer n we have

Eτ

(
Zn | H(n−1)k+1

) ≤ un + ε.

The stochastic process (Yn) is a bounded sequence of martingale differences
and therefore

Y1 + . . . + Yn

n
→ 0 a.e. w.r.t. τ .

As (un)n = (v(z(n−1)k+1))n is a subsequence of the sequence (v(zt))t that
converges a.e. w.r.t. τ to vτ , and Eτ (vτ ) ≤ v(z1) we have

u1 + . . . + un

n
→ vτ a.e. w.r.t. τ.

As Zn ≤ Yn + un + ε we deduce that
∑

t≤nk r(zt, at)
nk

≤ Y1 + . . . , Yn

n
+

u1 + . . . + un

n
+ ε → v + ε a.e. w.r.t. τ.

We conclude that

Ez1
τ

(
lim sup

k→∞
1
k

k∑

t=1

r(zt, at)

)
≤ Ez1

τ (vτ ) + ε ≤ v(z1) + ε.
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As the last inequality holds for every ε > 0 we conclude that

Ez1
τ

(
lim sup

k→∞
1
k

k∑

t=1

r(zt, at)

)
≤ v(z1).

Similarly, setting Y σ
n := Zn − Eσ(Zn | Hk(n−1)+1) we deduce that the

stochastic process (un) is a martingale w.r.t. the probability induced by σ
and thus converges a.e. to a limit vσ with Eσ(vσ) = v(z1). By Part 3) it
follows that for a sufficiently large k we have

Eσ

(
Zn | H(n−1)k+1

) ≥ un − ε.

As Zn ≥ Y σ
n + un − ε we deduce that

Ez1
σ

(
lim inf
k→∞

r(z1, a1) + . . . + r(zk, ak)
k

)
≥ Ez1

σ (vσ)− ε ≥ v(z1)− ε.

As the last inequality holds for every ε > 0 we conclude that

Ez1
σ

(
lim inf
k→∞

r(z1, a1) + . . . + r(zk, ak)
k

)
≥ v(z1).

4. Remarks

In this section we discuss the extension of the above-mentioned results on
MDPs to results on two-person zero-sum stochastic games with finitely
many states and actions.
Remark 1 The definition of a finite-state-and-action stochastic game is
a minor modification to the definition of an MDP. The set of players is a
finite set I. The set A(z) is the Cartesian product of finite sets Ai(z), i ∈ I;
Ai(z) is the set of feasible actions of player i ∈ I at state z. The reward
r(z, a) is the vector of rewards

(
ri(z, a)

)
i∈I

; player i gets a stage payoff
ri(zt, at) at stage t. A vector of strategies σ = (σi)i∈I together with the
initial distribution µ induces a probability distribution Pµ

σ on the space of
infinite plays, exactly as in the setup of an MDP (with σ(z1, . . . , zt)[a] =∏

i σ
i(z1, . . . , zt)[ai]).

Remark 2 In a two-person zero-sum stochastic game we define the value
of the β-discounted stochastic game by

v(z, β) = max
σ1

min
σ2

Ez
σ1, σ2

(
(1− β)

∞∑

t=1

βt−1r1(zt, at)

)
.
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The map from RS to itself, v 7→ Ψv, defined by

Ψv[z] = max
x

min
y

(
(1− β)r1(z, x, y) + β

∑

z′
p(z′ | z, x, y)v(z′)

)
,

where the max is over all x ∈ ∆(A1(z)), the min is over all y ∈ ∆(A2(z)),
and r1(z, x, y) (respectively p (z′ | z, x, y)) is the multilinear extension of
r1(z, a1, a2) (respectively p(z′ | z, a1, a2)), is a strict contraction [14], [17].
Its unique fixed point, w(·, β) (whose z-th coordinate is w(z, β)) is the value
of the β-discounted stochastic game [14], [17].

Remark 3 In an MDP with finitely many states and actions there exist
for every discount factor β < 1 a pure strategy that is optimal in the β-
discounted MDP (Proposition 2), and a uniform optimal strategy, namely a
strategy that is optimal in all β-discounted MDPs with the discount factor
β sufficiently close to 1 (Proposition 3, Part 1)). These two results do not
extend to results on two-person zero-sum stochastic games with finitely
many states and actions. However, there are special classes of stochastic
games where a pure optimal strategy and a uniform optimal strategy do
exist (see, e.g., [13], [19], [20] and the references there).

Remark 4 Part 2) of Proposition 3 states that, for a fixed MDP with
finitely many states and actions, the function β 7→ v(z, β) is a bounded
rational function of β and thus, in particular, it can be expressed, in a
sufficiently small left neighborhood of 1 (β0 < β < 1), as a convergent
series in powers of 1 − β. In a two-person zero-sum stochastic game with
finitely many states and actions such an expression is no longer available.
However, Bewley and Kohlberg [1] show that the value of the β-discounted
stochastic game is expressed in a left neighborhood of 1 as a convergent
series in fractional powers of (1− β) (see also [9]).

Remark 5 Part 3) of Proposition 3 provides an approximation to the n-
stage value of an MDP, v(z, n) := maxσ Ez

σ( 1
n

∑n
t=1 r(zt, at)), by v(z). The

error term, |v(z, n) − v(z)|, is O(1/n). As |v(z) − v(z, 1 − 1/n)| = O(1/n)
we deduce that in an MDP with finitely many states and actions we have
|v(z, n)− v(z, 1− 1/n)| = O(1/n).

We now comment on the asymptotic properties of the values v(z, n)
(v(z, β)) of the n-stage (β-discounted) two-person zero-sum stochastic game
with finitely many states and actions. The proof of Part 2) of Proposition
3 shows actually that if for 0 < γ < β < 1 we have |v(z, β) − v(z, γ)| ≤
C|β−γ|(1−β)−1/M , then |v(z, n)−v(z, 1−1/n)| = O(n−1/M ). In particular,
if the series in fractional powers of (1−β),

∑∞
i=0 ai(z)(1−β)i/M , converges

in a left neighborhood of 1 to the value v(z, β) of the β-discounted game,
then there is a constant C such that |v(z, n) − v(z, 1 − 1/n)| ≤ Cn1/M−1.
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In particular, it proves that the limit of v(z, n) as n →∞ exists and equals
limβ→1− v(z, β) [1] (see also [11]).

However, other series in fractional powers of 1/n provide a better ap-
proximation of v(z, n). There exists a series in fractional powers of 1/n,∑∞

i=0 bi(z)(1/n)i/M (where bi(z) are real numbers and M is a positive in-
teger), that converges for sufficiently large n and such that

∣∣∣∣∣v(z, n)−
∞∑

i=0

ai(z)n−i/M

∣∣∣∣∣ = O

(
ln n

n

)

[2]. It is impossible to improve on the error term [2].
Remark 6 It will be shown in a later chapter, [10], that the existence of
a uniform optimal strategy σ in an MDP, Proposition 3, has the follow-
ing counterpart of ε uniform optimality in two-person zero-sum stochastic
games.

For every ε > 0 there are strategies σε of player 1 and τ ε of player 2,
and a positive integer N and a discount factor β0 < 1, such that for every
strategy τ of player 2 and every strategy σ of player 1 we have

ε + Ez
σε,τ

(
lim inf
n→∞ x̄n

)
≥ v(z) ≥ Ez

σ,τε

(
lim sup

n→∞
x̄n

)
− ε,

where x̄n = 1
n

∑n
t=1 r(zt, at), and

ε + Ez
σε,τ (x̄n) ≥ v(z) ≥ Ez

σ,τε (x̄n)− ε ∀n ≥ N.

Remark 7 In this chapter we considered transition matrices with values
in the field of real numbers. However, one could consider Markov chains
with a transition matrix whose values are in any ordered field. A field that
has proved especially useful in the study of stochastic games is the field of
functions that have an expansion in a left neighborhood of 1 as a power
series in a fraction of 1−β (here β does not necessarily refer to the discount
factor, but may be simply a parameter). This construction allows one to
study the sensitivity of various statistics of the Markov chain as one varies
the parameter β in a left neighborhood of 1. For more details, see [15], [18],
[16].
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