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1. Introduction

In this chapter we treat stationary strategies and the limiting average cri-
terion. Generally, for the average reward criterion, players need history-
dependent strategies in playing nearly optimal or in equilibrium. A behav-
ioral strategy may condition its choice of mixed action, at any given stage,
on the entire history; and therefore its implementation is often a huge task.
However, a stationary strategy conditions its choice of mixed action, at any
given state, only on the present state. Since only as many decision rules as
states need be remembered, a stationary strategy is preferable. In addition,
ε-optimal stationary strategies are also ε-optimal in the model of the game
where the players observe at every stage only the current state. These ob-
servation make it useful to know in which situations ε-optimal stationary
strategies exist. This viewpoint is the main topic of this chapter.

Two-person zero-sum stochastic games with the limiting average cri-
terion were introduced by Gillette [6]. He considered games with perfect
information and irreducible stochastic games. For both classes both players
possess average optimal stationary strategies. Blackwell and Ferguson [3]
introduced the big match which showed that for limiting average stochas-
tic games the value does not need to exist within the class of stationary
strategies, and this result shows that history-dependent strategies are in-
dispensable. Hoffman and Karp [7] considered irreducible stochastic games
and gave an algorithm that yields ε-optimal stationary strategies. Starting
with the paper of Parthasarathy and Raghavan [9], during the eighties sev-
eral papers on special classes of stochastic games appeared. These classes
were defined by conditions on the reward and/or transition structure. These
classes were defined on the one hand to represent practical situations and
on the other hand to derive classes of games for which the solution is rel-
atively easy, i.e., in terms of stationary strategies. In this spirit we just
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mention the papers of Parthasarathy et al. [10] and Vrieze et al. [14]. Fi-
nally, we mention the paper of Filar et al. [4], which examines from the
computational viewpoint the possibilities of stationary strategies.

The chapter is built up around a limit theorem that connects limits of
discounted rewards to average rewards when the discount factor tends to
0. This limit theorem turns out to be quite powerful, since many theorems
concerning stationary strategies can now easily be proved. Among them are
irreducible stochastic games and existence questions concerning (ε-)easy
states. We end the chapter with some considerations regarding the relation
between Puisseux series and existence of optimal stationary strategies for
the limiting average criterion and the total reward criterion.

2. Stationary Strategies

In this section we consider stationary strategies. It will turn out that for
stationary strategies the rewards for the different criteria can be written
in a closed form and therefore stationary strategies are relatively easy to
analyze.

Let us recall that a stationary strategy, say for player 1, was defined by a
t-tuple α = (α(1), α(2), . . . , α(t)) where α(z) = (α(z, 1), α(z, 2), . . . , α(z,mz)),
for all z ∈ S, is a probability vector in the IRmz . The obvious implementa-
tion of such a strategy is that whenever the state of the system is in state z,
player 1 will choose action a with probability α(z, a), a = 1, . . . , mz. Here
mz denotes the number of actions of player 1 in state z.

For player 2 a stationary strategy is denoted by β = (β(1), β(2), . . . , β(t))
where β(z) =(β(z, 1),β(z, 2), . . .,β(z, nz)) for all z ∈ S and where β(z) is a
probability vector in the IRnz . The implementation of such a β is analogous
to the implementation of α.

Now we investigate what will happen when the players implement the
combination (α, β). Associated to (α, β) are a matrix P (α, β) and a vector
r(α, β), which can be defined as follows:

P (α, β) = (p(z′|z, α, β))t,t
z=1,z′=1,

where p(z′|z, α, β) =
mz∑

a=1

nz∑

b=1

p(z′|z, a, b)α(z, a)β(z, b)

r(α, β) = (r(1, α, β), r(2, α, β), . . . , r(t, α, β))

where r(z, α, β) =
mz∑

a=1

nz∑

b=1

r(z, a, b)α(z, a)β(z, b).
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First observe that p(z′|z, α, β) and r(z, α, β) only depend on α(z) and
β(z). Next, by definition it follows that p(z′|z, α, β) is the expected prob-
ability that the system moves in one step to state z′ whenever the system
is in state z and the players play according to α and β. Likewise, r(z, α, β)
denotes the expected payoff in state z.

Lemma 1 Let Pn(α, β) := P (α, β)(Pn−1(α, β)) with n = 1, 2, . . ., and
where P 0(α, β) := I. Then pn(z′|z, α, β), being the (z, z′)-th element of
Pn(α, β), equals the probability that the system is in state z′ after n steps,
when the starting state was state z.

Proof. By induction. For n = 1 the lemma is true by definition. Suppose
the lemma is true for n− 1. Observe that by definition

pn(z′|z, α, β) =
t∑

ez=1

p(z̃|z, α, β)pn−1(z′|z̃, α, β).

Given the induction hypothesis this expression denotes the sum of the prob-
abilities of all the trajectories from z to z′, where in the first step the system
moves from state z to z̃ and in the next n− 1 steps from z̃ to z′. Hence the
lemma is true for n, which completes the proof.

Now that we know the probabilities on the future states, the future
expected payoffs can be expressed straightforwardly. First observe that in
the z-th row of Pn(α, β) we find the n-step probabilities for the game that
starts in state z. Then, the z-th component of the vector

Pn(α, β)r(α, β)

denotes the expected payoff at stage n when the starting state was z and
(α, β) were implemented.

For the different criteria the expressions for the overall expected payoff
follow easily:

Discounted rewards:

γλ(α, β) = λ
∞∑

n=0

(1− λ)nPn(α, β)r(α, β)

= λ(I − (1− λ)P (α, β))−1r(α, β).

Average rewards:

γ(α, β)) = lim
N→∞

1
N + 1

N∑

n=0

Pn(α, β)r(α, β)

= Q(α, β)r(α, β).



40 O.J. VRIEZE

Total rewards in case of finiteness:

γT (α, β) = lim
N→∞

1
N + 1

N∑

n=0

n∑

k=0

P k(α, β)r(α, β)

= (I − P (α, β) + Q(α, β))−1r(α, β).

Weighted rewards, δ ∈ [0, 1]:

γδ(α, β) = δγλ(α, β) + (1− δ)γ(α, β).

Some comments might be in order.

(i) That
∞∑

n=o
(1−λ)nPn(α, β) = (I − (1−λ)P (α, β))−1 follows from the

fact that

(I − (1− λ)P (α, β))(
N∑

n=0

(1− λ)nPn(α, β)) =

(
N∑

n=0

(1− λ)nPn(α, β))(I − (1− λ)P (α, β)) = I − (1− λ)N+1PN+1(α, β)

while limN→∞(1− λ)N+1PN+1(α, β) = 0 .

(ii) By definition Q(α, β) := lim
N→∞

1
N+1

N∑
n=0

Pn(α, β), which is called the

Cesaro limit.
For later use, it easily follows that P (α, β)Q(α, β) = Q(α, β)P (α, β) =

Q(α, β).

(iii) For the total rewards the expression 1
N+1

N∑
n=0

n∑
k=0

P k(α, β)r(α, β)

denotes the average of the first N partial sums of expected payoffs, while
γT (α, β) is the limit of these numbers. That we use this definition for the to-

tal rewards and not simply lim
N→∞

N∑
n=0

Pn (α, β)r(α, β) is motivated, among

other things, by the following zero-sum example:

(0,1)

1

´
´

´
´́

state 1
(1,0)

-1

´
´

´
´́

state 2

Obviously,
∑N

n=0 Pn(α, β)r(α, β) equals (1,−1) for N even and (0,0) for N
odd. Hence the limit does not exist, while γT (α, β) as defined above equals
(1
2 ,−1

2), which denotes the average possession of player 1.
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Whenever the average reward is unequal to 0 the total reward will be
+∞ or −∞ depending on the sign of the average reward. When the average
reward for a pair of stationary strategies equals 0 we have a nice expression
for γT (α, β) as given above, and which is proved in the next lemma.

Lemma 2 Whenever Q(α, β)r(α, β) = 0 we have that

γT (α, β) = (I − P (α, β) + Q(α, β))−1r(α, β) .

Proof. In the proof we suppress the dependency of the variables on
α and β. Let γ̃T = (I − P + Q)−1r or r = (I − P + Q)γ̃T . Multiplying
this equation by Q gives Qγ̃T = Qr (since PQ = Q and QQ = Q), hence
Qγ̃T = 0. Then (I − P )γ̃T = r, or γ̃T = r + P γ̃T . Repeatedly iterating this
last equation shows that

γ̃T =
n∑

k=0

P kr + Pn+1γ̃T n = 0, 1, 2, . . .

and after averaging:

γ̃T =
1

N + 1

N∑

n=0

n∑

k=0

P kr +
1

N + 1

N∑

n=0

Pn+1γ̃T .

Taking limits we get
γ̃T = γT + Qγ̃T = γT .

(iv) The weighted reward is a convex combination of the discounted
reward and the average reward. It can be interpreted as a balance between
long-run incentives (the average reward) and short-sighted income (the dis-
counted reward).

2.1. A LIMIT THEOREM

If we rearrange the states then the stochastic matrix P (α, β) can be written
as

P (α, β) =




P1(α, β) 0 · · · · 0
0 P2(α, β) · · · · ·
...

...
. . .

...
...

0 · · PL(α, β) 0
PL+11(α, β) PL+12(α, β) · · · PL+1L(α, β) PL+1(α, β)
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For each l ∈ {1, . . . , L} , Pl(α, β) is a square matrix and the states corre-
sponding to this matrix form an ergodic class. We suppose that the Markov
chain has L ergodic classes.

The remaining states, corresponding to the bottom block, are the tran-
sient states.

The Cesaro limit Q(α, β) has a similar shape:

Q(α, β) =




Q1(α, β) 0 · · · · 0
0 Q2(α, β) · · · · ·
...

...
. . .

...
...

0 · · · · QL(α, β) 0
QL+11(α, β) QL+12(α, β) · · · QL+1L(α, β) 0




In any textbook on Markov chains the following lemma can be found.

Lemma 3

(i) Ql(α, β) = limN→∞ 1
N+1

∑N
n=0 Pn

l (α, β).
(ii) Ql(α, β) has identical rows, say ql(α, β), and ql(α, β) is the unique

probability vector that satisfies the equation qT Pl(α, β) = qT .
(iii) IL+1 − PL+1(α, β) is nonsingular.
(iv) QL+1l(α, β) = (IL+1−PL+1(α, β))−1PL+1l(α, β)Ql(α, β), l = 1, . . . , L.
(v) The solution set of the equation qT P (α, β) = qT , where q is required

to be a probability vector, consists of the set
{

L∑

l=1

ξlq̃l(α, β);
L∑

l=1

ξl = 1, ξl ≥ 0

}

where q̃l(α, β) is the extension of ql(α, β) with zeros at the appropriate
places in order to get a vector of length t, which is the number of states.
Such a solution q is called an invariant distribution, and apparently
the set of invariant distributions equals the convex hull of the vectors
q̃l(α, β).

Now we are going to prove our limit theorem.

Theorem 1 Let λn, n = 1, 2, . . . be a sequence of discount factors with
lim

n→∞λn = 0. Let (αλn,βλn), n = 1, 2, . . . be a sequence of stationary strate-

gies, such that, for each z, either αλn(z, a) = 0 for all n or αλn(z, a) > 0 for
all n and likewise for βλn(z, b), and such that lim

n→∞(αλn,βλn) = (α, β) exists.

Further assume that γ := lim
n→∞ γλn(αλn,βλn) exists.Then we can write the

z-th component of this limit vector as γ(z) =
∑L

l=1 ξzlγ̃l(α, β) with ξzl ≥ 0
and

∑L
l=1 ξzl = 1. Here γ̃l(α, β) is the average reward (a number) for er-

godic class l.
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Proof. Let T (λn) = λn(I− (1−λn)P (αλn , βλn))−1. So γλn(αλn , βλn) =
T (λn)r(αλnβλn) and γ = lim

n→∞T (λn)r(αλn , βλn). We can write T (λn)(I −
(1− λn)P (αλn ,βλn)) = λnI. Since lim

n→∞ γλn(αλn , βλn) exists, it follows that

T = lim
n→∞T (λn) exists.

Then we see that T (I−P (α, β)) = 0. Hence each row of T is an invariant
distribution with respect to P (α, β), as in (v) of the previous lemma. But
then for suitable ξzl:

γ(z) = (Tr(α, β))(z) =
L∑

l=1

ξzlq̃l(α, β)r(α, β)

=
L∑

l=1

ξzlγ̃l(α, β).

As a consequence of this limit theorem we can formulate the following
theorem, which can first be found in Schweitzer [11].

Theorem 2 Let λn → 0, (αλn , βλn) → (α, β) and γλn(αλn , βλn) → γ as
n → ∞. Suppose that the ergodic classes corresponding to P (α, β) are the
same as those of P (αλn,βλn) for all n. Then lim

n→∞ γλn(αλn,βλn) = γ(α, β).

Proof. The proof needs some work and will not be given in detail here.
By realizing that

T (β) = λ
∑∞

n=0
(1− λ)nPn(αλn , βλn)

and that
(Pn(αλn , βλn))(z, z′) = 0

whenever z ∈ ergodic class l and z′ /∈ ergodic class l, it follows that ξ
zel = 0

for z ∈ ergodic class l and l̃ 6= l. Hence ξzl = 1 and the theorem is correct
for the recurrent states. That the theorem is correct for the transient states
as well follows from continuity arguments.

3. Unichain Stochastic Games

Unichain stochastic games are defined as games where for each pair of
stationary strategies there is exactly one ergodic class. Notice that transient
states are allowed. A special case of the class of unichain stochastic games
is the irreducible games where the one ergodic class consists of the whole
state space.
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For unichain stochastic games the main existence theorems can be de-
rived straightforwardly by considering the limit process of discounted games
when λn goes to 0.

The next lemma is an easy consequence of the limit theorem of the
previous section.

Lemma 4 Consider a unichain stochastic game. Let

λn → 0 and (αλn , βλn) → (α, β) when n →∞.

Then γλn(αλn,βλn) → γ(α, β).

The proof of the next theorem is now immediate.

Theorem 3 Consider a unichain stochastic game. Let

λn → 0 and (αλn , βλn) → (α, β) when n →∞,

where αλn and βλn are optimal for the players for the λn-discounted reward
stochastic game. Then α and β are optimal for the average reward stochastic
game.

Proof. Let αλn and βλn be λn-discounted optimal. Then γλn(α̃, βλn) ≤
γλn = γλn(αλn ,βλn) ≤ v(αλn , β̃) for all α̃, β̃. Taking limits yields γ(α̃,β) ≤
v = γ(α, β) ≤ γ(α, β̃) for all α̃, β̃. Which shows that the value of the
average reward game equals γ(α, β) and that α and β are optimal. In fact,
in this last conclusion we used the fact that a best response of a player to a
stationary strategy of the other player can be found among his stationary
strategies (Hordijk et al. [8]).

The next non-zero-sum version of the previous theorem can be proved
along the same lines.

Theorem 4 Consider a unichain stochastic game. Let

λn → 0 and (αλn , βλn) → (α, β) when n →∞,

where (αλn,βλn) is an equilibrium point with respect to the λn-discounted
reward stochastic game. Then (α, β) is an equilibrium point with respect to
the average reward criterion.

Obviously, since Q(α, β) has identical rows, it follows that γ(α, β) has
identical components. So any starting state gives the same future prospects.
This insight can be used in the analysis of the weighted reward stochastic
game. We can state the following theorem.

Theorem 5 Consider a weighted reward unichain stochastic game. Let γλ

be the discounted reward value and γ the average reward value. Then the
value for the weighted reward game equals δγλ + (1− δ)γ.
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Proof. Let αλ be discounted optimal and α be average optimal. Con-
sider the strategy σ(N) which is defined as playing αλ at the first N stages
and playing α thereafter. It can easily be checked that, for any ε > 0, σ(N)
guarantees δγλ + (1− δ)γ up to ε when N is large enough.

In general, optimal strategies will not exist for weighted reward games.
The previous theorem can in an obvious way be extended to non-zero-sum
weighted reward unichain stochastic games, by combining a λ-discounted
equilibrium pair (αλ,βλ) with an average equilibrium pair (α, β).

3.1. EASY INITIAL STATES

For average reward stochastic games generally optimal or nearly optimal
stationary strategies will not exist. This raises the question whether there
are starting states such that a player can guarantee the value for these
starting states, using stationary strategies. This question can be answered
positively, again using the limit theory. A state is called (ε-)easy for a player
if the player can guarantee the value for this game (up to ε) using stationary
strategies.

Theorem 6 Let Smax be the subset of states for which γ, the average reward
value, is maximal and let Smin be the subset of state for which γ is minimal.

(i) The states Smax are ε-easy for player 2 and some of the states of
Smax are easy for player 1.

(ii) The states Smin are ε-easy for player 1 and some of the states of
Smin are easy for player 2.

Proof. We show (i). Let αλn be λn-discounted optimal and let α =
lim

n→∞αλn while lim
n→∞λn = 0. Let β be an average reward best response to

α. Then γλn(αλn , β) ≥ γλn and by the limit theorem we derive

L∑

l=1

ξzlγ̃l(α, β) ≥ γ(z).

Since γ̃l(α, β) ≤ max
z

γ(z) this means that there exists an ergodic class l

with γ̃l(α, β) ≥ max
z

γ(z). So α is optimal for this ergodic class. This shows
half of the statement.

Let βλ be λ-discounted optimal. For all α we derive from

λ(I − (1− λ)P (α, βλ))−1r(α, βλ) = γλ(α, βλ)

that
λr(α, βλ) = (I − (1− λ)P (α, βλ))γλ(α, βλ)
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which yields after multiplication by Q(αβλ) that

γ(α, βλ) = Q(α, βλ)r(α, βλ) = Q(α, βλ)γλ(α, βλ) ≤ Q(α, βλ)γλ.

Since ‖ γλ − γ ‖≤ ε, for λ close enough to 0 and since the row sums of
Q(α,βλ) equal 1, we find γ(z, α,βλ) ≤ max

z
γ(z)− ε, for λ close enough to

0. Hence βλ is ε-optimal for the states z ∈ Smax.

The following example, due to Thuijsman [12], shows that not all states
in Smax need to be easy.

3

1

´
´

´
´́

4

0

´
´

´
´́

1

0

´
´

´
´́

2

0

´
´

´
´́

state 1
3

1

´
´

´
´́

1

0

´
´

´
´́

2

0

´
´

´
´́

2

2

´
´

´
´́

state 2
3

1

´
´

´
´́

state 3
4

0

´
´

´
´́

state 4

It can be verified that γ = (1, 1, 1, 0), so Smax = {1, 2, 3} and that

min
β

γ1(α, β) = min
β

γ2(α, β) = 0

for all α. Thus only state 3 is (ε-)easy for player 1.
We close this section with the observation that if Smax = Smin = S (so

the average value is independent of the initial state), then, for both players,
λ-discounted optimal stationary strategies are average ε-optimal as well.

For obvious reasons stochastic games for which the players possess (ε-)
optimal stationary strategies are favorable from a practical viewpoint. It
would be advantageous to determine the (ε-) easy states of a game. How-
ever, we know of no algorithm that specifies the (ε-)easy states. Finally,
without proof, we give a set of functional equations; the existence of a so-
lution to it is equivalent to the existence of optimal stationary strategies
for both players.

Theorem 7 The following two assertions are equivalent.

(i) Both players possess optimal stationary strategies.
(ii) The following set of functional equations in the variables v, w1, w2 ∈

IRt has a solution:
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For all z ∈ S:

valA1(z)×A2(z)

[
t∑

z′=1

p(z′|z, a, b)v(z′)

]
= v(z)

valE1(z)×A2(z)

[
r(z, a, b) +

t∑

z′=1

p(z′|z, a, b)w1(z′)

]
= v(z) + w1(z)

valA1(z)×E2(z)

[
r(z, a, b) +

t∑

z′=1

p(z′|z, a, b)w2(z′)

]
= v(z) + w2(z).

(Here valC×D [· · · ] denotes the matrix game value over the pure action sets
C and D. Further, Ek(z), k = 1, 2, consists of the extreme points of the
polytope of optimal actions for player k for the first equation.)

One should notice that for any solution (v, w1, w2) to the above set of
functional equations we have v = γ while an optimal stationary strategy for
player 1 (player 2) can be derived by taking optimal actions in the second
(third) equations.

3.2. PUISSEUX SERIES AND OPTIMAL STATIONARY STRATEGIES

In a nice series of papers Bewley and Kohlberg [1], [2] showed how, for any
stochastic game, the λ-discounted value can be expressed as a function of
λ. They showed that there exists an open interval (0, λ̃) such that γλ =∑∞

k=0 ckλ
k/M for suitable M ∈ IN and ck ∈ IRt, k = 0, 1, 2, . . . for all

λ ∈ (0, λ̃). Such a series is called a Puisseux series.
Since lim

λ→0
γλ = γ, the average reward value, it follows that c0 = γ.

Bewley and Kohlberg showed that v =
∑∞

k=0 ckλ
k/M is the solution of

the set of equations

v(z) = valA1(z)xA2(z)

[
λr(z, ., .) + (1− λ)

t∑

z′=1

p(z′|z, ., .)v(z′)

]
, ∀z ∈ S,

for all λ close enough to 0.
Now observe that for Markov decision problems, there is only one player

that can influence the outcome of the game, so for Markov decision problems
the val-operator has to be replaced by either the min- or the max-operator,
depending on whether we have a minimizing or a maximizing problem. But
then the minimum (or maximum) in the above equation is found for a pure
action. Since there are only finitely many different actions, the same action
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can be taken for all λ ∈ (0, λ̃). Hence the above set of equations reduces to

v(z) = λr(z, i∗) + (1− λ)
t∑

z′=1

p(z′|z, i∗)v(z′) , ∀z ∈ S

which, by the linearity in λ has a power series as general solution. We
deduce that for Markov decision problems the above Puisseux series can be
reduced to a power series of the type

∑∞
k=0 ckλ

k.
This result can be used in proving the next theorem.

Theorem 8 If for a stochastic game both players possess optimal station-
ary strategies, then c1 = c2 = · · · = cM−1 = 0.

We will not prove this theorem rigorously, but indicate how the above-
mentioned result for MDP ’s can be used. Let α be average reward optimal
for player 1 and consider the minimizing MDP that results for player 2
when he gets to know α in advance of the play. For MDP (α) we know by
the above result that γλ(α) = γ + O(λ), hence γλ ≥ γ + O(λ). Likewise,
for a stationary strategy β that is average reward optimal for player 2, we
find that γλ ≤ γ + O(λ). Hence γλ = γ + O(λ).

A stationary strategy is called uniform discount optimal if it is discount
optimal for all λ close enough to 0. Using the limit theorem it follows that a
uniform discount optimal strategy is average optimal as well. The following
theorem characterizes uniform discount optimal stationary strategies.

Theorem 9 A stationary strategy α = (α(1),α(2), . . .,α(t)) is uniform dis-
count optimal for player 1 if and only if, for each z ∈ S, α(z) is an optimal
action in the matrix game

[
λr(z, ., .) + (1− λ)

t∑

z′=1

p(z′|z, ., .)(
∞∑

k=0

ckλ
k/M )(z′)

]

for all λ close to 0.

Proof. The proof follows straightforwardly from discounted stochastic
game considerations.

3.3. TOTAL REWARD GAMES AND PUISSEUX SERIES

The total reward criterion makes sense only when the average reward value
equals 0 for each initial state. But this condition is not enough. If a player,
say player 1, possesses no average optimal strategy, then obviously player
1 cannot guarantee himself anything more than −∞ in the total reward
game. Hence we make the additional assumption that both players possess
average reward optimal stationary strategies.

The next theorem can be found in Filar and Vrieze [5].
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Theorem 10 If for a stochastic game the average reward value equals 0
and if both players possess average reward optimal stationary strategies,
then the total reward value exists and equals cM−1.

In the previous section we proved that c1 = c2 = · · · = cM = 0 when-
ever both players possess optimal stationary strategies. A similar statement
holds for the total reward games.

Theorem 11 When for a total reward stochastic game, for which the aver-
age reward is 0 and both players possess average reward optimal stationary
strategies, both players have total reward optimal stationary strategies, then
cM+1 = cM+2 = · · · = c2M−1 = 0.

The proof of this theorem is quite similar to the analogous theorem for
the average reward case.

In fact, the total reward criterion should be considered as a refinement
in addition to the average reward criterion. This can best be seen from the
following two examples:

2

2

´
´

´
´́

state 1
1

-2

´
´

´
´́

state 2
3

1

´
´

´
´́

state 1
3

-1

´
´

´
´́

state 2
3

0

´
´

´
´́

state 3

For both games the average reward value equals 0 while the total reward
value equals (1,-1), respectively (1,-1,0).

The refinement procedure on top of the average reward criterion we gave
here could be repeated in the next levels. For instance, the next extension
leads to a criterion which has as value c2M , etc.
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