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Paris, France

Abstract. Recall that in the λ-discounted game Γλ(z) with initial state
z1 = z the payoff given a profile of strategies σ, γz

λ(σ), is equal to the
expectation, with respect to the distribution induced on plays by z and σ,
of the discounted sum of the sequence of stage rewards {rm}:

γz
λ(σ) = Ez

σ(
∑∞

m=1
λ(1− λ)m−1rm).

This chapter considers the finite case where the state space S and each
action space Ai, i in I, are finite.

1. Zero-Sum Case

1.1. THE AUXILIARY GAME AND THE SHAPLEY OPERATOR

As explained in [7], the basic tool is a family of one-shot games obtained
by reducing the future of the game to a state-dependent payoff vector.

Given a real function f on S, Γ(f)[z] is the two-person zero-sum game
with strategy sets A and B and payoff function L(f)(z, ., .) from A × B
to R defined by L(f)(z, a, b) = r(z, a, b) +

∑
z′ f(z′)p(z′|z, a, b). By von

Neumann’s minmax theorem this game has a value. This allows us to in-
troduce the Shapley operator Ψ : f 7→Ψ(f) from RS to itself specified by
the following relation:

Ψ(f)[z] = max
x∈∆(A)

min
y∈∆(B)

{
∑

a,b

x(a)y(b)r(z, a, b)+
∑

a,b,z′
x(a)y(b)p(z′|z, a, b)f(z′)}

= max
x∈∆(A)

min
y∈∆(B)

L(f)(z, x, y),



52 SYLVAIN SORIN

where L(f)(z, x, y) is the bilinear extension of L(f)(z, ., .) to ∆(A)×∆(B),
or, more concisely,

Ψ(f)[z] = val∆(A)×∆(B){r(z, ·) + E(f |z, ·)}.

The main properties of Ψ are
- monotonicity: f ≤ g implies Ψ(f) ≤ Ψ(g)
- reduction of constants: for any t ≥ 0, Ψ(f + t) ≤ Ψ(f) + t.

These two properties imply that Ψ is nonexpansive:

‖Ψ(f)−Ψ(g)‖∞ ≤ ‖f − g‖∞.

1.2. THE CONTRACTING OPERATOR

In the framework of a discounted game the weight on the present is λ and
on the future (1− λ); hence it is natural to introduce the operator Φ(λ, .)
defined by

Φ(λ, f)[z] = val∆(A)×∆(B){λr(z, ·) + (1− λ)E(f |z, ·)},

which corresponds to the value of a game G(λ, f)[z] played on A × B and
with payoff λr(z, a, b)+ (1−λ)

∑
z′ f(z′)p(z′|z, a, b). Both operators Ψ and

Φ are related through the relation

Φ(λ, f) = λΨ
((1− λ)

λ
f
)
,

hence in particular

‖Φ(λ, f)−Φ(λ, g)‖∞ ≤ (1− λ)‖f − g‖∞,

so that Φ(λ, ·) is contracting with constant 1 − λ. In particular, it has a
unique fixed point in RS denoted by wλ.

1.3. Vλ AND STATIONARY STRATEGIES

The next result proves that wλ(z) is actually the value of Γλ(z). More
precisely:

Theorem 1 Γλ(z) has a value vλ(z) and vλ(z) = wλ(z); hence it is the
only solution of

Φ(λ, vλ) = vλ.

If for all z, xz is an ε-optimal strategy in Φ(λ,wλ)[z], then the induced
stationary strategy x = {xz} is (ε/λ)-optimal in Γλ.
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Proof. Denoting by Hn the algebra on plays generated by histories hn

of length n, one has, by the definition of x,

Ex,τ{λr(zn, an, bn)+(1−λ)
∑

z′
p(z′|zn, an, bn)wλ(z′)|Hn} ≥ wλ(zn)−ε ∀τ.

This can be written as

Ex,τ{λrn + (1− λ)wλ(zn+1)|Hn} ≥ wλ(zn)− ε ∀τ.
Multiplying by (1 − λ)n−1, taking expectation and summing over n ≥ 1,
one obtains

∞∑

n=1

Ex,τ (λ(1− λ)n−1rn) = γz
λ(x, τ) ≥ wλ(z)− ε/λ ∀τ.

Similarly, if y is constructed from a family of ε-optimal strategies {yz} in
G(λ, vλ)[z], then

γz
λ(σ, y) ≤ wλ(z) + ε/λ ∀σ,

which implies that vλ(z) = wλ(z); hence the result.

1.4. EXTENSIONS

Still in the finite framework (S, A and B finite), the Shapley operator allows
us also to express the value of the n-stage repeated game Γn(z). In fact, by
induction one easily obtains

Proposition 1 Γn(z) has a value vn(z) that satisfies

nvn = Ψn(0)

vn = Φ(1/n, vn−1).

The knowledge of the current state is sufficient to play optimally in the
above “auxiliary one-shot game,” which implies the existence of Markov
optimal strategies in Γn.

The same tool applies for an evaluation of the stream of rewards using
a stopping time θ for which Ez

σ,τ (
∑θ

n=1 rn) is finite.
The previous approach extends to the case of general action and state

space. The aim is to look for a complete subset F of bounded functions on
S such that:
1) the game Γ(f)[z] has a value Ψ(f)[z] for all z and all f in F ,
2) the function Ψ(f) belongs to F for all f in F ,
3) ε-optimal “measurable” strategies exist (thus enabling us to define a
payoff for x).
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In the finite state space case, 2) and 3) are immediate; hence one basi-
cally needs conditions to apply a minmax theorem like: A compact, r(z, ., b)
uppersemicontinuous and p(z′ | z, ., b) continuous on A.

For an uncountable state space this program is developed in [4].

2. Non-Zero-Sum Case

In the non-zero-sum case a similar approach through an auxiliary game can
be used to study “subgame-perfect” equilibria. In the discounted case it will
allow for a characterization of all stationary equilibria. The procedure is
parallel to the previous one. One first constructs an operator and exhibits
a fixed point. One then shows that it leads to an equilibrium. However,
there is no monotonicity property here and we rely on Kakutani’s fixed-
point theorem on the strategy space, rather than on Picard’s contraction
principle on the payoff space.

Given f from S to RI , one introduces, for each z in S, an auxiliary
one-shot game G(λ, f)[z] with strategy sets Ai and payoff λr(z, .) + (1 −
λ)E(f |z, .). Define X as

∏
i ∆(Ai) and, given x in XS , considered as a

stationary strategy, let γλ(x)[z] be the induced payoff in the discounted
stochastic game Γλ(z). Let T be a correspondence from XS to itself defined
by

T (x) = {y∈XS : yi[z] is a best reply of player i to x[z]

in the game G(λ, γλ(x))[z], ∀z}.
Proposition 2 The correspondence T has a fixed point.

Proof. We verify that T satisfies the condition of Kakutani’s theorem. It
is defined on a compact convex set with nonempty compact convex values.
Since γλ(x) is continuous in x, the uppersemicontinuous property of T
follows.

Note that if x is a fixed point of T , the corresponding equilibrium payoff
profile in G(λ, γλ(x))[z] is γλ(x)[z].

Proposition 3 If x∈XS defines, for each z in S, an equilibrium of G(λ, f)[z]
with payoff f(z), then the induced stationary strategy is an equilibrium in
Γλ with payoff f .

Proof. We first notice that f(z) = γλ(x)[z], which is the payoff if x is
played in Γλ(z). By the property of x one has, for any σi, with z1 = z,

Ez
σi,x−i(λri

1 + (1− λ)f i(z2)) ≤ f i(z1),

and similarly at each stage n ≥ 1

Ez
σi,x−i(λri

n + (1− λ)f i(zn+1)|Hn) ≤ f i(zn),
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and one multiplies by (1 − λ)n−1, takes expectation and summation to
obtain

γi
λ(σi, x−i)[z] ≤ f i(z) = γi

λ(x)[z].

The two previous propositions now imply

Theorem 2 Any finite discounted stochastic game has an equilibrium in
stationary strategies.

The same proof extends to compact action spaces when payoff and tran-
sition functions are jointly continuous in actions.

Also, one can handle the case of a countable state space by successive
approximations. If S = {sm}, Γ(n) is the game with n + 1 states where
all the states with rank > n are replaced by a single absorbing state with
payoff 0. Let x(n) be a corresponding equilibrium profile. Then x obtained
by the diagonal procedure is an equilibrium of the original game.

For the general state case see [2] and [5].
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