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1. Introduction

The finite state space stochastic game model by Shapley [31] covered in
[33] was generalized among others by Maitra and Parthasarathy [17], [18]
who considered compact metric state spaces. They imposed rather strong
regularity conditions on the reward and transition structure in the game
and considered the discounted payoff criterion only. Their results have been
generalized by many authors. For a good survey of the results which are
not reported here the reader is referred to [14], [23], [25], [27], [13].

As explained in [32], a major difficulty arises when the game has a con-
tinuum of states and we provide here a general Borel space framework for
zero-sum stochastic games. Our main goal is to present a property of the
Shapley operator in a measurable framework and a corresponding mea-
surable selection theorem (Theorem 1) which has natural applications to
studying discounted and positive stochastic games with discontinuous pay-
offs [23] and also to studying general classes of Borel stochastic games with
limsup payoffs [19], [20], [21] or more generally Borel payoff function. Some
applications of this result are also given in Section 2. Universally measur-
able strategies for the players are natural if we deal with discontinuous
games as in [23], [25] or when we apply stopping time techniques as in [19],
[20].

Section 2 recalls the model and states the results. Measure-theoretical
definitions and notions are recalled in Section 3, which also provides basic
material used in the proof which is deferred to Section 4.

2. Discounted and Positive Zero-Sum Stochastic Games

Recall that a zero-sum stochastic game is described by the following objects:
(i) S is a set of states for the game and is assumed to be a Borel space
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(Section 3.1).
(ii) A and B are the action spaces for players 1 and 2, respectively, and are
also assumed to be Borel spaces.
(iii) F and G are nonempty Borel subsets of S×A and S×B, respectively.
We assume that for each s ∈ S, the nonempty s-section

F (s) = {a ∈ A : (s, a) ∈ F}

of F represents the set of actions available to player 1 in state s. Analo-
gously, we define G(s) for each s ∈ S. Define

H = {(s, a, b) : s ∈ S, a ∈ F (s) and b ∈ G(s)}

which is a Borel subset of S ×A×B.

(iv) p is a Borel measurable transition probability from H to S, called
the law of motion among states. If s is a state at some stage of the game
and the players select actions a ∈ F (s) and b ∈ G(s), then p(·|s, a, b) is the
probability distribution on S of the next state of the game.

(v) r : H 7→ R is a Borel measurable reward function for player 1 (cost
function for player 2).

Extending the definitions in [33], a universally measurable strategy for
player 1 is a sequence π = (π1, π2, . . .), where each πn is a universally
measurable (see Section 3.1) conditional probability πn(·|hn) on A, given
the entire history hn = (s1, a1, b1, ..., sn−1, an−1, bn−1, sn) of the game up
to its n-th stage such that πn(F (sn)|hn) = 1. (Of course, if n = 1, then
h1 = s1.) The class of strategies for player 1 will be denoted by Π. Let D1

be the set of universally measurable transition probabilities f from S to
A such that f(s) ∈ ∆(F (s)) for each s ∈ S. It is well known that D1 is
nonempty and every f ∈ D1 can be identified with a universally measurable
mapping from S into ∆(A) (see Propositions 7.26 and 7.49 and Lemma
7.28 in [3]). A (universally measurable) stationary strategy for player 1 is as
usual a sequence π = (f, f, . . .), where f ∈ D1. Every stationary strategy
π = (f, f, . . .) for player 1 can be identified with the mapping f ∈ D1.
Similarly, we define the set Σ (D2) of universally measurable strategies
(stationary strategies) for player 2.

Recall that H∞ = S ×A×B × S × . . . denotes the space of all infinite
histories of the game endowed with the product σ-algebra. Also, for any
π ∈ Π and σ ∈ Σ and every initial state s1 = s ∈ S, a probability measure
P πσ

s and a stochastic process {sm, am, bm} are defined on H∞ in a canonical
way, where the random variables sm, am and bm describe the state and the
action chosen by players 1 and 2, respectively, on the m-th stage of the
game (see Proposition 7.45 in [3]). Thus, for each initial state s ∈ S and
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any strategies π ∈ Π, σ ∈ Σ, the expected discounted reward to player 1 is

γλ(π, σ)(s) = Eπσ
s [

∞∑

m=1

λ(1− λ)m−1r(sm, am, bm)],

where λ is a fixed real number in (0, 1), called the discount factor, and Eπσ
s

means the expectation operator with respect to the probability measure
P πσ

s . (Later on we make assumptions on r which assure that all expecta-
tions considered here are well defined.) Because λ is fixed, we will drop the
reference to it. Let

v(s) = sup
π∈Π

inf
σ∈Σ

γ(π, σ)(s) and v(s) = inf
σ∈Σ

sup
π∈Π

γ(π, σ)(s), s ∈ S.

Recall that the discounted stochastic game has a value v iff v = v = v.
Let ε ≥ 0 be given. As usual, a strategy π∗ ∈ Π is called ε-optimal for

player 1 if
v ≤ inf

σ∈Σ
γ(π∗, σ) + ε

for each s ∈ S. Similarly, a strategy σ∗ ∈ Σ is called ε-optimal for player 2
if

v ≥ sup
π∈Π

γ(π, σ∗)− ε

for each s ∈ S. The 0-optimal strategies are called optimal.
Before formulating our assumptions and results, we introduce some help-

ful notation. For any Borel space X, ∆(X) stands for the space of all prob-
ability measures on all Borel subsets of X. Let s ∈ S, µ ∈ ∆(F (s)) and
ν ∈ ∆(G(s)). We define the bilinear extensions

r(s, µ, ν) =
∫

F (s)

∫

G(s)

r(s, a, b)µ(da)ν(db),

and, for any Borel set D ⊂ S, we put

p(D|s, µ, ν) =
∫

F (s)

∫

G(s)

p(D|s, a, b)µ(da)ν(db).

Let M+(S) be the set of all nonnegative universally measurable functions
on S, M̃+(S) be the set of all nonnegative upper semianalytic functions on
S, and B̃+(S) be the set of all bounded functions in M̃+(S) (Section 3.1).
Define also

K1 = {(s, µ) : s ∈ S, µ ∈ ∆(F (s))}, K2 = {(s, ν) : s ∈ S, ν ∈ ∆(G(s))}
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and
K = {(s, µ, ν) : s ∈ S, µ ∈ ∆(F (s)), ν ∈ ∆(G(s))}. (1)

Some of the results will be stated in terms of the Shapley operator defined
on M+(S), extending the definition of [33]. If u ∈ M+(S), we introduce
the auxiliary game Γ(u)[s] played on F (s)×G(s) with the payoff function
L(u)(s, ., .) such that, for (s, a, b) ∈ H,

L(u)(s, a, b) = λr(s, a, b) + (1− λ)
∫

S
u(z)p(dz|s, a, b).

Given (s, µ, ν) ∈ K, we define the bilinear extension

L(u)(s, µ, ν) =
∫

F (s)

∫

G(s)
L(u)(s, a, b)µ(da)ν(db) (2)

and
(Uu)(s) = inf

µ∈∆(G(s))
sup

ν∈∆(F (s))
L(u)(s, µ, ν).

As in [33], the aim is to prove that
(i) U is also a sup inf operator, hence that the Shapley operator Ψ is well
defined as the value of the auxiliary game;
(ii) Ψ maps a complete subset of M+(S) to itself;
(iii) a measurable selection theorem allows us to construct ε-optimal strate-
gies.

A basic setting is F (s) = F0 and G(s) = G0 are compact sets and
r is bounded. For each (s, a) ∈ F , r(s, a, ·) is continuous on G0 and for
each (s, b) ∈ G, r(s, ·, b) is continuous on F0. For every Borel set D ⊂ S,
the function p(D|s, a, ·) is continuous on G0 for each (s, a) ∈ F and the
function p(D|s, ·, b) is continuous on F0 for each (s, b) ∈ G. Then Sion’s
minmax theorem implies (i), and since Ψ maps measurable functions on
S to measurable functions on S, (ii), and since Borel measurable optimal
strategies will exist (see [5]), (iii).

In the current framework our basic assumptions will be significantly
weaker than above:
C1: For each s ∈ S, the set G(s) is nonempty and compact.
C2: For each (s, a) ∈ F , r(s, a, ·) is lower semicontinuous on G(s).
C3: For each (s, a) ∈ F and every Borel set D ⊂ S, the function p(D|s, a, ·)
is continuous on G(s).

Our main result is:

Theorem 1 Assume that r is bounded from below and C1 through C3 hold.
Let u be a bounded from below upper semianalytic function on S such that
(Uu)(s) < ∞ for each s ∈ S. Then (Uu)(s) is the value of the auxiliary
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game Γ(u)[s]. Moreover, (Uu)(·) is upper semianalytic, player 2 has an
optimal universally measurable strategy, and for any ε > 0 player 1 has an
ε-optimal universally measurable strategy.

The proof of Theorem 1 will be given in Section 4.

Theorem 2 Assume C1 through C3 and that r is bounded and λ ∈ (0, 1).
Then the discounted stochastic game has a value function vλ, the function
vλ is bounded and upper semianalytic, and vλ is the unique solution of the
equation:

vλ = Uvλ.

Moreover, player 2 has an optimal universally measurable stationary strat-
egy, and for any ε > 0 player 1 has an ε-optimal universally measurable
stationary strategy.

Proof. Using Theorem 1, we infer that U is equal to the Shapley op-
erator Ψ and is a contraction mapping from B̃+(S) into itself. Thus, there
exists a unique vλ ∈ B̃+(S) such that vλ = Uvλ. The existence of ε-optimal
strategies for the players can be proved by making use of Theorem 1 with
u = vλ and the arguments given in [33], Theorem 1.

The next result concerns total reward games in which no discounting is
assumed.

Theorem 3 Assume C1 through C3 and that r is bounded and nonnega-
tive. Then the stochastic game with total reward is called positive and has
a value v, the function v is upper semianalytic, and is the smallest nonneg-
ative solution of the equation:

v = Uv.

Moreover, player 2 has an optimal universally measurable stationary strat-
egy, and for any ε > 0 player 1 has an ε-optimal universally measurable
semi-stationary strategy which depends on both the current state and the
initial state of the game.

For the proof of this result consult [23]. It is shown that v = limλ→0 Vλ

where Vλ is the unnormalized discounted value, that is, Vλ = vλ
λ . We close

this section with a result on stochastic games with weakly continuous tran-
sition probabilities. Assume that A and B are compact metric spaces. Let
the family of all nonempty compact subsets of A (and also of B) be en-
dowed with the Hausdorff metric (see [2] or [3]). We make the following
further assumptions:
C4: The set valued mappings s 7→ F (s) and s 7→ G(s) are continuous.
C5: The function r is bounded and continuous on H.
C6: The transition probability p(·|s, a, b) depends continuously on (s, a, b)
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if ∆(S) is endowed with the weak topology.

Using the theorem of Berge (see pp. 115–116 in [2]) and a result by
Himmelberg and Van Vleck [10], it is easy to prove that the operator U
(i) is equal to Ψ and (ii) is a contraction mapping from the Banach space
of all bounded continuous real-valued functions on S into itself. Therefore,
there exists a unique fixed point vλ for U. Next, using Theorem 2 from [5]
and the property of the Shapley operator, (iii) holds and one obtains the
following result.

Theorem 4 Assume C4 through C6 and λ ∈ (0, 1). Then the discounted
stochastic game has a bounded continuous value function vλ, and vλ is the
unique solution of the equation:

vλ = Uvλ.

Moreover, both players have optimal Borel measurable stationary strategies.

Remark 1 Theorem 1 is a game-theoretic extension of Theorem 2 of Brown
and Purves [5]. Similar selection theorems with the asymmetric conditions
corresponding to the assumptions of the Fan minmax theorem [7] (Theorem
2) can be found in [22], [23], [25]. If we drop the semicontinuity condition
in Theorem 1 then it is consistent with the usual axioms of set theory to
assume that Uu is not universally measurable. This observation is based
on (F6) [30], [22].

Remark 2 (a) Theorem 1 has some relevance to studying general classes
of Borel stochastic games with limsup payoffs [19], [20], [21].

(b) Universally measurable strategies were also used to study stochas-
tic games with complete information in [15]. However, no counterpart of
Theorem 1 is stated there.

(c) Player 1 need not have ε-optimal stationary strategies in a positive
stochastic game even if the state space is countable and the value function
v is bounded [28].

(d) If the transition probability structure satisfies some stochastic sta-
bility conditions, then the existence of optimal stationary strategies can be
extended to a class of zero–sum stochastic games with the expected limit-
ing average payoff criterion [14], [27]. Also some results on sensitive optimal
strategies (related to turnpike theorems in economics) can be obtained for
games with additive transition and reward structure (ARAT games). For
example, the existence of 1-optimal strategies for the players [26] in a class
of Borel state space ergodic ARAT games can be proved by combining a
recent result by Jaśkiewicz [12] and Theorem 5 in [27]. (We point out that
in [26], [27], [12] the immediate payoff function r is not multiplied by λ as
is usually done in papers by many authors.)
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(e) Zero-sum ergodic semi-Markov games with Borel state spaces were
recently studied in [13].

Remark 3 Some versions of Theorem 4 are stated in [6], [30]. Rieder [30]
also considered positive stochastic games. An extension of his result to zero–
sum stochastic games with general lower semicontinuous payoff function on
H∞ is given in [24], [25], where persistently (subgame perfect) optimal
strategies are also studied.

3. Measure-Theoretical Tools

3.1. BOREL AND ANALYTIC SETS. SEMIANALYTIC FUNCTIONS

A separable metric space X is called a Borel space or a Borel set if X is a
Borel subset of some Polish space, i.e., a complete separable metric space,
and is endowed with the σ-algebra B(X) of all its Borel subsets.

We shall need the following facts.
(F1) Let X and Y be Borel spaces and E be a Borel subset of X × Y such
that the set E(x) = {y ∈ Y : (x, y) ∈ E} is nonempty and compact for
each x ∈ X. Then by [11] (Theorem 3) and [9] (Theorem 5.6), there is a
sequence {fn} of Borel measurable functions on X into Y such that

E(x) = cl{fn(x)} for each x ∈ X,

where cl denotes the closure operation in Y.
(F2) If X and Y are Borel spaces, then the product space X × Y endowed
with the product topology is also a Borel space and B(X × Y ) equals the
product σ-algebra B(X)⊗ B(Y ) on X × Y [3], Proposition 7.13.

Let NN be the set of sequences of positive integers, endowed with the
product topology. So NN is a Polish space. Let X be a separable metric
space. Then X is called an analytic space or an analytic set provided there
is a continuous function f on NN whose range f(NN ) is X.

In this section, we list some properties of analytic sets that we shall be
using.
(F3) Every Borel set is analytic [3], Proposition 7.36.
(F4) The countable union, intersection and product of analytic sets is an-
alytic [3], Corollary 7.35.2.
(F5) Let E be an analytic subset of an analytic space X. Then E is uni-
versally measurable, that is, if µ is any probability measure on the Borel
subsets of X, then E is in the completion of the Borel σ-algebra with respect
to µ [3], Corollary 7.42.1.

The complement of an analytic set relative to a Borel space is called
complementary analytic. We have the following fact.
(F6) According to Gödel [8], it is consistent with the usual axioms of set
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theory to assume that there is a complementary analytic subset of the unit
square whose projection on the horizontal axis is not universally measur-
able.

For any Borel space X, we denote by U(X) the σ-algebra of all univer-
sally measurable subsets of X. Let X and Y be Borel spaces. A function
f : X 7→ Y is universally measurable if f−1(B) ∈ U(X) for every B ∈ B(Y ).
By Theorem 5.5 of Leese [16] we have:
(F7) Let X and Y be Borel spaces and C ∈ U(X) ⊗ B(Y ). Then the
projection projXC of C on X belongs to U(X) and, moreover, there is a
universally measurable function f : X 7→ Y such that (x, f(x)) ∈ C for
every x ∈ projXC.

If X is an analytic space and f is an extended real-valued function on
X, then we say that f is upper semianalytic (u.s.a.) if the set {x ∈ X :
f(x) > c} (equivalently, {x ∈ X : f(x) ≥ c}) is analytic for each real
number c. By (F3) every Borel measurable function is u.s.a., and by (F5)
every u.s.a. function is universally measurable.

3.2. AUXILIARY MEASURE-THEORETICAL FACTS

Let X be a separable metric space, endowed with the σ-algebra B(X) of
all its Borel subsets. We write C(X) for the set of all bounded uniformly
continuous real-valued functions on X. Recall that ∆(X) is the set of all
probability measures on B(X). The weak topology on ∆(X) is the coarsest
topology in which all mappings µ 7→ ∫

u(x)µ(dx), u ∈ C(X), are continu-
ous.
(F8) By embedding X in a countable product of unit intervals and using
the fact that the unit ball in the space of uniformly continuous functions on
a totally bounded metric space (with the supremum norm ‖·‖) is separable
we get: there is a sequence {un} of real-valued continuous functions on X
with ‖un‖ ≤ 1, n ∈ N, such that the metric ρ defined on ∆(X) by

ρ(µ, λ) =
∞∑

n=1

2−n

∣∣∣∣
∫

un(x)µ(dx)−
∫

un(x)λ(dx)
∣∣∣∣ , µ, λ ∈ ∆(X), (3)

is equivalent to the weak topology on ∆(X) [29] (page 47).
(F9) If X is a Borel space, then ∆(X) is a Borel space too [3], Corollary
7.25.1.
(F10) If X is compact, so is ∆(X) [3], Proposition 7.22.
(F11) The σ-algebra B(∆(X)) of all Borel subsets of ∆(X) coincides with
the smallest σ-algebra on ∆(X) for which the mapping µ 7→ µ(E) is mea-
surable for each E ∈ B(X) [3], Proposition 7.25.
(F12) Let u be a bounded below real-valued lower semicontinuous function



ZERO-SUM STOCHASTIC GAMES WITH BOREL STATE SPACES 85

on X. Then µ 7→ ∫
u(x)µ(dx) is an extended real-valued lower semicon-

tinuous function on ∆(X). This fact follows from the theorem of Baire [1]
(page 390) and the monotone convergence theorem.
(F13) Let X and Y be analytic spaces and u be a bounded below ex-
tended real-valued u.s.a. function on X × Y. Then from Corollary 31 of
[4] or Proposition 7.48 in [3], it follows that (x, p) 7→ ∫

u(x, y)p(dy) is an
extended real-valued u.s.a. function on X × P (Y ).

If X and Y are Borel spaces, t(·|x) is a probability measure on B(Y )
for each x ∈ X, and the function t(B|·) from X into [0, 1] is Borel (univer-
sally) measurable for each B ∈ B(Y ); we say that t is a Borel (universally)
measurable transition probability from X into Y. It can be shown that t is
a Borel (universally) measurable transition probability from X into Y if
and only if the mapping x 7→ t(·|x) from X into ∆(Y ) is Borel (universally)
measurable (see Proposition 7.26 and Lemma 7.28 in [3]). By a modification
of Lemma 29 of [4] (see Proposition 7.46 in [3]) we can obtain the following
fact.
(F14) If f is a real-valued universally measurable (respectively, u.s.a., Borel
measurable) function on X×Y which is bounded below, and t : X 7→ ∆(Y )
is universally measurable (respectively, Borel measurable, Borel measur-
able), then x 7→ ∫

f(x, y)t(dy|x) is an extended real-valued universally
measurable (respectively, u.s.a., Borel measurable) function on X.

Finally, we give the following fact.
(F15) Let f be a bounded real-valued universally measurable function on
a Borel space Y, and t be a Borel measurable transition probability from a
Borel space X into Y such that t(B|·) is continuous on X for each B ∈ B(Y ).
Then the function x 7→ ∫

f(y)t(dy|x) is continuous on X.

Proof. Let xn → x0 as n → ∞. For each m ≥ 0, there is a Borel
measurable function fm on Y and there is a Borel subset Bm of Y such
that f(y) = fm(y) for all y ∈ Bm and t(Bm|xm) = 1 (see Lemma 7.27 in
[3]). Let B = ∪∞m=0Bm. Then t(B|xm) = 1 for each m ≥ 0, and since f is
bounded we have

∫

Y
f(y)t(dy|xn) =

∫

B
f(y)t(dy|xn) →

∫

B
f(y)t(dy|x0) =

∫

Y
f(y)t(dy|x0)

as n →∞, which terminates the proof.

3.3. MEASURABLE SELECTIONS OF EXTREMA

Let X and Y be Borel spaces, and E ⊂ X × Y be such that E(x) = {y ∈
Y : (x, y) ∈ E} 6= ∅ for each x ∈ X. Let u : E 7→ R be such that

u∗(x) = sup
y∈E(x)

u(x, y) < ∞ for each x ∈ X.
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Define Q = {x ∈ X : u∗(x) = u(x, yx) for some yx ∈ E(x)}. A function
f : X 7→ Y is called an ε-maximizer of u if (x, f(x)) ∈ E for each x ∈ X
and

u∗(x) = u(x, f(x)) for x ∈ Q,

and
u∗(x) < u(x, f(x)) + ε for x ∈ X \ Q.

If Q = X then an ε-maximizer is called a maximizer of u.
We shall need the following results:

Lemma 1 (see [3], Proposition 7.50 ) Assume that E is an analytic set and
u is an upper semianalytic function on E. Then u∗ is upper semianalytic,
Q ∈ U(X), and for any ε > 0 there is a universally measurable ε-maximizer
of u.

Lemma 2 Assume that E ∈ U(X) ⊗ B(Y ) and u is a U(X) ⊗ B(Y )-
measurable function. Then u∗ is universally measurable, Q ∈ U(X), and
for any ε > 0 there is a universally measurable ε-maximizer of u.

Proof. Note that, for each real number c,

C = {x ∈ X : u∗(x) > c} = projX{(x, y) ∈ E : u(x, y) > c}.

By (F7) the set C belongs to U(X). This obviously proves the measurability
of u∗.
Define

D0 = {(x, y) ∈ E : u∗(x) = u(x, y)},
and, for any given ε > 0,

D = {(x, y) ∈ E : u∗(x) < u(x, y) + ε} \D0.

It is clear that D0 and D belong to U(X)⊗ B(Y ), and Q =projXD0. Now
the lemma follows from (F7).

4. The Proof

To prove Theorem 1, we state some auxiliary lemmas. One can easily prove
the following:

Lemma 3 Let Y be a compact metric space and un : Y 7→ R, n ∈ N.
Assume that un ≤ un+1, and un is lower semicontinuous on Y for each n.
Then

lim
n

inf
y∈Y

un(y) = inf
y∈Y

lim
n

un(y).
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Lemma 4 Assume C1 through C3. Then
(a) The set K defined in (1) is Borel, and ∆(G(s)) is compact for each

s ∈ S.
(b) For any u ∈ M̃+(S) the (extended real-valued) function L(u)(·, ·, ·)

defined on K by (2) is upper semianalytic.
(c) If r is bounded and r(s, a, ·) is continuous on G(s), (s, a) ∈ F,

and u ∈ B̃+(S), then the function L(u)(s, µ, ·) is continuous on ∆(G(s)),
(s, µ) ∈ K1.

(d) For any u ∈ M̃+(S), the function L(s, µ, ·)(u) is lower semicontin-
uous on ∆(G(s)), (s, µ) ∈ K1.

Proof. Part (a) follows from (F2) and (F9)–(F11). To prove (b) it is
sufficient to use (F2), (F3), (F13), and (F14). Part (c) follows immediately
from (F15). To prove (d), let un = min{u, n}, n ∈ N. Then by (F12) and
(F15) each function L(un)(s, µ, ·) is lower semicontinuous on ∆(G(s)), n ∈
N, and by monotone convergence theorem

L(un)(s, µ, ·) ↑ L(u)(s, µ, ·), (s, µ) ∈ K1.

This obviously implies (d).

Proof of Theorem 1. Without loss of generality, we shall assume in
this proof that both the functions r and u are nonnegative. The fact that
Uu is the value function of the one-stage game with terminal reward u
follows from compactness of the sets ∆(G(s)), s ∈ S, Lemma 4(d), and the
Fan minmax theorem [7] (Theorem 2).
Define

Φ(s, µ) = inf
ν∈∆(G(s))

L(u)(s, µ, ν), (s, µ) ∈ K1.

Note that
(Uu)(s) = sup

µ∈∆(F (s))
Φ(s, µ), s ∈ S.

To prove that Uu is u.s.a., and player 1 has an ε-optimal universally mea-
surable strategy for each ε > 0, it is sufficient to show that Φ is u.s.a. on
the Borel space K1 and apply Lemma 1. In order to show that Φ is u.s.a.
on K1, we construct an auxiliary sequence {Φn} of u.s.a. functions on K1

that converges to Φ. Thus, Φ becomes a u.s.a. function on K1.
Let

ϕn = min{ψn, n}, n ∈ N,

where

ψn(s, a, b) = inf
y∈G(s)

[λr(s, a, y) + nd(b, y)], (s, a, b) ∈ F ×B, n ∈ N,
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and d is the metric in B.
By [5] (Theorem 2), ψn is a Borel measurable function on F ×B, and so is
ϕn, n ∈ N. It is easy to check that ϕn(s, a, ·) is continuous on B for each
(s, a) ∈ F, n ∈ N. By the proof of the theorem of Baire [1] (page 390),
ψn ↑ λr on H. Hence ϕn ↑ λr on H.
Let Ln(un)(·, ·, ·) be defined by (2) where the function λr is replaced by ϕn,
and u is replaced by un = min{u, n}. Clearly, the facts listed in Lemma 4
for L(u)(·, ·, ·) carry over to Ln(un)(·, ·, ·).
Define

Φn(s, µ) = inf
ν∈∆(G(s))

Ln(un)(s, µ, ν), (s, µ) ∈ K1, n ∈ N.

Because ϕn ↑ λr on H, and un ↑ u on S, from the monotone convergence
theorem we get

Ln(un)(·, ·, ·) ↑ L(u)(·, ·, ·) on K. (4)

This fact, the compactness of ∆(G(s)), s ∈ S, Lemma 4(c), and Lemma 3
imply that Φn ↑ Φ on K1 for each n ∈ N.
By Lemma 4(a) and (F1) there is a sequence {gk} of Borel measurable
mappings gk : S 7→ ∆(B) such that

∆(G(s)) = cl{gk(s)} for each s ∈ S, (5)

where cl denotes the closure in the weak topology on ∆(B). This together
with Lemma 4(c) implies

Φn(s, µ) = inf
k

Ln(un)(s, µ, gk(s)), (s, µ) ∈ K1 n ∈ N. (6)

From the Borel measurability of gk and (F14), we infer that the function

(s, a) 7→ Ln(un)(s, µa, gk(s)), (s, a) ∈ F,

where µa({a}) = 1, is u.s.a. on F for each k, n ∈ N. Using these facts
and (F13) we can easily show that Ln(un)(·, ·, gk(·)) is u.s.a. on K1, for
each k, n ∈ N, which together with (6) and (F4) (used for the intersection)
implies that so is Φn, n ∈ N.

To prove that player 2 has an optimal universally measurable strategy
we define the function

Ξ(s, ν) = sup
µ∈∆(F (s))

L(u)(s, µ, ν), (s, ν) ∈ K2.

Note that
(Uu)(s) = inf

ν∈∆(G(s))
Ξ(s, ν) = Ξ(s, νs) (7)
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for each s ∈ S and some νs ∈ ∆(G(s)). The last equality follows from the
compactness of the sets ∆(G(s)), s ∈ S, and Lemma 4(d). We shall show
that Ξ is a U(S) ⊗ B(∆(B))-measurable function on K2 (being a Borel
space). Then the existence of the required strategy for player 2 follows
immediately from (7) and Lemma 2.
In order to prove the measurability of Ξ we use the following sequences of
functions:

Ξn(s, ν) = sup
µ∈∆(F (s))

Ln(un)(s, µ, ν), (s, ν) ∈ K2, n ∈ N,

and
Θnm(s, ν) = inf

η∈∆(G(s))
[Ξn(s, η) + mρ(η, ν)], n, m ∈ N,

where (s, ν) ∈ S × ∆(B), and ρ is the metric on ∆(B) defined according
to (3). Let n,m ∈ N be arbitrary. Note that Θnm(s, ·) is continuous on
∆(B) for each s ∈ S. We shall prove that Θnm(·, ν) is u.s.a. on S for each
ν ∈ ∆(B).
Denote

wnm(s, µ, η, ν) = Ln(s, µ, η)(un) + mρ(η, ν),

where (s, µ, η) ∈ K and ν ∈ ∆(B). From the properties of Ln(un)(s, ·, ·)
and (3) we infer that wnm(s, ·, η, ν) is linear on a convex set ∆(F (s)) and
wnm(s, µ, ·, ν) is convex and continuous on ∆(G(s)), which is a compact
convex space. Applying the Fan minmax theorem [7] (Theorem 2) to the
function wnm(s, ·, ·, ν) we get:

Θnm(s, ν) = sup
µ∈∆(F (s))

inf
η∈∆(G(s))

wnm(s, µ, η, ν), (s, ν) ∈ S ×∆(B). (8)

It is clear that wnm(·, ·, ·, ν) is u.s.a. on K, and since wnm(s, µ, ·, ν) is con-
tinuous on ∆(G(s)), (s, µ) ∈ K1, we can show, using the sequence {gk}
satisfying (5), that the function

(s, µ) 7→ inf
η∈∆(G(s))

wnm(s, µ, η, ν) is u.s.a. on K1.

This fact together with (8) and Lemma 1 implies that Θnm(·, ν) is u.s.a.
on S. Thus, we have shown that Θnm(·, ν) is U(S)-measurable on S for
each ν ∈ ∆(B) and Θnm(s, ·) is continuous on ∆(B) for each s ∈ S. By
[9] (Theorem 6.1), the function Θnm is U(S) ⊗ B(∆(B))-measurable on
S × ∆(B) because ∆(B) endowed with the weak topology is a separable
metric space.
Now observe that Ξn(s, ·) is lower semicontinuous on ∆(G(s)) for each
s ∈ S, n ∈ N. By the proof of the theorem of Baire [1] (page 390) we
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obtain Θnm ↑ Ξn as m →∞. Hence, it follows that Ξn is U(S)⊗B(∆(B))-
measurable on K2 for each n ∈ N, and from (4) we can easily derive that
Ξn ↑ Ξ as n →∞. Thus, Ξ is also a U(S)⊗ B(∆(B))-measurable function
on K2, which terminates the proof.

Remark 4 The Borel measurability of the functions {gk} is very important
in the proof of Theorem 1 because of the fact that the composition of two
analytically measurable functions need not be analytically measurable (see
[3] (page 187) or [4] (Example 24)).
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