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1. Introduction

In this chapter, we present a framework for m-person stochastic games
with an infinite state space. Our main purpose is to present a correlated
equilibrium theorem proved by Nowak and Raghavan [42] for discounted
stochastic games with a measurable state space, where the correlation of
the different players’ strategies employs only “public signals” [16]. We will
also provide a detailed survey of the literature containing related results,
some approximation theorems for general state space stochastic games (the
existence of ε-equilibria), and the existence of equilibria in some classes
of countable state space stochastic games with applications to queueing
models.

We consider m-person non-zero-sum stochastic games for which:
(i) S is a nonempty Borel state space.
(ii) Xi is a nonempty compact metric space of actions for player i. We put
X = X1 ×X2 × · · · ×Xm.
(iii) Ai(s) is a nonempty compact subset of Xi and represents the set of ac-
tions available to player i in state s. We assume that {(s, a) : s ∈ S and a ∈
Ai(s)} is a Borel subset of S ×Xi. Put

A(s) = A1(s)×A2(s)× · · · ×Am(s), s ∈ S.

(iv) ri : S × X 7→ R is a bounded Borel-measurable payoff function for
player i. It is assumed that ri(s, ·) is continuous on X, for every s ∈ S.
(v) p is a Borel-measurable transition probability from S×X to S, called the
law of motion among states. If s is a state at some stage of the game and the
players select an x ∈ A(s), then p(·|s, x) is the probability distribution of the
next state of the game. We assume that the transition probability p(·|s, x)
has a density function, say z(·|s, x), with respect to a fixed probability
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measure µ on S, satisfying the following L1 continuity condition:
For any sequence of joint action tuples xn → x0,

∫

S
| z(t|s, xn)− z(t|s, x0) | µ(dt) → 0 as n →∞.

The L1 continuity above is satisfied via Scheffe’s theorem when z(s|t, ·) is
continuous on X. It implies the norm continuity of the transition probability
p(· | s, x) with respect to x ∈ X (see Theorem 16.11 in [7]).

The game is played in discrete time with past history as common knowl-
edge for all players. A strategy for a player is a Borel-measurable mapping
which associates with each given history a probability distribution on the
set of actions available to him. A stationary strategy for player i is a Borel-
measurable mapping which associates with each state s ∈ S a probability
distribution on the set Ai(s) of actions available to him at s, independent
of the history that led to the state s. A stationary strategy for player i can
thus be identified with a Borel-measurable transition probability f from S
to Xi such that f(Ai(s) | s) = 1, for every s ∈ S.

Let H∞ = S ×X × S × · · · be the space of all infinite histories of the
game, endowed with the product σ-algebra. For any profile of strategies
π = (π1, . . . , πm) of the players and every initial state s1 = s ∈ S, a
probability measure P π

s and a stochastic process {sn, an} are defined on
H∞ in a canonical way, where the random variables sn and an describe
the state and the actions chosen by the players, respectively, on the n-th
stage of the game (see Chapter 7 in [5]). Thus, for each profile of strategies
π = (π1, . . . , πm), any finite horizon T , and every initial state s ∈ S, the
expected T -stage payoff to player i is

γT
i (π)(s) = Eπ

s

(
T∑

n=1

ri(sn, an)

)
.

Here Eπ
s means the expectation operator with respect to the probability

measure P π
s . If β ∈ (0, 1) is a fixed discount factor, then the β-discounted

expected payoff to player i is

γβ
i (π)(s) = Eπ

s

( ∞∑

n=1

βn−1ri(sn, an)

)
.

The expected average payoff (per unit time) for player i is defined as

γi(π)(s) = lim inf
T→∞

1
T

γT
i (π)(s).
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Let π∗ = (π∗1, . . . , π
∗
m) be a fixed profile of strategies of the players. For

any strategy πi of player i, we write (π∗−i, πi) to denote the strategy profile
obtained from π∗ by replacing π∗i with πi.

A strategy profile π∗ = (π∗1, . . . , π
∗
m) is called a Nash equilibrium for

the β-discounted stochastic game iff no unilateral deviations from it are
profitable, that is, for each s ∈ S,

γβ
i (π∗)(s) ≥ γβ

i (π∗−i, πi)(s),

for every player i and any strategy πi. Of course, Nash equilibria are anal-
ogously defined for the finite horizon and limiting average payoff stochastic
games.
Remark 1 The question of the existence of stationary Nash equilibria in
non-zero-sum stochastic games remains open. Only some special classes of
games are known to possess a stationary Nash equilibrium. For example,
Parthasarathy and Sinha [44] proved the existence of stationary Nash equi-
libria in discounted stochastic games with finitely many actions for the play-
ers and state-independent nonatomic transition probabilities. Their result
was extended by Nowak [35] to a class of uniformly ergodic average payoff
games. Also, some classes of discounted non-zero-sum stochastic games with
perfect information or additive payoff and reward structure (ARAT games)
are known to possess stationary equilibria [25], [23]. It is shown in [26] that
ARAT games also have a nonstationary nonrandomized equilibrium. There
are papers on certain economic (resource extraction, capital accumulation
or consumption and investment) games where a stationary equilibrium is
shown to exist by exploiting a very special transition and payoff structure
(for example, [4], [11], [14]). The transition probabilities in [4] and [14]
are assumed to be weakly continuous and the state space is a segment of
real line. Very recently, stationary Nash equilibria were shown to exist in a
pretty large class of discounted stochastic games (including some stochas-
tic games of capital accumulation) in which the transition probability is a
combination of finitely many measures with coefficients depending on states
and actions of the players [40]. Mertens and Parthasarathy [28], [29], [30]
showed the existence of nonstationary subgame-perfect Nash equilibria in
a class of discounted stochastic games assuming that the transition proba-
bilities are norm-continuous with respect to the actions. A simplification of
their proof is given in [48]. For finite-horizon games a Markov equilibrium
can be obtained by a simple algorithm based on backward induction [46].

2. Correlated Equilibria

In this section, we extend the sets of strategies available to the players
in the sense that we allow them to correlate their choices in a natural
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way described below. The resulting solution is a kind of extensive-form
correlated equilibrium [16].

Suppose that {ξn : n ≥ 1} is a sequence of so-called signals, drawn
independently from [0, 1] according to the uniform distribution. Suppose
that at the beginning of each period n of the game the players are informed
not only of the outcome of the preceding period and the current state sn,
but also of ξn. Then the information available to them is a vector hn =
(s1, ξ1, x1, . . . , sn−1, ξn−1, xn−1, sn, ξn), where si ∈ S, xi ∈ A(si), ξi ∈ [0, 1].
We denote the set of such vectors by Hn.

An extended strategy for player i is a sequence πi = (π1
i , π

2
i , . . .), where

every πn
i is a Borel-measurable transition probability from Hn to Xi such

that πn
i (Ai(sn) | hn) = 1 for each history hn ∈ Hn. An extended stationary

strategy for player i is a strategy πi = (π1
i , π

2
i , . . .) such that each πn

i depends
on the current state sn and the last signal ξn only. In other words, a strategy
πi of player i is called stationary if there exists a transition probability
f from S × [0, 1] to Xi such that for every period n of the game and
each history hn ∈ Hn, we have πn

i (· | hn) = f(· | sn, ξn). Assuming that
the players use extended strategies we actually assume that they play the
stochastic game with the extended state space S× [0, 1]. The law of motion,
say p̄, in the extended state space model is obviously the product of the
original law of motion p and the uniform distribution η on [0, 1]. More
precisely, for any s ∈ S, ξ ∈ [0, 1], a ∈ A(s), any Borel sets C ⊂ S and
D ⊂ [0, 1], p̄(C ×D | s, ξ, a) = p(C | s, a)η(D).

For any profile of extended strategies π = (π1, . . . , πm) of the players,
the β-discounted (undiscounted) payoff to player i is a function of the initial
state s1 and the first signal ξ1 and is denoted by γβ

i (π)(s1, ξ1) [γi(π)(s1, ξ1)].
We say that f∗ = (f∗1 , . . . , f∗m) is a Nash equilibrium in the average

payoff stochastic game in the class of extended strategies if for each initial
state s1 ∈ S,

∫ 1

0
γβ

k (f∗)(s1, ξ1)η(dξ1) ≥
∫ 1

0
γβ

k (f∗−k, πk)(s1, ξ1)η(dξ1),

for every player k and any extended strategy πk.
A Nash equilibrium in extended strategies is also called a correlated

equilibrium with public signals. The reason is that after the outcome of
any period of the game, the players can coordinate their next choices by
exploiting the next (known to all of them, i.e., public) signal and using
some coordination mechanism telling which (pure or mixed) action is to be
played by each of them. In many applications, we are particularly interested
in stationary equilibria. In such a case the coordination mechanism can
be represented by a family of m + 1 measurable functions λ1, . . . , λm+1 :
S 7→ [0, 1] such that

∑m+1
i=1 λi(s) = 1 for every s ∈ S. A stationary Nash
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equilibrium in the class of extended strategies can be constructed then by
using a family of m + 1 stationary strategies f1

i , . . . , fm+1
i , given for each

player i, and the following coordination rule. If the game is at a state s on
the n-th stage and a random number ξn is selected, then each player i is
suggested to use fk

i (· | s), where k is the least index for which
∑k

j=1 λj(s) ≥
ξn. The λj and f j

i fixed above induce an extended stationary strategy f∗i
for each player i as follows

f∗i (· | s, ξ) = f1
i (· | s) if ξ ≤ λ1(s), s ∈ S,

and

f∗i (· | s, ξ) = fk
i (· | s) if

k−1∑

j=1

λj(s) < ξ ≤
k∑

j=1

λj(s),

for s ∈ S, 2 ≤ k ≤ m+1. Because the signals are independent and uniformly
distributed in [0, 1], it follows that at any period of the game and for any
current state s, the number λj(s) can be interpreted as the probability that
player i is suggested to use f j

i (· | s) as his mixed action. Now it is quite obvi-
ous that a strategy profile (f∗1 , . . . , f∗m) obtained by the above construction
is a stationary Nash equilibrium in the class of extended strategies of the
players in a game iff no player i can unilaterally improve upon his expected
payoff by changing any of his strategies f j

i , j = 1, . . . , m + 1.
The following result was proved by Nowak and Raghavan [42] by a

fixed-point argument.

Theorem 1 Every non-zero-sum discounted stochastic game satisfying (i)
through (v) has a stationary correlated equilibrium with public signals.

Remark 2 A related result to Theorem 1 is reported in Duffie et al. [12].
They used some stronger assumptions about the primitive data of the game
(for example the transition probability), but showed that there exists a sta-
tionary correlated equilibrium which induces an ergodic process. Nonsta-
tionary correlated subgame-perfect equilibria in a class of dynamic games
with weakly continuous transition probabilities were studied by Harris et
al. [18]. [34] studied an in some sense weaker correlated scheme.

3. Auxiliary Results and the Proof

Let S and Y be nonempty Borel spaces. We assume that B is a Borel subset
of S × Y whose projection on the horizontal axis is S. For each s ∈ S, put
B(s) := {y ∈ Y : (s, y) ∈ B}. The set-valued mapping s 7→ B(s) is said to
be lower measurable if for every open set G in Y the set {s ∈ S : B(s)∩G 6=
∅} is Borel.

From Theorem 3 in [22], we obtain the following auxiliary result.
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Lemma 1 Assume that B(s) is compact for each s ∈ S. Then B is a Borel
set if and only if s 7→ B(s) is lower measurable.

It is well known that every Borel set B for which the sets B(s) are
compact has a Borel-measurable uniformization (selection) [9]. However,
to make use of many helpful results described in the literature in terms of
set-valued mappings, we shall apply the characterization given in Lemma
1. From Kuratowski and Ryll-Nardzewski [27], we immediately obtain:

Lemma 2 The lower measurable set-valued mapping s 7→ B(s) has a Borel-
measurable selector, that is, there exists a Borel-measurable function f :
S 7→ Y such that f(s) ∈ B(s) for every s ∈ S.

Castaing gave the following useful characterization of lower measurable
set-valued mappings (see [10] or [20] for the proof).

Lemma 3 The compact set-valued mapping s 7→ B(s) defined above is
lower measurable if and only if there exists a countable family of Borel-
measurable functions fn : S 7→ Y such that B(s) = closure of {fn(s)} in Y
for every s ∈ S.

From Lemma 1, we infer the following corollary.

Lemma 4 Let D be a lower measurable mapping from S into nonempty
compact subsets of Y. Let u : S × Y 7→ R be a Borel-measurable real-valued
function such that, for every s ∈ S, u(s, ·) is continuous on D(s). Define F
by

F (s) = {x ∈ D(s) : u(s, x) = 0}
and assume that F (s) is nonempty for every s ∈ S. Then F is a lower
measurable set-valued mapping.

As a corollary to Theorem 7.1 in [20], we obtain:

Lemma 5 Assume that F is a lower measurable set-valued mapping from
S into nonempty compact subsets of Y, T is a metric space, u : S×Y 7→ T
is a mapping such that, u(s, ·) is continuous on Y for every s ∈ S, u(·, y)
is measurable for every y ∈ Y. Suppose there is a measurable mapping
g : S 7→ T such that g(s) ∈ {u(s, y) : y ∈ F (s)} for every s ∈ S. Then there
exists a measurable selector f of F such that

g(s) = u(s, f(s)) for every s ∈ S.

Let V be the space of all µ-equivalence classes of Borel-measurable
functions v : S 7→ R such that |v(s)| ≤ C µ-a.e., where C is a fixed
constant such that |rk(s, x)| ≤ C for each s ∈ S, x ∈ A(s) and for ev-
ery player k. It is obvious that V is a compact and metrizable subset of
L∞ = L∞(S, µ), when endowed with the weak-star topology σ(L∞, L1)
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[13]. Let V m = V ×V ×· · ·×V (m times). We endow V m with the product
topology, so V m is a compact metrizable space too. Obviously, V m is con-
vex. We shall define a set-valued mapping on V m into its compact convex
subsets and show that this mapping has a fixed point corresponding to a
correlated equilibrium payoff vector for the stochastic game. To do this, we
associate with each v = (v1, . . . , vm) ∈ V m and s ∈ S the non-zero-sum
game Γv(s) where the payoff for player k corresponding to any strategy
m-tuple x = (x1, . . . , xm) ∈ A(s) is

uk(s, x)(v) = (1− β)rk(s, x) + β

∫

S
vk(t)p(dt|s, x).

Under our continuity assumptions, the set of Nash equilibria in Γv(s),
denoted by Nv(s), is a nonempty compact subset of ∆(X), the space of
probability measures on the product space X = X1×X2×· · ·Xm, equipped
with the weak topology.

Lemma 6 For any v ∈ V m, s 7→ Nv(s) is a lower measurable compact
set-valued mapping.

Proof. For any probability measures µk on Xk (k = 1, . . . , m) put

uk(s, µ1, . . . , µm)(v) =
∫
· · ·

∫
uk(s, x1, . . . , xm)(v)µ1(dx1)×· · ·×µm(dxm),

and for any probability measures pk ∈ ∆(Ak(s)) and v ∈ V m set

u(s, p1, . . . , pm)(v)
= u1(s, p1, . . . , pm)(v)− max

µ1∈∆(A1(s))
u1(s, µ1, p2, . . . , pm)(v) + · · ·

+ um(s, p1, . . . , pm)(v)− max
µm∈∆(Am(s))

um(s, p1, . . . , pm−1, µm)(v).

Note that, for any s ∈ S, v ∈ V m, we have

Ns(v) = {(p1, . . . , pm) : u(s, p1, . . . , pm)(v) = 0}.

The set-valued mapping s 7→ ∆(Ak(s)) is lower measurable [21], and so is
s 7→ ∆(A1(s)) × · · · × ∆(Am(s)) [20]. By our continuity assumptions, the
function u(s, . . .)(v) satisfies the conditions of Lemma 4, and thus the result
follows.

Let Pv(s) be the set of payoff vectors in Γv(s) corresponding to all Nash
equilibria from the set Nv(s). By coPv(s), we denote the convex hull of
Pv(s).
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Lemma 7 Both the set-valued mappings s 7→ Pv(s) and s 7→ coPv(s) are
lower measurable.

Proof. To prove that s 7→ Pv(s) is lower measurable one can use Cas-
taing’s characterization of the lower measurable mapping s 7→ Nv(s) stated
in Lemma 3. The lower measurability of s 7→ coPv(s) follows from Theorem
9.1 in [20].

By Lemmas 2 and 7, the compact set-valued mapping s 7→ coPv(s) has
a measurable selector. Let Mv be the set of all µ-equivalence classes of
Borel-measurable selectors of s 7→ coPv(s), v ∈ V m is fixed.

Lemma 8 The mapping v 7→ Mv is convex compact-valued and uppersemi-
continuous.

Proof. Obviously, Mv is convex for every v ∈ V m. Assume that vn → v
in V m as n → ∞, wn ∈ Mvn for each n, and wn → w. We have to prove
that w ∈ Mv. First we note that, for any s ∈ S, the game Γvn(s) converges
to the game Γv(s) in the sense that, for every player k,

lnk (s) := max
x∈A(s)

|uk(s, x)(vn
k )− uk(s, x)(vk)| → 0 as n →∞.

Here vn
k (vk) is the k-th component of vn (v). Clearly,

lnk (s) = max
x∈A(s)

∣∣∣∣β
∫

S
vn
k (t)p(dt|s, x)− β

∫

S
vk(t)p(dt|s, x)

∣∣∣∣ .

We shall prove that lnk (s) → 0 as n → ∞. Suppose that the convergence
to zero does not take place. Then there exist a positive number α and an
infinite set J of positive integers such that lnk (s) > α for all n ∈ J. For each
n ∈ J, let xn be a point in A(s) at which the above maximum is attained.
We can assume without loss of generality that xn → x0 ∈ A(s) as n →∞.
We obviously have

lnk (s) ≤ β

∣∣∣∣
∫

S
(vn

k (t)− vk(t))p(dt|s, x0)
∣∣∣∣

+β

∣∣∣∣
∫

S
vn
k (t)p(dt|s, xn)−

∫

S
vn
k (t)p(dt|s, x0)

∣∣∣∣

+β

∣∣∣∣
∫

S
vk(t)p(dt|s, xn)−

∫

S
vk(t)p(dt|s, x0)

∣∣∣∣ .

The first term on the right-hand side of this inequality tends to zero as
n → ∞, because p(·|s, x0) ¿ µ and vn

k → vk as n → ∞ in the σ(L∞, L1)
topology. The second and also the third term are each less than or equal
to C‖p(·|s, xn)− p(·|s, x0)‖, (‖ · ‖ is the total variation norm) which tends
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to zero as n →∞. This contradicts our assumption that lnk (s) > α > 0 for
all n ∈ J. Thus the convergence of lnk (s) to zero is proved.

We assume that wn → w in the product weak-star topology on V m.
Then some sequence {ŵn} of convex combinations of these functions con-
verges to w almost surely, say ŵn(s) → w(s) for every s ∈ S − S1, where
µ(S1) = 0 (see Mazur’s theorem in [13]). For any ε > 0, let coP ε

v (s) be the
ε-neighborhood of coPv(s). Using the fact that lnk (s) → 0 as n → ∞, for
every player k and s ∈ S, it is easy to show that w(s) ∈ coP ε

v (s) for every
s ∈ S − S1 and ε > 0. Hence w(s) ∈ coPv(s), s ∈ S − S1. This proves that
v 7→ Mv is uppersemicontinuous. Similarly, we conclude that Mv is closed
for any v and because Mv ⊂ V m and V m is compact for every v ∈ V m, Mv

is compact as well.

Proof of Equilibrium Theorem. From the Kakutani–Glicksberg fixed-
point theorem [17] and Lemma 8 we infer that there exists a Borel-measurable
mapping v : S 7→ Rm such that v(s) ∈ coPv(s) for all s ∈ S − S1, where
µ(S1) = 0. By the random version of Caratheodory’s theorem (see [10])
there exist Borel-measurable functions λ1, . . . , λm+1 : S 7→ [0, 1] such that∑m+1

i=1 λi(s) = 1 and there exist Borel-measurable mappings u1, . . . , um+1 :
S 7→ Rm such that for all states s ∈ S − S2 where µ(S2) = 0, we have
ui(s) ∈ Pv(s) and

v(s) =
m+1∑

i=1

λi(s)ui(s) for all s ∈ S − (S1 ∪ S2).

By Lemma 5 there exist Borel-measurable mappings f i : S 7→ ∆(X1) ×
· · · ×∆(Xm) such that f i(s) ∈ Nv(s), and

ui
k(s) = (1− β)rk(s, f i(s)) + β

∫

S
vk(t)p(dt|s, f i(s)), i = 1, . . . ,m + 1,

for every player k and for each s ∈ S − (S1 ∪ S2). Here ui
k is the k-th

component of ui. Hence, if we put fλ =
∑m+1

i=1 λif i, we get

vk(s) = (1− β)rk(s, fλ(s)) + β

∫

S
vk(t)p(dt|s, fλ(s)), s ∈ S − (S1 ∪ S2).

Let w = v/(1− β). Then fλ(s) ∈ coNw(s) and consequently

wk(s) = rk(s, fλ(s)) + β

∫

S
wk(t)p(dt|s, fλ(s)), s ∈ S − (S1 ∪ S2).

Let f0 be any Borel-measurable selector of s 7→ Nw(s). We put

w∗k(s) =
{

wk(s) if s ∈ S − (S1 ∪ S2),
rk(s, f0(s)) + β

∫
Swk(t)p(dt|s, f0(s)) if s ∈ S1 ∪ S2.
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Observe that if we set

f∗λ(s) =
{

fλ(s) for s ∈ S − (S1 ∪ S2)
f0(s) for s ∈ S1 ∪ S2,

then we get (because p ¿ µ, µ(S1 ∪ S2) = 0)

w∗k(s) = rk(s, f∗λ(s)) + β

∫

S
w∗k(t)p(dt|s, f∗λ(s))

and f∗λ(s) belongs to the convex hull of Nw∗(s) for every s ∈ S. Using
standard results on discounted dynamic programming [5], [22], we infer
that

w∗k(s) = γβ
k (f∗λ)(s) for every s ∈ S,

and since f∗λ(s) ∈ coNw∗(s), f∗λ is a correlated equilibrium for our game.
We now present an extension of Theorem 1 to undiscounted stochas-

tic games obtained in Nowak [35]. We need some additional assumptions
on the transition probability p. For any stationary strategy profile f and
n ≥ 1, let pn(· | s, f) denote the n-step transition probability determined
by p and f .

GE (Uniform Geometric Ergodicity): There exist scalars α ∈ (0, 1) and
δ > 0 for which the following holds: for any profile f of stationary strategies
of the players, there exists a probability measure pf on S such that

‖pn(· | s, f)− pf (·)‖ ≤ δαn for each n ≥ 1.

Here ‖ · ‖ denotes the total variation norm in the space of finite signed
measures on S.

Now the main result of Nowak [35] can be formulated.

Theorem 2 Every non-zero-sum average payoff stochastic game satisfying
(i) through (v) and GE has a stationary correlated equilibrium with public
signals.

The basic idea of the proof of Theorem 2 is rather simple. Let C be
any positive number such that |rk| ≤ C for every player k. Then, for every
discount factor β, and any stationary correlated equilibrium fβ

λ obtained
in Theorem 1, (1 − β)γk(f

β
λ )(·) is in the compact ball B(C) with radius

C in the space L∞(S, µ), endowed with the weak-star topology σ(L∞, L1).
Therefore, it is possible to find a sequence {βn} of discount factors which
converges to one and (1 − βn)γk(f

βn

λ ) converges to some function Jk ∈
B(C). Using GE, it is shown that Jk are constant equilibrium functions of
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the players, and fβn

λ converges (in some sense) to a stationary correlated
equilibrium for the undiscounted game.

Remark 3 Condition GE is rather difficult to check. However, some nice
characterizations of this property can be given by so-called drift inequal-
ity [31], [32] with a bounded solution. A much weaker form of GE called
V–geometric ergodicity (allowing for unbounded solutions to the drift in-
equality) was applied in [37], [41] for studying zero-sum stochastic games
and some approximation problems. For a further discussion of generalized
versions of the GE assumption with applications to decision processes see
[19], [24]. In [39], one can find a version of Theorem 2 given for some class
of semi-Markov games where the time between successive jumps from one
state to another is random.

Remark 4 Nonzero-sum discounted stochastic games with countable state
spaces (and bounded payoff functions) are known to possess a stationary
equilibrium [15], [43]. Federgruen [15] extended this result to average payoff
non-zero-sum stochastic games with countably many states, satisfying con-
dition GE. His result [15] was considerably generalized by Altman, Hordijk
and Spieksma [3] who assumed a µ-recurrence condition implying a weaker
version of the geometric ergodicity property of Markov chains induced by
stationary strategies of players. Other extensions of Federgruen’s result
to a variety of games satisfying different stochastic stability or recurrence
assumptions are contained in [8], [36], [45], [47]. The daily payoff func-
tions (often called cost functions) are assumed in these papers to be un-
bounded, which is motivated by interesting applications of countable state
space stochastic games to queueing theory; see also [1], [2], [3], [45], [49].

Remark 5 The problem of approximating a stochastic game with a mea-
surable state space by countable state space games is natural and was
first studied by Whitt [50]. He considered separable state space discounted
game models with uniformly continuous payoff and transition probability
functions. By a suitable approximation he established the existence of ε-
equilibria in the class of stationary strategies. Extensions of Whitt’s result
to some classes of uniformly continuous and ergodic undiscounted stochas-
tic games are given in [6], [38]. The existence of stationary ε-equilibrium
strategies in discounted stochastic games satisfying assumptions accepted
in this chapter (where no continuity properties of the payoff and transition
functions with respect to the state variable are imposed) was proved in
[33]. The approximation technique used in [33] is completely different from
Whitt’s approach [50]. Extensions of Nowak’s result [33] to some classes
of non-zero-sum stochastic games with unbounded cost functions were re-
cently given by Altman and Nowak [41]. The expected average cost criterion
is also considered in [41] but under certain stochastic stability conditions
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widely discussed in the theory of Markov control processes and queueing
networks [31], [32], [19].

Acknowledgements. The author thanks A. Neyman and S. Sorin for
their help in the preparation of this chapter.
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25. Küenle, H.-U. (1999) Stochastic games with complete information and average
cost criterion, Annals of the International Society of Dynamic Games 5, 325–338.
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