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CORE, Université Catholique de Louvain
Louvain-la-Neuve, Belgium

Abstract. We prove the existence of subgame-perfect equilibria for dis-
counted stochastic games with general state and action sets, using minimal
assumptions (measurability as a function of states, and for each fixed state,
compactness of action sets and continuity on those)—except for the rather
strong assumption that the transition probabilities are norm-continuous
functions of the actions.

1. Introduction

Equilibria for discounted stochastic games were not known to exist in the
presence of uncountable state spaces. We prove this result, and get as an
additional bonus that arbitrary compact action sets can also be allowed,
and that one can furthermore get the equilibria to be subgame perfect.

Such a result should be an “archetype” result for a satisfactory exis-
tence theorem for rational expectations equilibria, either by borrowing and
adapting the techniques of the proof, and/or in the same way as Nash’s
[6] existence proof led to the existence of economic equilibria (e.g., [1]), by
reinterpreting the economic equilibrium problem as a game, and/or by in-
terpreting discounted stochastic games “à la Shapley–Shubik” as a general
formulation of any strategic version of the rational expectations equilib-
rium problem, whose equilibria should converge [4] to the true rational
expectations equilibria. Indeed, a central difficulty in establishing rational
expectations equilibria—just like here—is to obtain that agents really use
strategies, i.e., act only on the basis of their past physical observations,
and not based on some mythical common expectation for the future that
would suddenly become publicly available at that stage. (This would rather
lead to “extensive form correlated equilibria” [3].) The existence of such a
common expectation for the future will clearly be a consequence (by equi-
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librium, symmetric information is the basic assumption), but it should not
be a primitive datum.

It is this strategic type of interpretation we have chiefly in mind, both in
the effort to obtain a reasonable set of assumptions and in the interpretation
of the results.

It is true we only obtain subgame-perfect equilibria—there is no indi-
cation that it might be possible to have them in addition stationary. But
the equilibria we obtain are stationary in the traditional sense of the ra-
tional expectations literature, in that they are stationary functions of the
current state and the current common expectation about the future (the
expected vector payoff from now on); cf the proof of Section 6, Lemma 11:
τ(h, ω) = σ(p, ω), where p = p(h, ω) is the expected payoff vector for the
future, ω is the current state, h the past history, and σ a fixed measurable
function.

Before presenting the assumptions and the proof in more detail, we want
to point out here that we use one strong assumption: that the distribution of
tomorrow’s state depends norm-continuously on today’s actions. This will
typically not be satisfied in the type of economic models just mentioned,
if the future state is just some deterministic function of today’s state and
actions: some stochastic element has to be present, as it indeed usually is,
e.g., in the form of a normal disturbance. The assumption is clearly vacuous
for finite action sets.

The simplest model where, because of the failure of this assumption,
we don’t know whether equilibria exist—and which in all other respects is
as well behaved as one can desire—is the following: the state space is the
Cantor set C = FZ (where F is any finite set—or group, or field if more
structure than the shift operation is desired for specifying a counterexam-
ple); each player n’s strategy set Sn is the one-point compactification Z of
the integers; each player’s payoff function today and the probability that
tomorrow’s state belongs to some Borel subset of C are continuous func-
tions of today’s state and actions, i.e., on C × ΠnSn. All players discount
future payoffs with the same positive discount factor. Note in particular
that it follows in this model that all transitions are absolutely continuous
with respect to a single measure µ (in such cases, important simplifications
become possible in our proof)—and are even uniformly integrable in L1(µ).
Also, one has the best possible topological assumptions; and finally, if the
expected payoff from tomorrow on is a given measurable function, its ex-
pectation today will be jointly continuous in the actions (and the state), so
that today’s game will satisfy all usual conditions for the existence of Nash
equilibria.

This is at first sight all we need for our type of proof to work: indeed,
the basic idea of the proof is to work by backward induction. Assume a
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measurable, compact-valued correspondence N0 from state space to payoff
space—e.g., N0(ω) is the set of all payoff vectors between −A and +A,
if A is the maximum in absolute value of all single-stage payoffs. Define
then Nk+1(ω) inductively as the set of all Nash equilibrium payoffs at ω
when the payoffs at tomorrow’s state ω̃ are some measurable selection from
Nk(ω̃). The inclusion of Nk+1 in Nk follows by induction. This suggests
defining the “candidate set” of equilibrium payoffs N∞ as ∩kNk, at least
with finite action sets. But with infinite action sets a closure operation is
typically required here. Indeed, since the set of Nash payoffs of a game is
not convex, Nk(ω̃) has no reason to be convex-valued, so its set of selec-
tions is typically noncompact, for no relevant topology. Yet compactness of
the Nk(ω) cannot be dispensed with, to insure N∞(ω) 6= ∅. Thus strong
(relative) compactness of the set of “today’s games” is required. This in
turn requires our continuity assumption on the transition probability. In
terms of this strong topology, the Nash correspondence is still uppersemi-
continuous (u.s.c.), hence the compactness of Nk+1(ω), after allowing for
the limiting games. Adding those limiting games is harmless (they corre-
spond to measurable selections from the convex hull of Nk), because for
any given actions today, only one distribution of tomorrow’s state is in-
volved, so that Lyapunov’s theorem can be used to find, as a function of
today’s actions, another measurable selection from the set of future payoffs
Nk(ω̃), with the correct expectation for those given actions today (and this
is basically what causes the nonstationarity of the strategies).

The fact that today one can get any payoff in Nk+1 in equilibrium pro-
vided that tomorrow one can do so for Nk goes to the limit and yields that
today one can get any payoff in N∞ as an equilibrium provided one can do
so tomorrow. Any strategy that implements this idea forever is then finally
shown to yield indeed the payoff expected (because of the discounting),
and hence to be indeed an equilibrium. Clearly, one still has to show that
the Nk’s will be measurable, and mainly that it is possible to reconstruct
measurable strategies that will yield any point in the candidate set as an
equilibrium. (In particular, one has to show that one can do the above appli-
cation of Lyapunov in a measurable way as a function of today’s state and
action and of the payoff expected from the future.) But the above is indeed
the basic idea of this paper, and the solution to those measure-theoretic
problems is taken from [5].

The construction of the candidate set can be found in Section 5, while
the construction of the corresponding strategies is done in Section 6. The
basic “strong compactness” property is established in Section 3, Proposition
4.

The above “simplest” model would imply weak relative compactness (in
the space of continuous functions on ΠnSn) of the set of “today’s games”
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obtained in the above way. But this is of no help in obtaining compactness
for the set of Nash equilibria, nor even for their set of payoffs Nk+1(ω)—
indeed, not even in the one-person case. For example, consider fm(0) = 1

2 ,
fm(i) = m

i for i > m, fm(i) = 0 otherwise. The sequence of continuous
functions fm converges pointwise (“weakly”) to the continuous function f∞,
yet the optimal strategy (m + 1) for fm does not converge to the optimal
strategy (0) for f∞, and max fm = m

m+1 does not converge to max f∞ = 1
2

(and the limit, 1, of those maxima is not even achievable as the supremum
of some function in the closed convex hull of our sequence).

It follows from the approach just sketched that, when for each state
the corresponding action sets are finite, there are no continuity or other
restrictions as a function of the actions, so the problem can be reformulated
taking as larger state space the space of all finite histories. On this larger
state space, all our assumptions are still satisfied, and the theorem then
provides a full characterization of the set of all subgame-perfect equilibria.

In Section 2, we present the basic data of the model: state space, action
sets, transition probabilities and single-stage payoff function. In a stochastic
game, there is another game matrix for each state—in particular different
action sets. With a continuum of states, however, one has to express that
those depend in a measurable way on the state. Hence we need a common
embedding space, and to express the action sets as a measurable, compact-
valued correspondence from the state space to this embedding space. Mea-
surability of the graph is the most standard and the weakest assumption
in such a setting. The theorem becomes both more precise and simpler,
however, under a slightly stronger assumption that this correspondence is
measurable as a map to the space of compact subsets of this embedding
space. Section 2 elucidates the relationships between those two assumptions
(with the related measurability assumptions on payoff functions and tran-
sition probabilities), shows how the result for the weaker assumptions will
follow from that for the stronger assumptions, and goes a long way towards
proving that it is sufficient to consider state spaces which are separable
measurable spaces. This last point is finished in Section 4.

Finally, Section 3 deals with the assumptions on utilities. While we
remain basically in a framework of (timewise) additively separable utilities,
assumptions that further guarantee that each stage’s utility remain the
same (uniformly bounded) function of current state and actions, and that
all players at all times use the same discount factor, would be extremely
restrictive and unpalatable. As soon as one wants to accommodate discount
factors that vary, e.g., from agent to agent (or from date to date), it is
more convenient to reformulate the problem over space-time as new state
space, and to incorporate the effect of all discount factors into the single-
stage payoff function itself. Such an operation always preserves all other
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assumptions of the model, and a similar trick could be used to allow for
state-dependent discount factors, or even single-stage payoff functions that
depend also on the past history of states (not actions, however, if action
sets are infinite).

We are thus led to consider, for each player, one single payoff function,
depending only on current state and actions, and where his payoff for the
whole game is thought of as the sum of the payoffs he receives each day. Un-
der standard assumptions (uniformly bounded utilities each day, and con-
stant positive discount factors), those sums will converge for any possible
history, and the expectation of the sum will, for any probability distribu-
tion, be the sum of the expectations. But such assumptions are extremely
hard to justify. For example, if one has indeed replaced the state space by
the space of all finite state histories, a uniform boundedness assumption
on utilities is completely meaningless, since it is destroyed when multiply-
ing utilities by a positive function of the initial state, and this leaves all
relevant decision problems unchanged. Also, an assumption that the sum
of the payoffs converges for any possible history will be very restrictive for
actual economic models: even if an agent has each day the same logarithmic
utility function for current consumption, and a constant positive discount
rate is used, there will always be some histories, however unlikely, where,
due to extremely favorable outcomes of the previously mentioned normal
disturbances, consumption will grow so fast that the sum of utilities will
not converge.

We are thus led to define as payoff function for the stochastic game
the sum of the expected payoffs corresponding to each stage. We assume
those expectations to exist and those sums to converge for any strategy
choices, and we even slightly strengthen those assumptions, so as to make
sure that in addition the payoff to any mixed strategy is the corresponding
expectation of payoffs to pure strategies. Such assumptions guarantee that
all payoffs we consider will have the intended meaning, and be free from
the above-mentioned drawbacks—both conceptual and in practical applica-
tions. A further assumption expresses that the payoff depends only a little
on the far tail of the strategies, thus expressing an obvious implication of
any discounting setup.

Finally, an effort is made to express the assumptions as much as possible
in terms of pure strategies—and to deduce corresponding properties over
mixed strategies; this is a general endeavor in game theory, since pure
strategies are viewed as basic in the model, while mixed strategies are in
some sense a fiction of the mind for obtaining a solution.

A first part of Section 3 is devoted to obtaining the basic consequences
of those assumptions: that payoffs are well defined, for any strategy vector
of whatever form; that it is sufficient to consider behavioral strategies, and
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that the payoffs then satisfy a recursive relation; and finally, that even if one
restricts oneself, as we do, to behavioral strategies satisfying the strictest
measurability requirements, for the sake of the strength of the theorem,
Nash equilibria in this restricted class of strategies would remain such if
the class of strategies were relaxed in any meaningful sense. Thus both
payoffs and Nash equilibria are completely unambiguous, and the recursive
relation is established.

Several of the assumptions were needed only for the above purpose; for
the rest of the proof only the recursive equation will be needed. So at this
stage a new set of assumptions is introduced, much less restrictive than the
previous set, but also less primitive in some sense, bearing directly on this
recursive equation (Section 3, Proposition 3). Those are the only assump-
tions necessary for the sequel. They allow in particular some asymptotic
part in the payoff, and are such that, in the new formulation, an extension
to general payoff functions, not additively separable, becomes a matter of
immediate generalization (just reformulate the recursion formulas so as to
include, in the expected payoff after every finite history, not only the future
expected payoff, but also the payoff accumulated in the past).

The last part of Section 3 is then devoted to establishing, under those
new assumptions, the basic properties—strong compactness in Proposition
4, recursive equation and continuity at ∞ in Proposition 5; then to showing
that the concept of subgame-perfect equilibrium is also completely unam-
biguous, and that it coincides with the backward induction equilibria.

At this stage one is ready to finish the separability issue in Section 4,
and then to move to the previously sketched core of the proof in Sections
5 and 6.

However, because of our very general assumptions on the payoff func-
tion (even without the reformulation), the above-sketched construction of
N0(∞) is no longer adequate. To take a trivial example, an expected payoff
identically equal to 1 (which is paid at “the end of the game”), together with
a payoff for each stage identically zero, satisfies all assumptions of Proposi-
tion 3 in Section 3. Yet if N∞ is going to be the right thing, one needs N0(ω)
to be just the payoff vector 1, with nothing else. Thus in Section 5 we first
have to construct explicitly a measurable compact-valued correspondence
N0(ω), such that any payoff in N0(ω) is feasible starting from ω, and which
is sufficiently large to ensure that one will indeed have N1(ω) ⊆ N0(ω). This
N0(ω) is constructed by a similar induction to the one previously sketched
for N∞(ω), only this time because it is an increasing sequence, one looks at
all feasible payoffs and not only at the equilibrium payoffs, and one starts
the induction with the actual payoff to some stationary strategy.

Those are the basic ideas in the paper. The real thing follows.
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2. The Model

2.1. THE DATA

(a) The state space is a measurable space (Ω,A).
(b) For each player n, his strategy space is a measurable map Sn from

(Ω,A) to K∗
Sn

, i.e., the space of nonempty compact subsets of Sn en-
dowed with the Hausdorff topology (and the corresponding Borel σ-
field), where Sn is a separable metric space (or any Souslin space—a
regular Hausdorff space which is the continuous image of a Borel sub-
space of a compact metric space) or at least:

(b’) Sn(ω) ∈ K∗
Sn

, Sn is a Lusin space (like a Souslin space, but the
continuous mapping is required to be one to one) with Borel σ-field
Sn, and the graph of Sn is A⊗ Sn-bianalytic ([5], Appendix, §1).

(c) Define (S,S) =
⊗

n(Sn,Sn), and S(ω) = ΠnSn(ω) and let (G,G) ⊆
(⊗× S,A⊗ S) denote the graph of S: G = {(ω, s) | s ∈ S(ω}.

(d) A transition probability from (G,G) to (Ω,A), p(A | g) is given; i.e.,
∀g ∈ G, p(· | g) is a probability distribution on (Ω,A) and ∀A ∈ A,
p(A | g) is G-measurable.

(e) For each player n, a measurable payoff function un on (G,G) is given
or at least:

(d’), (e’) The measurability requirements on p(A | g) and on un(g) can
be weakened to having an analytic graph in (G,G)× (R, Borel sets).

(f) For each ω, the functions un(ω, s) and p(· | ω, s) are continuous on
S(ω), using the norm topology for measures on the state space.

2.2. THE GAME

An initial state is chosen according to some given probability distribution
µ on (Ω,A).

At each stage, each of the players is first informed of the current state
ω ∈ Ω; next they all simultaneously choose an action—sn ∈ Sn(ω) for
player n; given the point g ∈ G thus obtained, each player n receives his
payoff un(g), and is informed of s = (s1, s2, s3, . . .); next a new state is
selected according to p(· | g), and the game moves to the next state.

The players use behavioral strategies; cf Section 3 for more details.

For any strategy vector, each player n can compute his expected payoff
ut

n relative to each stage t. His overall payoff is Σtu
t
n, which we will assume

to be well defined.
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2.3. THE RELATION BETWEEN ASSUMPTIONS (A) AND (A′)

The main reason for mentioning the possibility of the weaker requirements
(A′) (i.e., (a), (b’), (c), (d’), (e’) and (f)) instead of the stronger require-
ments (A) (i.e., (a), (b), (c), (d), (e) and (f)) is that in particular (b) is
unnaturally strong, in that it depends on the topology of the embedding
space Sn, instead of just its Borel structure and the topology of the sets
Sn(ω), and that an assumption of measurability of the graph is more clas-
sical. Typical examples of nonmetrizable Lusin spaces that could plausibly
occur as embedding spaces are separable Banach spaces or their duals in
their weak (resp. weak∗) topology.

The next proposition relates the two sets of requirements. We will not
distinguish between two models that are identical except for the embedding
spaces Sn, as long as the topology of the sets Sn(ω) and the Borel structure
on ∪ωSn(ω) remain the same, since the sets of strategies, and hence the
payoff functions, will depend only on this Borel structure.

Proposition 1 a) There is no loss of generality in assuming Sn = [0, 1]∞
— hence compact metric.

b) (A) implies (A’).
c) Under (A’), there exists a minimal σ-field F on Ω such that the As-

sumptions (A) are satisfied when F replaces A. Furthermore, F is
separable.

d) Under (A’), (A) is satisfied when the bianalytic σ-field B = B(A) ([5],
Appendix, §1) replaces A.

e) In particular, the separable σ-field F satisfies F ⊆ A under (A), and
F ⊆ B under (A’).

f) B = A when (Ω,A) is a Blackwell space—and (Ω,F) is then a Blackwell
space too.

((Ω,A) is a Blackwell space if it is (measure-theoretically) isomorphic—
after identification of A-equivalent points of Ω—to an analytic subset ([5],
Appendix, §1) of a Lusin space, with the Borel σ-field. Or equivalently, if
A is separable, and any real-valued measurable function has an analytic
range.)

Proof. (a) If Sn is separable metric, it can be embedded as a subspace
of [0, 1]∞; use [5], Proposition 6.g to conclude in the case of requirement
(b). Assume thus Sn Souslin or Lusin. By [5], Proposition 4 there exists a
weaker, separable metric topology on Sn. Compact subsets of Sn are still
compact in the new topology, and the two topologies have the same Borel
sets (by the first separation theorem for analytic sets). Thus all require-
ments that were valid are still valid under the new topology; for requirement
(b) use, e.g., [5], Proposition 9.a. Thus we can assume Sn in addition sepa-
rable and metric. In the case of requirement (b), this finishes the proof. For
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(b’), note that it is then a subspace of [0, 1]∞, and, being Lusin, a Borel sub-
set, so that requirement (b’)—and clearly the other requirements—remains
valid if we think of Sn as [0, 1]∞. This proves (a).

(b) Fix for each k a finite open covering of Sn = [0, 1]∞ by balls of
radius k−1, and ∀K ∈ K∗

Sn
; let ϕk(K) denote the union of the closures of

those balls that intersect K. Since the set of K’s that intersect a fixed ball
is open, ϕk is a Borel map from K∗

Sn
to itself, and ϕk converges to the

identity. If Sn(ω) is a measurable map, so is (ϕk ◦ Sn), and being a step
function, the latter clearly has a measurable graph. Thus the graph of Sn,
being the intersection of those graphs, is also measurable, and a fortiori
bianalytic: (b) ⇒ (b’). By the same argument, (d) ⇒ (d’) and (e) ⇒ (e’).

(c) K∗[0,1]∞ is compact metric, so the σ-field A0 that makes all maps Sn

measurable is separable. A0 depends only on the topology of the sets Sn(ω)
and on the Borel structure on ∪ωSn(ω). Indeed, by [5], Proposition 7.b,
there exists a sequence of A0-measurable selections from Sn(ω), which are
for each ω dense in Sn(ω). (If Sn is a nonmetrizable Souslin space, go to
a weaker metrizable topology ([5], Proposition 4) before using Proposition
3.b; this preserves the topology of the Sn(ω) and the Borel structure on
∪ωSn(ω).) The properties that we mentioned of the sequence depend only
on the topology of the sets Sn(ω) and on the Borel structure on ∪ωSn(ω).
Conversely, as soon as there is such a sequence, [5], Corollary 8bis, (a) im-
plies that the map Sn is measurable. (If Sn were a nonmetrizable Souslin
space, we would conclude that Sn is Borel measurable when Sn is endowed
with any weaker metrizable topology; since ([5], Proposition 4) any open
set in Sn is open in some such topology, we would still conclude that Sn is
measurable when KSn

is endowed with the Effrös σ-field (using [5], Proposi-
tion 4, this σ-field can be equivalently described as the σ-field generated by
the sets {K | K ⊆ O} or by the sets {K | K∩O 6= ∅}, O being an open set,
or still equivalently, a closed set). Apparently, in that case our assumption
may still be somewhat stronger than needed, but no matter—it is obvious
at this stage anyway that in fact we only used the Effrös-measurability of
the maps Sn(ω); hence requirement (b) could be weakened accordingly.) In
particular, G is A0 × S-measurable in Ω× S ([5], Proposition 9.b).

Note that A0 ⊆ A under Assumptions (A), and A0 ⊆ B(A) (by [5],
Proposition 1) under Assumptions (A′).

Now consider a real-valued function f(ω, s) on G, which is continuous in
s ∈ S(ω) for each ω, and has an analytic graph. Let si(ω) denote the above-
mentioned sequence of A0-measurable pure strategy vectors which is, for
each ω, dense in S(ω). Then the graph {(x, ω, s) | s = si(ω), x = f(ω, s)} is
analytic, as an intersection of two such sets. Being the graph of a function,
this function is bianalytic—i.e., B(A)-measurable—since the inverse image
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of each Borel set is analytic, by projection. Note that, if f is G-measurable
and A0 ⊆ A, this function will be A-measurable, by composition. The
continuity of f in s implies, as before, by [5], Corollary 8bis,a, that the
map ω → γf (ω) = {(x, s) | s ∈ S(ω), x = f(ω, s)} is a B(A)-measurable
(A-measurable if f is G-measurable and A0 ⊂ A) map from Ω to K∗

S×R.
Denote by Af the minimal σ-field for which this measurability is true.
Since K∗

S×R is locally compact with a countable basis, Af is separable. Our
proof also shows that Af ⊆ B(A), and Af ⊆ A under Assumptions (A)
when f is G-measurable; and that Af is included in the σ-field generated
by the maps (si(ω), f(ω, si(ω))). Further, since S(ω) is the projection of
γf (ω), S(ω) is Af -measurable ([5], Proposition 6.5), hence A0 ⊆ Af . Thus
si(ω) is Af -measurable, and similarly f(ω, si(ω)) is Af -measurable, as the
composition of ω → γf (ω) ∩ (R× {si(ω)}), which is Af -measurable by [5],
Proposition 6.e since both γf (ω) and si(ω) are so, with the projection to the
first factor space R. Thus Af is exactly the σ-field generated by the maps
(si(ω), f(ω, si(ω)), whatever may be the sequence of A0-measurable pure
strategy vectors si(ω) such that, for each ω, the sequence si(ω) is dense
in S(ω). As before in the definition of A0, this characterizes Af in a way
that depends only on the topology of the sets S(ω) and on the measurable
structure on ∪ωS(ω).

Now let An
0 = ∅, and for 1 ≤ i ≤ n, An

i = {(ω, s) | (ω, s) /∈ ∪j<iA
n
j

and d(s, si(ω)) ≤ d(s, sj(ω)) ∀j > i, j ≤ n}. The An
i (i = 1, . . . , n) clearly

form an A0 ⊗ S-measurable partition of Ω× S. Let fn(ω, s) = fn(ω, si(ω))
for (ω, s) ∈ An

i : fn(ω, s) is then clearly an Af ⊗ S-measurable function on
Ω×S. Let ϕ(ω, s) = lim infn→∞ fn(ω, s): ϕ is also Af ⊗S-measurable, and
the continuity of f in s implies that, for s ∈ S(ω), ϕ(ω, s) = f(ω, s). Since
G itself is Af⊗S-measurable, it indeed follows that f is Af⊗S-measurable
on G. Finally, since we have seen above that Af ⊆ A as soon as f is A⊗S-
measurable on G and G itself is A ⊗ S-measurable, it follows that Af is
also the minimal σ-field containing A0 such that f is Af ⊗ S-measurable
on G.

Now letA1 denote the separable σ-field generated by the σ-fieldsAun for
all players n. Note now that, for B ∈ A, p(B | g) satisfies our assumptions
on the function f ; it is therefore in particular B(G)-measurable. Thus p is
a transition probability from (G,B(G)) to (Ω,A). By [5], Proposition 3.a.1
it is a transition probability from (G,B(G)) to (Ω,B). Thus, for B ∈ B,
p(B | g) is B(G)-measurable—in particular, has an analytic graph—and is
continuous in s for fixed ω (because only countably many values of s are
involved in the proof, and bianalytic sets are universally measurable). Thus
p(B | g) satisfies our assumptions for all B ∈ B. If H denotes a separable
sub-σ-field of B, denote byH0 a countable algebra that generatesH. Denote
by AH0 the separable σ-field generated by all the Af for f(g) = p(B | g)
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when B varies through H0. A monotone class argument shows immediately
that p(B | g) is AH0 × S-measurable for all B ∈ H; hence the separable
σ-field AH0 depends only on H: the minimal σ-field AH such that p(B | g)
is AH⊗S-measurable for all B ∈ H exists and is a separable sub-σ-field of
B.

Define thus An+1 inductively as the σ-field spanned by A1 and AAn : the
σ-field F spanned by the union of this increasing sequence of σ-fields is a
separable σ-field containing A1, and such that p(B | g) is F⊗S-measurable
for any B in the algebra ∪nAn, hence, by a monotone class argument, for
any B ∈ F .

This proves (c), and at the same time (d) (and hence (e)). As for (f),
its first part follows from the first separation theorem for analytic sets, and
the second part then follows from the separability of F (preferably using
the second of the two equivalent definitions).

Remark 1. The definitions of strategies will be such that each player’s
strategy set varies monotonically with the σ-field A on Ω. We want to
show the existence of subgame-perfect equilibria—where the measurability
assumptions are w.r.t. A under requirements (A), w.r.t. B under (A′). It
will therefore be sufficient to show existence of a vector of strategies for
F , which are still a subgame-perfect equilibrium for B (because the set of
subgames too will vary—if at all—monotonically with the σ-field A). Since
the definition of F itself is not affected either when A is replaced by B, and
since the requirements (A) are satisfied whenA is replaced by either F or B,
it follows that henceforth we can—and will—assume that the requirements
(A) are satisfied. One will only have to remember that, in the case of (A′),
A in fact stands for the original B(A).

Remark 2. Thus, even for completely pathological state spaces (Ω,A),
and just under the Assumptions (A′), we obtain subgame-perfect equilibria
satisfying very stringent measurability requirements: it is just the σ-field
A that has to be extended—and not, e.g., the product σ-fields on finite
histories—and it has to be extended only by bianalytic sets: this is the
most conservative extension of a σ-field; it coincides in all classical cases
with the original σ-field, and even in the very pathological cases it is just
the right measure-theoretic analog of the effectively computable sets.

Remark 3. In the course of the above proof, we have also shown the
following.

Corollary 1 If f is a measurable function from (G,G) to a separable metric
space X, which is continuous in s ∈ S(ω) for each ω, then the map γf :
ω → {(x, s) | s ∈ S(ω), x = f(ω, s)} is measurable from (Ω,A) to K∗

X×S
.
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Corollary 2 There exists a sequence of pure strategy vectors si (measurable
selections from S(ω)) such that, for each ω, the sequence si(ω) is dense in
S(ω).

Remark 4. Observe that the proof in fact exhibited a countable algebra F0,
which generates F , and which could be thought of as the basis of clopen
sets for some separable, pseudo-metrizable topology on Ω (i.e., it is an
embedding into the Cantor set), for which the map ω → S(ω) is continuous,
as are the functions u(g) and p(f | g) (using the product topology on
G) for all (F0)-continuous bounded functions f . Many variants of such a
topological construction are possible; they could even be used to embed
(Ω,F) into a Polish space Ω̃, and extend payoff function and transition
probabilities to Ω̃, such that ũ(·) and p̃(f | ·) become continuous on G̃,
for any bounded continuous f on Ω̃ (and S(·) is continuous on Ω̃). But,
except in the case where the measures p(· | g) are dominated, we cannot
guarantee that p̃(· | ω̃, s) is still norm-continuous. This is apparently why,
in the undominated case, allowing for general measurable spaces (Ω,A)
is really more general than just allowing for Blackwell spaces or standard
Borel spaces. It is also why in the sequel we will have no use for such
topological constructs.

2.4. A MORE INTRINSIC REFORMULATION: ASSUMPTIONS (Ã) AND
(Ã′)

The formulation of requirements (b) and (b′) in the data of the model is
not optimal. The following is at the same time easier, more general, and
more intrinsic (in that it needs only the Borel structure on the embedding
space of the action sets, and not its topology).

We need for each player n a measurable embedding space (S̄n,Sn), where
the σ-field Sn is both separable (countably generated) and separating (for
each pair of distinct points there exists a measurable set containing one
and not the other).

We also need a map Sn(ω) which assigns to each state ω a pair formed
of a nonempty subset of S̄n, together with some compact topology on this
subset.

As a link between the topologies and the measurable structures we re-
quire that the σ-field Sn be generated by the measurable real-valued func-
tions on (S̄n,Sn) with a continuous restriction to each compact set Sn(ω).

Lemma 1 a) The above conditions are necessary and sufficient for the ex-
istence of a one-to-one map ϕn from S̄n into the unit cube [0, 1]N (endowed
with the usual topology and the Borel sets), which is an isomorphism of
measurable structures and whose restriction to each compact set Sn(ω) is a
homeomorphism.
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b) ϕn(S̄n) is a Borel set if and only if (S̄n,Sn) is a standard Borel space
(or finite, or countable).

Proof. Part a) is clear, if (S̄n,Sn) is a subset of the unit cube with
the Borel sets, and if the sets Sn(ω) are compact for the subspace topology.
Indeed, then Sn is both separable and separating, and—since the continuous
functions on the cube already generated the Borel σ-field—generated by
the measurable functions with a continuous restriction to each set Sn(ω).
Conversely, let Ak be a sequence of measurable sets that generate Sn. Let
F denote the set of bounded real-valued measurable functions on (S̄n,Sn)
with a continuous restriction to each Sn(ω)—Sn is already generated by
those. Thus, for each k, there exists a countable subset Fk of F such that
Ak already belongs to the σ-field σ(Fk) generated by Fk (because Sn =
σ(F) = ∪{σ(D) | D ⊆ F ,D countable }—the last equality because any
countable union of countable sets is countable). Let fi be an enumeration
of ∪kFk; we have Sn = σ({fi | i ∈ N}). There is no loss in scaling the fi’s
such that 0 ≤ fi(s) ≤ 1 for all s. Then let ϕn(s) = (fi(s))i∈N : ϕn maps S̄n

into the unit cube. ϕn is measurable and its restriction to each set Sn(ω)
is continuous because their composition with each coordinate projection
is so. Consider thus the sub σ-field ϕ−1

n (B) of Sn—where B denotes the
Borel σ-field on the cube. All functions fi are measurable for this sub σ-
field, hence Sn = σ({fi | i ∈ N}) ⊂ ϕ−1

n (B), thus Sn = ϕ−1
n (B) : ϕn

is an isomorphism of measurable structures. Since Sn separates points, it
follows that ϕn is one to one. Thus the restriction of ϕn to each compact
set Sn(ω) is a continuous one-to-one map to a Hausdorff topological space,
hence is a homeomorphism with its image. This proves (a). Since ϕn is an
isomorphism of measurable structures, (b) therefore amounts to showing
that a subset of the unit cube is a Borel set if and only if it is either finite
or countable or a standard Borel space. This is well known.

Up to now, the states ω serve just as a convenient way to index a family
of subsets of S̄n, each endowed with some compact topology. The role of
Assumptions (b) or (b′) is to express the measurability of this. They become

(b̃) {ω | Sn(ω) ∩ U 6= ∅} is measurable for each U ∈ Sn whose trace
on each set Sn(ω) is open; and

(b̃′) (S̄n,Sn) is standard Borel (or finite, or countable), and the graph
Gn = {(ω, s) | s ∈ Sn(ω)} of Sn is bianalytic in (Ω× S̄n,A⊗ Sn).

We finally relate those assumptions to the previous ones.

Proposition 2 a) Assumptions (b̃) and (b̃′) are satisfied whenever (some
version of) the corresponding Assumptions (b) and (b′) are satisfied.

b) Under any identification ϕn as in Lemma 1 between S̄n and a subset
of the unit cube, (b̃) is equivalent to (b), i.e., to the requirement that Sn

be a measurable map to K∗̄
Sn

(endowed with the Hausdorff topology and
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the corresponding Borel sets); and (b̃′) is equivalent to (b′), i.e., to the
requirement that Gn is bianalytic in the product of Ω with the unit cube (or
with some Lusin subspace of it like S̄n).

Proof. a) Under any set of assumptions, we ended up (Proposition
1.a) with a Borel isomorphism of S̄n with a subset of the cube, which was
a homeomorphism on each set Sn(ω). Thus the conditions of the present
framework are satisfied.

Whenever some version of (b) was satisfied, we had the property that
there exists a sequence of measurable selections si(ω) from Sn(ω), such
that for each ω the sequence of values si(ω) is dense in Sn(ω) (cf proof of
Proposition 1.c). But then {ω | Sn(ω) ∩ U 6= ∅} = ∪i{ω | si(ω) ∈ U} for
each set U which has an open trace on every set Sn(ω); hence this set is
measurable as soon as U is.

Under (b′), we required S̄n to be a Lusin space: this implies that it is a
standard Borel space (or finite, or countable). The bianalyticity requirement
is unchanged.

b) It remains thus to show that b̃ ⇒ b, b̃′ ⇒ b′. By Lemma 1.a, such
identifications ϕn always exist. Condition (b̃) remains unchanged when the
set S̄n is increased or decreased, as it depends only on the trace of the σ-field
on ∪ωSn(ω). Hence, for (b̃), we can assume S̄n is the cube. Now consider a
closed set C, and let Ui = {s | d(s, C) < 1/i}: we have {ω | Sn(ω) ∩ C =
∅} = ∪i{ω | Sn(ω) ∩ Ui = ∅}, because Sn(ω) ∩ C = ∅ ⇒ d(Sn(ω), C) > 0.
Thus {ω | Sn(ω)∩C = ∅} is measurable, i.e., writing U for the complement
of C, we also get that, for any open set U , {ω | Sn(ω) ⊆ U} is measurable.
Now the Hausdorff topology on compact subsets of the cube is metrizable
and separable; hence, to prove Borel measurability of a map to this space,
it is sufficient to prove that the inverse images of some collection of basic
open sets are measurable. Take those basic open sets of the form {S | S ⊆
U, S ∩ Ui 6= ∅ ∀ i = 1, . . . , n}, where U and the Ui are open. Their inverse
images are then {ω | Sn(ω) ⊆ U} ∩ [∩n

i=1{ω | Sn(ω) ∩ Ui 6= ∅}], which is a
finite intersection of sets of which we have proved the measurability. Hence
(b̃) indeed implies (b). That (b̃′) implies (b′) stems from part (b) of Lemma
1, since a Borel subset of the cube is a Lusin space, and from the fact that,
if (B,B) is a measurable space, with two subsets B1 ⊆ B2 ∈ B, then B1 is
bianalytic in B if and only if it is so in B2—which stems in turn from the
obvious analogous property for analytic sets, and from the inclusion of B
in the analytic sets.

It follows that we can use Assumptions (b̃) and (b̃′) instead of (b) and
(b′): the resulting set of assumptions requires no topology on the embedding
spaces S̄n, just their measurable structure—and the topology of the sets
Sn(ω).
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Note that the measurability requirement (b̃) has an unusual form: given
a set S with a separable and separating σ-field S, define a compatible fam-
ily of compact subsets as a collection of pairs formed by a subset of S and
a compact topology on this subset, such that the real-valued measurable
functions on S with a continuous restriction to each of those compact sub-
sets generate S. Define the space K of compact subsets as the set of all
compatible families consisting of a singleton (i.e., they are the pairs formed
by an element of S and a compact metric topology on it whose Borel σ-
field is the trace of S). Compatible families are subsets F of K, and have a
corresponding σ-field TF generated by {X ∈ F | X ∩U 6= ∅}, where U ∈ S
is such that X ∩ U is open in X for all X ∈ F .

Assumption (b̃) is that the map Sn be TF -measurable, where F =
{Sn(ω) | ω ∈ Ω}: the σ-field depends on the range of the map itself.
However, it is clear that if F is a compatible family, and G ⊂ F , then
G is also a compatible family; and the above proposition—or at least its
proof—shows that TG is the trace of TF on G. This suggests that there may
be a single σ-field T on K, such that TF is, for each F , the restriction of
T to F . (b̃) would then become a straight measurability assumption with
respect to such a T . A description of such a T by generators would be most
helpful. This needs further investigation, to fully clarify the meaning of the
measurability requirement on the action sets.

3. Strategies, Payoffs and Equilibria

3.1. HISTORIES AND STRATEGIES

By a t-stage history, we mean a sequence ht = (g0, g1, . . . , gt−1) ∈ Ht;
h̃t ∈ H̃t will denote a sequence (ht, ωt) (with ht ∈ Ht,H0 = {∅}).

(Ht,Ht) =

(
t−1∏

i=0

G,
t−1⊗

i=0

G
)

, and (H̃t, H̃t) = (Ht × Ω,Ht ⊗A).

The σ-fields Ht and H̃t will also be viewed as sub-σ-fields of the σ-fields
H∞ = H̃∞ on the space H∞ = H̃∞ of infinite histories. We will denote
the disjoint union of all spaces (Ht,Ht) and (H̃t, H̃t) (t = 0, 1, 2, . . .) by
(H,H); this is the space of all finite histories; (H̃, H̃) will similarly denote
the disjoint union of all spaces (H̃t, H̃t) (t = 0, 1, 2, . . .).

A (behavioral) strategy σ of player n is a transition probability from
(H̃, H̃) to (Sn,Sn) assigning probability one to Sn(ω).

A pure strategy is a (behavioral) strategy where all probabilities are
point masses (zero-one measures).
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3.2. ASSUMPTIONS

a) For any strategy vector σ, any player n, any initial state ω, and any
stage t, the expectation ut

n(σ, ω) of his payoff at stage t exists. Let
ūt

n(σ, ω) =
∑

s<t us
n(σ, ω).

b) For any pure strategy vector σ, any player n, and any initial state ω,

vσ
n(ω) = lim

t→∞ ūt
n(σ, ω) exists.

c)

1. Let K(ω) = supt,n,σ | ūt
n(σ, ω)| where σ ranges over the pure

strategies. Then K(ω) < ∞ for all ω.

2.
∫

K(ω)dq(ω) < ∞ for all probability distributions q(·) = p(· |
ω̃, s). (In fact, it will be shown that K(ω) is measurable; in the
meantime, the integral can be interpreted as a lower integral.)

d) For every initial state, every pure strategy vector σ, and any ε > 0,
there exists t0 such that, for any pure strategy vector τ which coincides
with σ up to t0, |vσ

n(ω) − vτ
n(ω)| (continuity, using the product of the

discrete topologies on the pure strategy space).
e) (This would follow from requirement (f) (Section 2.2.1) if the vσ

n were
uniformly bounded): for any pure strategy vector σ, and any initial
state ω0, the mapping s → ∫

vσ
n(ω) dp(ω | s, ω0) is continuous.

3.3. PAYOFFS

For technical reasons, we will also need the following concepts. A mixture
of behavioral strategies (resp. a mixed strategy) of player n1 is similarly
described by an auxiliary probability space (Xn,Xn, Qn), and a transition
probability (resp. zero-one-valued) from (Xn × H̃,Xn ⊗ H̃) to Sn,Sn.

Any strategy vector (of whatever type) σ, together with an initial dis-
tribution µ on Ω, induces a unique probability distribution on H∞ (such
that the expectation of any positive function that depends only on the first
t coordinates can be computed backwards using the strategies in the obvi-
ous way—Ionescu–Tulcea theorem). The corresponding expectation will be
denoted by Eµ

σ , and by Eω
σ when µ is a point mass at some initial state ω.

Given any t-stage history h, and any behavioral strategy σ, the con-
ditional strategy σh is defined by σh(h̃) = σ(h, h̃). When σ is a strategy
vector, the corresponding expectation operator Eµ

σh will also be denoted by

1Our treatment of mixtures follows [2]; it has to be adapted among other reasons
because the payoff function is defined directly on strategies, and does not necessarily
stem from a payoff function defined on histories. We need the mixtures, even just to
obtain the relevant properties of behavioral strategies.
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Eh
σ when t ≥ 1 and µ(·) = p(· | gt−1) (where gt−1 is the last element of h),

and by Eh̃
σ for h̃ = (h, ωt) when µ is the unit mass at ωt (this extends the

notation Eω
σ ).

Similarly, we will use the notation σh̃ where h̃ = (h, ω), for the mapping
p → σh(ω, p), for all p such that (ω, p) ∈ H̃.

Lemma 2 Given a behavioral strategy σ:
a) σh is a strategy.
b) σh is measurable in h in the sense that, for any strategy vector σ

and any positive, measurable function f on (H∞,H∞), Eh
σ f(h, ·) and

Eh̃
σ f(h̃, ·) are H and H̃-measurable (w.r.t. h ∈ H and h̃ ∈ H̃ resp.).

c) For any initial distribution µ and any t, those expectations are versions
of Eµ

σ (f | Ht) and of Eµ
σ (f | H̃t) respectively.

d) For a strategy σ of whatever type Eω
σ (f) is measurable for any positive

H∞-measurable f .

Proof. The proof is standard.

Lemma 3 For any mixture of behavioral strategies, there exists an equiva-
lent mixed strategy, in the sense that, whatever the strategies (in any sense)
of the other players are, and for any initial distribution µ, the probability
distributions induced on the space of histories are the same.

Proof. Since S̄n is compact metric, there exist continuous mappings φn

from the Cantor set {0, 1}∞ (with its usual embedding into [0, 1]) onto S̄n.
For these there exist Borel-measurable selections ψn, e.g., ψn(s) = min{x |
φn(x) = s}. Hence, given our mixture σ, we can use ψn to consider the
transition probabilities to be transition probabilities to [0, 1] (whose support
is in the compact inverse image of Sn(ω)): these are uniquely described by
their cumulative distribution function F : [0, 1] → [0, 1] when F is right-
continuous, nondecreasing and F (1) = 1. Now make the product of the
space (Xn,Xn,Qn) with an infinite product of copies of [0, 1] with Lebesgue
measure. Given a point (x, y0, y1, . . . , yt, . . .) in this product, let player n
at stage t play φn[min{z | Fx,h̃t

(z) ≥ yt}]: this is the associated mixed
strategy, and it is easy to check that it has the required properties.

Lemma 4 For any strategy vector and any initial state, there exists a vec-
tor of behavioral strategies that induces the same probability distribution on
(H∞,H∞). (Those elements of the given strategy vector that happen to be
behavioral strategies do not have to be changed.)

Proof. At each stage t, the given probability distribution on histories
induces a joint distribution on (H̃t, H̃t) ⊗ (S̄n, S̄n)t. Let φi be a countable
dense subset of continuous functions on the compact metric space S̄n, con-
taining the constant function one, and forming a vector space over the
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rationals. Let fi be an H̃t- measurable version of the conditional expecta-
tion of φi given H̃t. Let N ∈ H̃t be the null set where either for some i, j, k,
fi + fj 6= fk while φi +φj = φk, or fi 6= afj while φi = αφj , or fi < 0 while
φi > 0, or fi 6= 1 while φi = 1. For h /∈ N , the mapping φi → fi(h) extends
to a positive linear functional of norm 1 or C(S̄n), hence by Riesz’s theorem
to a probability measure on S̄n. Thus we get a transition probability from
the complement of N to (S̄n, S̄n), such that the conditional expectation of
any continuous function on S̄n given H̃t is correctly described by this tran-
sition probability. Hence this is true for any nonnegative Borel function on
S̄n, hence for products of such functions with nonnegative H̃t-measurable
functions, hence for any nonnegative Ht ⊗ Sn-measurable function. In par-
ticular, the conditional probability of {(h̃, s) | h̃ = (h, ωt), s ∈ Sn(ωt)} is
H̃t-measurable, and a.e. equal to one. Add the set where it differs from 1
to the null set N , and define the conditional probability on N by any fixed
H-measurable selection from the graph of Sn (Section 2, Corollary 2). This
conditional probability now defines the tth-stage component of player n’s
behavioral strategy. Clearly this construction has the required properties.

Lemma 5 For any initial state ω, and any vector σ of strategies (of what-
ever type):

a) the expectations ut
n(σ, ω) = Eω

σ (player n’s payoff at stage t) exist (and
are finite);

b) ut
n(σ, ω) is measurable in ω;

c) the partial sums ūt
n(σ, ω) =

∑
s<t us

n(σ, ω) satisfy |ūt
n(σ, ω)| ≤ K(ω);

d) ūt
n(σ, ω) converges pointwise (t →∞), say to vσ

n(ω).

Proof. By Lemma 3, it is sufficient to consider vectors of mixed strate-
gies and, for points a) and d), we can even use Lemma 4 to consider only
behavioral strategies—since payoffs at stage t are measurable functions on
the space of histories.

Point a) follows then from Assumption (a) sub B, and point b) from
Lemma 2

For c), we consider the product of the space of histories with the spaces
(Xn,Xn,Qn) of each player—considering this as part of this initial state.
Formally, take the initial state to be in the product of (X,X ,Q) = Πn(Xn,
Xn,Qn) with a copy of (Ω,A). On this new state space, we have pure
strategies; and if σn is player n’s, then ∀x ∈ Xn, σx

n is a pure strategy of
the original game (Lemma 2).

Since, by (a), player n’s payoff at stage t is integrable on this en-
larged space of histories, we can compute its expectation by first taking
the conditional expectation given (ω, x1, x2, ...): this is (Lemma 2.c)) equal
to ut

n(σx, ω), which is (Lemma 2.b)) measurable in (ω, x).
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Hence the partial sums
∑

s<t us
n(σx, ω) are, by Assumption c), bounded

in absolute value by the constant K(ω), and converge pointwise to vσx

n (ω) by
Assumption b). Integrating over x1, ..., xn yields the partial sums ūt

n(σ, ω)—
which are therefore also bounded by K(ω), thus establishing c); by the
dominated convergence theorem, they will converge to

∫
vσx

n (ω)dQ(x). This
establishes d).

Note that we have also shown that vσ(ω) =
∫

vσx
(ω)dQ(x).

We can now define the payoff to arbitrary strategies:

Definition 1 vσ
n(ω) is the payoff to player n for the initial state ω resulting

from the strategy vector σ (of whatever type).

We will also use the notations vσ(h̃), with h̃ = (h, ω) , for vσh
(ω);

and vσ(h), with h = (h̃, s), and h̃ = (h′, ωt), s ∈ S(ωt), for vτ (h̃), where
τ = τ(s) = σ everywhere, except at stage t, where an arbitrary strategy τt

is used, such that [τt(h̃)]({s}) = 1. (By Section 2.2.1.b, {ω | s ∈ S(ω)} ∈ A;
let τt(ω) = s on this set, and be an arbitrary measurable selection (Section
2, Corollary 2) on the complement.) Clearly vσ(h) is well defined, and
independent of the choice of τt.

Lemma 6 If h ∈ Ht and h̃ ∈ H̃t, then

a) vσ(h) and vσ(h̃) depend only on the components of σ after stage t.
b) vσ(h) and vσ(h̃) are H- and H̃-measurable.
c) vσ(h) = limT→∞

∑
s<T Eh

σus and vσ(h̃) = limT→∞
∑

s<T Eh̃
σus where

us denotes the payoff vector at stage s. The notation means that all
expectations written exist, are absolutely convergent, and that the rel-
evant limits exist and are finite.

d)

1. vσ(h) = u(ω, s) +
∫

vσ((h, ω̃))dp(ω̃ | ω, s) where h = (h′, ω, s),
and

2. vσ(h̃) =
∫

vσ(h̃, s)dσ1(s1 | h̃)dσ2(s2 | h̃) ...

All integrals are again absolutely convergent.

Proof. (a) is obvious.
(c) follows from the definitions and from Lemma 5.
(b) follows from c) and from Lemma 2(b).
(d) The first formula follows because vσ(h, ω̃) = limT ūT (σh, ω̃) (by c)),

and since ‖ūT (σh, ω̃)‖ ≤ K(ω̃) (Lemma 5.c), which is dp(ω̃ | ω, s)-integrable
for each ω, s (Assumption c), we have, by the dominated convergence the-
orem,
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∫
vσ(h, ω̃)dp(ω̃ | ω, s) = lim

T

∫
ūT (σh, ω̃)dp(ω̃ | ω, s) =

∑

s≥1

Eh
σ(us).

There remains to add Eh
σ(u0) = u(ω, s) and to apply c) once more.

The second formula follows because, by c),

vσ(h̃, s) = lim
T

Eh̃,s
σ

∑

t<T

ut = lim
T

ūT (τh(s), ω), for h̃ = (h, ω)

and |ūT (τh(s), ω)| ≤ K(ω) by Lemma 5.c), for all s ∈ S(ω) and all T.

Hence the dominated convergence theorem implies that

∫
vσ(h̃, s)dσ(s | h̃) = lim

T

∫
ūT (τh(s), ω)dσ(s | h̃) =

∑
t

Eh̃
σ(ut) ,

from where the result follows by another application of c).

3.4. EQUILIBRIA

Since the payoff function is now well defined for arbitrary vectors of behav-
ioral strategies, the concept of Nash equilibrium (in behaviour strategies)
is also well defined. However, to show that those qualify unambiguously
as Nash equilibria of the stochastic game, we want to show that, at such
equilibria, no player has profitable replies, even when not restricted in the
replies by the same stringent measurability requirements as in the strate-
gies.

Lemma 7 a) A strategy vector σ (of whatever type) is a Nash equilibrium
iff no player has a profitable pure strategy deviation.

b) In that case, no player n has a profitable deviation even if the measur-
ability requirement on his strategies was weakened to require only that,
at each stage t, his transition probability to Sn(ωt) be µt-measurable
w.r.t. (x, h̃t), where µt is the probability induced on (Xn×H̃t,Xn⊗H̃t)
by the initial state, the other players’ strategies, Qn, and his own past
transition probabilities.

c) supσvσ
n(ω) and infσvσ

n(ω) can be equivalently computed over pure strate-
gies σ only.
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Proof. a) By Lemma 3, we can take all strategies to be mixed. Assume
player 1 had a profitable deviation, say τ1 (with (X1X1, Q1)]: then

vσ
1 (ω) <

∫ [∫
v

τ
x1
1 ,σ

x2
2 ,σ

x3
3 ,...

1 (ω)dQ2(x2)dQ3(x3), ...
]

dQ1(x1)

by our formula vσ(ω) =
∫

vσx
(ω)dQ(x). But then there exists some x1 with

vσ
1 (ω) <

∫
v

τ
x1
1 ,σ

x2
2 ,σ

x3
3 ,...

1 (ω)dQ2(x2)dQ3(x3), ... = v
τ

x1
1 ,σ2,σ3,...

1 (ω)

(by the same formula), and τx1
1 is a pure strategy.

b) Since S̄n is compact metric, the σ-field Sn is separable—hence is
generated by a countable, dense Boolean subalgebra. For any S ∈ Sn, its
probability is µt-measurable—hence there exists an Xn⊗H̃t-measurable set
of µt-probability zero, such that on the complement of this set, the proba-
bility of S is Xn ⊗ H̃t-measurable. Take the union of those null sets when
S varies over the countable subalgebra, and redefine there the transition
probability to be a point mass at some measurable selection from Sn(ω)
(Section 2, Corollary 2). We now have a true strategy of player 1; since
we changed only on null sets, it is obvious by induction on t the µt’s did
not change—hence in particular the induced probability distribution on
histories—and thus the payoff—will be the same.

c) One changes each player’s strategy in turn to a pure strategy, each
time using the same argument as in the proof of a).

Remarks. 1) As seen from the proof of Lemma 4, we could have simi-
larly weakened the countable additivity requirement on player n’s strategy
in (b), and only required that for each S ∈ Sn, some µt-measurable function
PS be given, s.t. (α) PS ≥ 0, µt a.e., (β) PS̄n

= 1 a.e., (γ) for any disjoint
sequence Si ∈ Sn, P∪Si =

∑
i PSi µt-a.e. and (δ) ∀A ∈ Xn ⊗ H̃t, ∀S ∈ Sn,

if S ∩ Sn(ωt) = ∅ for all ωt in the projection of A, then PS = 0 µt-a.e. on
A. (I.e., we can just ask for a probability on S̄n with values in L∞(µt) with
the weak*-topology.)

2) Remark 1 implies that player 1 has no profitable reply in any sense,
i.e., in any sense of reply for which the induced probability distribution on
histories satisfies that (a) at each stage t, the pure strategy choices sn of
the different players are conditionally independent given H̃t; (b) those con-
ditional distributions for the other players are described by their strategies;
(c) Prob (sn,t ∈ Sn(ωt)) = 1 for each t and n; (d) ω0 is the given initial
state with probability one; and (e) for all t, the conditional distribution
of ωt given ht is described by the transition probabilities of the stochastic
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game. Indeed, any such probability distribution can be described as arising
from some reply of player 1 in the sense of Remark 1.

For example, player 1 could use a sequence of spaces (Xi,X i), and
at each stage t, use a transition probability from the product of H̃t and
the previous Xi’s to Xt × S̄1 . . .. (And the conditions on the transition
probabilities could be weakened, as in Remark 1.) Such “strategies” do not
fit under our previous definitions, yet conditions (a)-(e) are satisfied.

3) Similarly, we can now see that the game is well defined, whatever
strategy spaces are considered: for whatever concept of strategy, a strategy
vector and an initial state will induce a probability distribution on the space
of histories satisfying (a), (c), (d) and (e). One could then use the previous
construction for all players in turn, to construct a behavioral strategy vector
that induces the same probability distribution on the space of histories.
Therefore, for any strategy ntuple of whatever type, the expected payoffs ūt

n

for all t and n will exist and be finite, and will form a summable series, thus
defining the payoff. In particular, with arbitrary strategy spaces (containing
the behavioral strategies) the set of feasible payoff vectors is the same as
with just behavioral strategies, and Nash equilibria of the game restricted
to behavioral strategies are still Nash equilibria on the arbitrary strategy
spaces.

4) Lemma 7 and the above remarks imply that the Nash equilibria of
the game restricted to behavioral strategies are completely unambiguously
“Nash equilibria of the stochastic game.” Thus we consider henceforth only
behavioral strategies.

3.5. A REFORMULATION: BASIC PROPERTIES OF THE MODEL

Assumptions (a), (b) and (c) were used basically just to show that the
payoff function vσ(ω) was unambiguously defined and had the intended
meaning, and satisfied the recursion formula in Lemma 6.d—and that the
concept of Nash equilibrium of the game restricted to behavioral strategies
was perfectly satisfactory.

One might be able to reach the same conclusions (maybe with another
intended meaning for vσ(ω)) in many models where those assumptions are
not satisfied. We now reformulate our model so that the results of this paper
will then still apply. This may be seen as a first step towards extending the
theorem to cover payoff functions which are arbitrary functions of histories,
instead of just additively separable ones (similar recursion equations are
obtained in those cases, when including the “past payoff” in the vσ(h)).

We take as primitive datum upper bounds v̄σ
n(ω) and lower bounds

vσ
n(ω) (possibly infinite) for the payoff to player n resulting from the strat-

egy vector σ and the initial state ω.
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We assume that they depend only on σ(ω), and that vσ
n(ω) ≤ v̄σ

n(ω).
We write vσ

n(ω) whenever vσ
n(ω) = v̄σ

n(ω). We say that vσ
n exists if vσ

n exists
for all ω and is measurable. We say that vσ exists if vσ

n exists for all n.

Proposition 3 All statements from here on are still valid under the fol-
lowing assumptions (in addition to the requirements (A) of Section 2):

(a) There exists a pure strategy vector σ0 such that vσ0 exists.
(b) ∀ σ,∀ n,∀ ω, v̄σ

n(ω) ≤ supτ v̄τ
n(ω) and vσ

n(ω) ≥ infτ vτ
n(ω) where τ

ranges over all pure strategy vectors.
(c) Define v̄σ(h̃) = v̄σh

(ω) for h̃ = (h, ω). Then, for all h ∈ H, denoting

by
−∫

an upper integral,

v̄σ(h, ω) ≤
−∫

[u(ω, s) + v̄σ(h, ω, s, ω̃)] dp(ω̃ | ω, s)dσ(s | h, ω)

and similarly for vσ(h̃), using a lower integral.
(d) For any pure strategy vector τ , if σi is a sequence of pure strategy

vectors such that vσi
exists and has finite values and such that σi co-

incides with τ during the first i stages, then vτ exists and vτ (ω) =
limi→∞ vσi

(ω).
(e) For any pure strategy vector σ for which vσ exists, and any initial

state ω,
∫

vσ
n(ω̃)dp(ω̃ | ω, s) exists for all s ∈ S(ω) and is real-valued

and continuous in s for all n.

Note that (a) is not an assumption of existence of pure strategies; we
observed earlier that this already follows from Section 2.

Under our previous assumptions, we could define v̄ = v = v for all σ and
ω; the validity of (a) stems from Lemma 6.b, of (b) from Lemma 7.c and of
(c) from Lemma 6.d. (d) and (e) follow immediately from the corresponding
assumptions in Section 3.3.2.

Note finally that we can still use Lemma 2 in the sequel, as it depends
only on the data of the model.

Lemma 8 (a) vσ exist for any pure strategy vector σ;
(b) there exist (stationary) pure strategy vectors σ̄n and σn such that,

letting w̄n(ω) = vσ̄n
n (ω) and wn(ω) = v

σn
n (ω), w̄n and wn are real-

valued and for any pure strategy vector σ, wn ≤ vσ
n ≤ w̄n.

Proof. We first show that vτ exists and is real-valued for any stationary
pure strategy τ = (τ0, τ0, τ0, ...).

Let σk+1 = (τ0, σk), with σ0 as in Proposition 3.a. We show by induction
that vσk exists: for k = 0, this follows from (3.a). By (3.e),

∫
vσk(ω̃)dp(ω̃ |

ω, s) exists (and is finite) for all (ω, s)—in particular for s = τ0(ω). Since
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p is a transition probability and since vσk is measurable, the existence
of all integrals implies that the integral is measurable. Therefore, by (3.c),
v̄

σk+1
n (ω) ≤ un(ω, τ0(ω))+

∫
vσk
n (ω̃)dp(ω̃ | ω, τ0(ω)) ≤ v

σk+1
n (ω). Since v ≤ v̄,

we have for all ω:

vσk+1(ω) = u(ω, τ0(ω)) +
∫

vσk(ω̃)dp(ω̃ | ω, τ0(ω)).

Measurability of vσk+1 follows, by composition: vσk+1 exists and is finite-
valued. (7.d) implies then the existence of vτ . Since τ = (τ0, τ), repeating
once more the above argument then implies that vτ is finite-valued.

Note that we have shown the following:

Claim 1 If σ is a pure strategy vector such that vσ exists, and τ0 a pure
strategy vector in the one-shot game, then v(τ0,σ) exists, has finite values
and satisfies v(τ0,σ)(ω) = u(ω, τ0(ω)) +

∫
vσ(ω̃)dp(ω̃ | ω, τ0(ω)).

We now start proving (b), assuming n = 1 and proving the existence of
σ̄1 and w̄1. The proof for the other cases is identical.

Fix σ0 to be some stationary pure strategy vector. Assume that σm is
some pure strategy vector for which vσm exists and is finite-valued. Let
wm(ω) = vσm

1 (ω), and define

wm+1(ω) = sup
s∈S(ω)

[u1(ω, s) +
∫

wm(ω̃)dp(ω̃ | ω, s)).

By (e), the integral exists for all s—so, as remarked earlier, the bracketed
term is measurable in (ω, s), and real-valued and continuous in s for each
ω. Thus the supremum is achieved, and is finite. The continuity implies
also that measurability of wm+1 follows from Section 2, Corollary 2.

Thus wm+1 is real-valued, measurable, and satisfies

wm+1(ω) = max
s∈S(ω)

[u1(ω, s) +
∫

wm(ω̃)dp(ω̃ | ω, s)].

Let X(ω) = {(s, x) | s ∈ S(ω), x = u1(ω, s) +
∫

wm(ω̃)dp(ω̃ | ω, s)}. By
Section 2, Corollary 1, X is a measurable map to K∗R×S

. Similarly, Y (ω) =
{(s, x) | s ∈ S(ω), x = wm+1(ω)} is measurable, thus so is T (ω) = {s ∈
S(ω) | wm+1(ω) = u1(ω, s) +

∫
wm(ω̃)dp(ω̃ | ω, s)}—the projection on S of

X(ω) ∩ Y (ω), by [5], Proposition 6, (d) and (e). Hence by [5], Proposition
7(c), T has a measurable selection; i.e., there exists a strategy vector τ(ω)
of the one-shot game, such that wm+1(ω) = u1(ω, τ(ω)) +

∫
wm(ω̃)dp(ω̃ |

ω, τ(ω)). Let σm+1 = (τ, σm) : σm+1 is a pure strategy vector, and, by
Claim 1, vσm+1 exists and wm+1(ω) = v

σm+1

1 (ω).
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This completes the inductive definition of the σm’s and the wm’s. Note
that w1 ≥ w0, since the choice of s repeating the same stationary σ0 was
available in the maximization, and would have yielded w0. Therefore, by
induction on m, wm+1 ≥ wm.

Now let w = limm→∞wm: w is measurable, w(ω) > −∞ everywhere,
and

∀ω, s,m w(ω) ≥ wm+1(ω) ≥ u1(ω, s) +
∫

wm(ω̃)d p(ω̃ | ω, s).

Since wm is integrable and increasing with m, the monotone convergence
theorem implies that w(ω) ≥ u1(ω, s) +

∫
w(ω̃)d p(ω̃ | ω, s); hence

w(ω) ≥ sup
s∈S(ω)

[
u1(ω, s) +

∫
w(ω̃) d p(ω̃ | ω, s)

]

(and all integrals in the right-hand member are well defined).

Further, the right-hand member is ≥ wm+1(ω), since w ≥ wm. Thus

w(ω) = sup
s∈S(ω)

[
u1(ω, s) +

∫
w(ω̃) d p(ω̃ | ω, s)

]
for all ω.

We first show that the supremum is attained. Denote the bracketed term
by f(ω, s). Fix ε > 0 and K > 0, and let ϕ(ω) = K if w(ω) = +∞,
ϕ(ω) = w(ω) − ε elsewhere: ϕ is a real-valued measurable function. Let
N(ω) = min{m | wm(ω) ≥ ϕ(ω)}: N is measurable and integer-valued.

Define the pure strategy vector σ by σ(ω) = σN(ω)(ω). By our assump-
tion that v̄σ

n(ω) and vσ
n(ω) depend only on σ(ω), we have for all ω and all

n, vσ
n(ω) = v

σN(ω)
n (ω), which is measurable and real-valued: vσ exists and

is real-valued, and w(ω) ≥ vσ
1 (ω) = wN(ω)(ω) ≥ ϕ(ω).

Thus, again using (7.e), we have that

(ω, s) → u1(ω, s) +
∫

vσ
1 (ω̃) d p(ω̃ | ω, s)

is measurable, is continuous and real-valued in s for each ω, and that the
integrals are absolutely convergent.

Going to the (uniform) limit in ε (ε → 0), we obtain that

ψ : (ω, s) → u1(ω, s)+
∫

w<+∞
w(ω̃) d p(ω̃ | ω, s)+

∫

w=+∞
vσ
1 (ω̃) d p(ω̃ | ω, s)
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has the same properties.
And f(ω, s) = ψ(ω, s) + I(ω, s), where I(ω, s) is (+∞) times the indi-

cator function of

Ã = {(ω, s) | p(A | ω, s) > 0} with A = {ω | w(ω) = +∞}.
A ∈ A, hence Ã ∈ G, and the norm continuity in s of p(· | ω, s) implies that
{s | (ω, s) ∈ Ã} is open.

Thus, for each ω, the maximum is achieved—for ω ∈ A, at any s
such that (ω, s) ∈ Ã, and for ω /∈ A, at any s maximizing ψ(ω, s). Let
h(ω) = maxs∈S(ω) p(A | ω, s) : h is real-valued, and measurable by Section
2, Corollary 2, as before. Let again, for ω ∈ A, X(ω) = {(s, x) | s ∈ S(ω),
x = p(A | ω, s)}, Y (ω) = {(s, x) | s ∈ S(ω), x = h(ω)} and for ω /∈ A,
X(ω) = {(s, x) | s ∈ S(ω), x = ψ(ω, s)}, Y (ω) = {(s, x) | s ∈ S(ω),
x = w(ω)}. As before, X and Y are measurable maps to K∗

S×R, hence so is
the projection of S of their intersection. This admits therefore a measurable
selection, which is a pure strategy vector of the one-shot game, τ0, at which
f(ω, s) achieves its maximum: for all ω

w(ω) = u1(ω, τ0(ω)) +
∫

w(ω̃) d p(ω̃ | ω, τ0(ω)).

Now consider a sequence of pure strategy vectors σm, like those we defined
above, such that vσm exists and is finite-valued for all m, and such that vσm

1

increases to w. By our above claim, the v(τ0,σm) will exist and have finite
values, and will satisfy

v
(τ0,σm)
1 (ω) = u1(ω, τ0(ω)) +

∫
vσm
1 (ω̃) d p(ω̃ | ω, τ0(ω)).

Thus, by the monotone convergence theorem, v
(τ0,σm)
1 (ω) will increase to

w(ω) = u1(ω, τ0(ω)) +
∫

w(ω̃) d p(ω̃ | ω, τ(ω)).

Thus the sequence (τ0, σm) has the same properties as the original sequence
σm. Now let σm,0 = σm, σm,k+1 = (τ0, σm,k): for each k, vσm,k exists and
has finite values, and when m →∞, v

σm,k

1 increases to w(ω).
Let τ̄ denote the stationary pure strategy (τ0, τ0, . . .). Now fix an initial

state ω, and choose mk such that, writing for short τk for σmk,k, we have
vτk
1 (ω) ≥ w(ω) − k−1 if w(ω) < +∞, and vτk

1 (ω) ≥ k if w(ω) = +∞: the
τk are a sequence of pure strategy vectors for which vτk exists and is finite,
and which coincide for the first k stages with the pure strategy vector τ̄ :
by (7.d), we have w(ω) = limk→∞ vτk

1 (ω) = vτ̄
1 (ω).
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Since τ̄ is a stationary pure strategy vector, vτ̄ exists and has finite
values: we have shown that there exists a stationary pure strategy vector
τ̄ , such that vτ̄ exists and has finite values, and such that

vτ̄
1 (ω) = max

s∈S(ω)

[
u1(ω, s) +

∫
vτ̄
1 (ω̃) d p(ω̃ | ω, s)

]
. (1)

To finish the proof of the lemma, there remains to show that vσ exists
and is finite-valued for any pure strategy vector σ, and that it satisfies
vσ
1 ≤ vτ̄

1 . By (7.d), it is sufficient to show this for pure strategies σ that
coincide with τ̄ after k stages. We prove this by induction on k—it is true
for k = 0, and the induction step follows from (7.c) and the dual inequality
(applying not only our equation (*) for vτ̄

1 , but the analog lower bound with
a τ and a mins∈S(ω), and the similar equations for the other players).

The next proposition should “normally” come only in Section 5; in par-
ticular, the operator Φ is central to the proof. But there is one small part
of the conclusions which will be needed in Proposition 5.

We use vectors p for payoff vectors.

Proposition 4 Let W (ω) = {p | ∀n,wn(ω) ≤ pn ≤ w̄n(ω)} and denote by
F the set of A-measurable selections from W . ∀f ∈ F , let [[Φ(f)](ω)] (s) =
u(ω, s) +

∫
f(ω̃) d p(ω̃ | ω, s) : [Φ(f)](ω) is a function on S(ω). Finally, let

K(ω) = {[Φ(f)](ω) | f ∈ F}. Then
a) K(ω) is compact in the uniform topology on the space of continuous

functions on S(ω);
b) any limit point ϕ of a sequence [Φ(fi)](ω), fi ∈ F , is also the limit

of a sequence [Φ(gk)](ω), where the gk are measurable selections from
(Limfi)(ω̃) = {p | p is a limit point of fi(ω̃)};

c) for any finite subset of S(ω), there exists such a g such that [Φ(g)](ω)
coincides with ϕ on this subset.

Proof. Since u(ω, s) is just a fixed additive term, continuous in s, we
can neglect it, and assume that u = 0. Let wn = w̄n − wn. Let Ak = {ω |
∃n : wn(ω) ≥ k} ∈ A. Ak ↘ ∅. Let Bk = Ω\Ak, and gk = wn +wnIAk

. gk is
the payoff function to the pure strategy consisting of using σ̄n on Ak, and
σn elsewhere. Thus, by (7.e), the [Φ(gk)](ω) are a sequence of continuous,
real-valued functions on S(ω), decreasing to the continuous, real-valued
function [Φ(wn](ω).

By Dini’s theorem, they converge uniformly (compactness of S(ω)).
Hence

∀ε, ∀n, ∃k :
∫

Ak

wn(ω̃)d p(ω̃ | ω, s) < ε ∀s ∈ S(ω).
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Hence

∀ε, ∃k :
∫

Ak

max
n

wn(ω̃) d p(ω̃ | ω, s) < ε ∀s ∈ S(ω).

Assume k0 fixed, with the above property. Since the set of measures p(dω̃ |
ω, s) for s ∈ S(ω) is norm-compact (A.f), there exists a probability measure
µ on (Ω,A) such that the p(dω̃ | ω, s) are dominated by µ, hence norm-
compact in L1(µ). Choose µ such that the wn’s are µ-integrable. Now con-
sider a sequence of measurable functions f i satisfying 0 ≤ f i

n ≤ wn. Since
f i

n is integrably bounded, we can extract a subsequence such as to have
it weakly convergent, say to gn. For each k and n, the sequence f i

n · IBk
is

bounded in L∞(µ); hence, for all k and n, f i
n·IBk

converges σ(L∞(µ), L1(µ))
to gn · IBk

. One can choose for g an A-measurable version in its equivalence
class, and since 0 ≤ gn ≤ wn µ-a.e., and wn is A-measurable, we can in
addition select 0 ≤ gn ≤ wn everywhere. Now 0 ≤ f i

n ≤ wn implies that

∣∣∣∣∣
∫

f i
n(ω̃) p(dω̃|ω, s)−

∫

Bk0

f i
n(ω̃) p(dω̃|ω, s)

∣∣∣∣∣ ≤
∫

Ak0

wn(ω̃) p(dω̃|ω, s) ≤ ε

and similarly for g one gets
∣∣∣∣∣
∫

gn(ω̃) p(dω̃ | ω, s)−
∫

Bk0

gn(ω̃) p(dω̃ | ω, s)

∣∣∣∣∣ ≤ ε,

for all s ∈ S(ω) in both cases. Since IBk
f i

n converges weak∗ to IBk
· gn,

it converges uniformly on compact sets of L1(µ) (the norm topology on
L1 being the topology of uniform convergence on bounded subsets of L∞).
Thus, ∀k, n, ∀ε, ∃in,k, ∀i ≥ in,k, ∀s ∈ S(ω),

∣∣∣∣
∫

Bk

f i
n(ω̃) p(dω̃ | ω, s)−

∫

Bk

gn(ω̃) p(dω̃ | ω, s)
∣∣∣∣ ≤ ε.

Let i0 = maxn in,k0 : then ∀i ≥ i0, ∀s ∈ S(ω), ∀n
∣∣∣∣
∫

f i
n(ω̃) p(dω̃ | ω, s)−

∫
gn(ω̃) p(dω̃ | ω, s)

∣∣∣∣ ≤ 3ε.

Thus, from anyA-measurable sequence f i satisfying 0 ≤ f i
n ≤ wn we can

extract a subsequence ij converging weakly to an A-measurable function f
satisfying also 0 ≤ fn ≤ wn. And then

∫
f ij (ω̃) p(dω̃ | ω, s) converges to∫

f(ω̃) p(dω̃ | ω, s) uniformly on S(ω). Now the norm continuity of p(dω̃ |
ω, s) in s ∈ S(ω) implies that, for bounded measurable f ,

∫
f(ω̃) p(dω̃ | ω, s)

is continuous on S(ω). For f A-measurable, 0 ≤ fn ≤ wn, define f i by
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f i
n = min(i, fn). Then f i converges weakly to f ; hence

∫
f i p(dω̃ | ω, s)

converges uniformly to
∫

f p(dω̃ | ω, s) on S(ω). Since the f i’s are bounded,
their integrals are continuous on S(ω), hence so is

∫
f p(dω̃ | ω, s).

Thus the above-mentioned uniform convergence is in the space of con-
tinuous functions on S(ω).

[5], Lemma 1 implies that we can select f such that furthermore f(ω) ∈
Co(Limf i)(ω) everywhere, and f(ω) ∈ (Limf i)(ω) µ-a.e. on the atoms of
µ.

Add now w (the vector wn) to all functions f i and f : since w is A-
measurable, we get f i and f in F , and since

∫
w(ω̃) p(dω̃ | ω, s) is real-

valued and continuous in s (Proposition 3.e), we indeed obtain (1) that ∀f ∈
F , [Φ(f)](ω) is continuous on S(ω), and (2), that given a sequence f i ∈ F
one can find f ∈ F and a subsequence along which [Φ(f i)](ω) converges
uniformly in the space of continuous functions on S(ω) to [Φ(f)](ω)—hence
(a) is established—and such that f(ω) ∈ Convex hull[(Limf i)(ω)], with
f(ω) ∈ [(Limf i)(ω)], µ a.e. on the atoms of µ. By [5], Proposition 10.a,
(Limf i) is a measurable map to K∗(R`); hence by [5], Proposition 11.b,
for any bounded Rk-valued measure ν which is absolutely continuous w.r.t.
µ, we can find a measurable selection g from (Limf i) such that

∫
g d ν =∫

f d ν. I.e., for any s1, . . . , sk ∈ S(ω), [Φ(f)](ω) coincides with [Φ(g)](ω),
for some measurable selection g from Lim(f i), at all points s1, . . . , sk. This
establishes (c). In particular, [Φ(f)](ω) is the pointwise closure of those
[Φ(g)](ω), hence by (a) in their uniform closure. This establishes (b).

Proposition 5 (a)

1. vσ exists for any strategy vector σ.

2. vσ(h̃t) and vσ(ht) are measurable.

3. vσ ∈ F .

(b)

1. vσ(h) = u(ω, s)+
∫

vσ(h, ω̃) d p(ω̃ | ω, s), for h = (h′, ω, s), exists
for any strategy vector σ, and is finite-valued and measurable.

2. Similarly, vσ(h̃) =
∫

vσ(h̃, s) d σ1(s1 | h̃)d σ2(s2 | h̃) . . .

3. All those integrals are absolutely convergent, even when vσ(h̃) is
expressed by one single double integral in terms of vσ(h̃, s, ω̃).

(c) For any ε > 0, there exists an integer-valued measurable function
N(ω), such that for each ω, and any two strategy vectors σ and τ that
coincide during the first N(ω) stages, ‖vσ(ω)− vτ (ω)‖ < ε.

Proof. Let n = 1 in Lemma 8.b, and drop the indices n: we have w̄(ω) =
vσ̄
1 (ω) and w(ω) = v

σ
1 (ω), σ̄ = (σ̄0, σ̄0, . . .) and σ = (σ0, σ0, . . .) being two

stationary pure strategies. w̄ and w are real-valued and measurable, and
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satisfy w̄(ω) ≥ u1(ω, s) +
∫

w̄(ω̃) d p(ω̃ | ω, s) and w(ω) ≤ u1(ω, s) +∫
w(ω̃) d p(ω̃ | ω, s) ∀s ∈ S(ω), with equality resp. for s = σ̄0(ω) and for

s = σ0(ω).
Subtracting both inequalities yields, with w0 = w̄ − w, that

w0(ω) ≥
∫

w0(ω̃) d p(ω̃ | ω, s) ∀s ∈ S(ω).

w0 is a positive, real-valued, measurable function; and Proposition 4.a im-
plies that for any measurable function f , with 0 ≤ f ≤ w0,

∫
f(ω̃) d p(ω̃ |

ω, s) is continuous on S(ω) (since f ∈ F1 − F1). Assuming wi defined and
measurable, 0 ≤ wi ≤ w0, let wi+1 = maxs∈S(ω)

∫
wi(ω̃) d p(ω̃ | ω, s); the

maximum exists because we have seen that the integral is continuous in
s. The measurability of wi+1 follows for the same reason—using as before
Corollary 2 of Section 2.

Further, by our inequality for w0, one will have w1 ≤ w0, and hence
by induction wi+1 ≤ wi. This completes the definition of the decreasing
sequence wi.

Let w∞ = limi→∞wi: w∞ is measurable, 0 ≤ w∞ ≤ w0, and wi+1(ω) ≥∫
wi(ω̃) d p(ω̃ | ω, s) ≥ ∫

w∞(ω̃) d p(ω̃ | ω, s) for all i and s implies w∞(ω) ≥
maxs∈S(ω)

∫
w∞(ω̃) d p(ω̃ | ω, s). On the other hand, w∞ ≤ wi+1 implies

that, for all i and ω, {s | ∫ wi(ω̃) d p(ω̃ | ω, s) ≥ w∞(ω)} is nonempty, and
compact by continuity. Take any s0 in the intersection of this decreasing
sequence of nonempty compact sets: we have

∫
wi(ω̃) d p(ω̃ | ω, s0) ≥

w∞(ω̃) for all i; since the wi’s decrease to w∞ and the integrals are finite,
the monotone convergence theorem implies that

∫
w∞(ω̃) d p(ω̃ | ω, s0) ≥

w∞(ω̃): thus

w∞(ω) = max
s∈S(ω)

∫
w∞(ω̃) d p(ω̃ | ω, s).

As in the proof of Lemma 8, this equation implies that there exists a pure
strategy vector of the one-shot game τ∞ such that

w∞(ω) =
∫

w∞(ω̃) d p(ω̃ | ω, τ∞(ω)).

Denote by τ̄k (resp. τk) the pure strategy vector consisting in playing k
times τ∞, then σ̄ (resp. σ). τ will denote the stationary pure strategy vector
(τ∞, τ∞, . . .). Let also v̄k = vτ̄k

1 , vk = v
τk
1 , v = vτ

1 ; those exist by Lemma 8.
We have v̄0 = w̄, v0 = w, hence v̄0−v0 = w0 ≥ w∞. Assume v̄k−vk ≥ w∞.
By (7.c),
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(
v̄k+1 − vk+1

)
(ω) =

∫
[(v̄k − vk)] (ω̃) d p(ω̃ | ω, τ∞(ω))

≥
∫

w∞(ω̃) d p(ω̃ | ω, τ∞(ω)) = w∞(ω).

Hence, for all k, v̄k − vk ≥ w∞. By (7.d), for fixed ω, both v̄k and vk

are, for k sufficiently large, ε-close to v; hence 0 ≤ w∞ ≤ 2ε whatever ε is.
Thus wi decreases to zero.

Let N(ω) = min{i | wi(ω) < ε}: clearly N is measurable and integer-
valued.

Now consider a behavioral strategy vector σ, and a fixed integer N . Let σ̃
coincide with σ during the first N stages, then be equal to σ̄ = (σ̄0, σ̄0, ...).
Let us first prove (a) and (b) for σ̃. vσ̃

1 (h̃t) = vσ̄
1 (ωt) = w̄(ωt) satisfies

(a) for all t ≥ N . If vσ̃
1 (h, ω, s, ω̃) exists, is measurable, and is ≥ w1(ω̃)

and ≤ w1(ω̃), then
∫

vσ̃
1 (h, ω, s, ω̃)dp(ω̃ | ω, s) will exist (integrability of

w1(ω̃) and w̄1(ω̃)) for all (h, ω, s), and be measurable in (h, ω, s). Together
with the measurability of u1(ω, s) this implies that vσ̃

1 (h, ω, s) exists and
is measurable. Similarly, u1(ω, s) + vσ̃

1 (h, ω, s, ω̃) will be measurable, and
smaller (resp. larger) than the integrable function

max
s∈S(ω)

(u1(ω, s)) + w̄1(ω̃)
[
resp. min

s∈S(ω)
u1(ω, s) + w1(ω̃)

]
(ω is fixed).

Thus the integral
∫ [

u1(ω, s) + vσ̃
1 (h, ω, s, ω̃)

]
dp(ω̃ | ω, s)dσ̃(s | h, ω)

will be well defined and absolutely convergent; the measurability of the
integrand will again imply that the result is measurable in (h, ω). Thus,
by (7.c), vσ̃

1 (h, ω) will exist, be finite-valued, measurable, and equal to this
integral. In particular, together with our formula for vσ̃

1 , this implies (via
Fubini) that

vσ̃
1 (h, ω) =

∫
vσ̃
1 (h, ω, s)dσ1(s1 | h, ω)dσ2(s2 | h, ω)....

Thus, to finish proving that if vσ̃
1 (h̃) satisfies (a) for h̃ ∈ H̃t+1, then it

satisfies it for h̃ ∈ H̃t and (b) is satisfied for h̃ ∈ H̃t and h ∈ Ht+1, there only
remains to show that w1(ω) ≤ vσ̃

1 (h, ω) ≤ w̄1(ω). It is sufficient to prove,
e.g., the upper bound. Since w̄1(ω) ≥ u1(ω, s) +

∫
w̄1(ω̃)dp(ω̃ | ω, s) ∀s ∈
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S(ω) (cf supra) and vσ̃
1 (h, ω, s, ω̃) ≤ w̄1(ω̃), we have by our formula for

vσ̃
1 (h, ω, s) that vσ̃

1 (h, ω, s) ≤ w̄1(ω). Averaging over s with the strategies
yields then vσ̃

1 (h, ω) ≤ w̄1(ω).

Thus (a) and (b) are fully established for σ̃.

Now consider the strategy σ. By (7.b), we have, for t ≥ N , v̄σht

1 (ω) ≤
w̄1(ω) = v̄σ̃ht

1 (ω); i.e., v̄σ
1 (ht, ω) ≤ vσ̃

1 (ht, ω). Since until t = N , both σ and
σ̃ agree, and since (a) and (b) (including b.3) are proved for σ̃, (7.c) will
imply that the above inequality will hold for t(< N) as soon as it holds for
t+1. Thus v̄σ

1 (h̃) ≤ vσ̃
1 (h̃) for all h̃. Similarly, one will have vσ

1 (h̃) ≥ vσ′
1 (h̃)

for all h̃, where σ′ coincides with σ during the first N stages, then with
(σ0, σ0, σ0, ...).

Let us more explicitly subscript σ̃ and σ′ with N , and show that vσ̃N
1 (h̃)

decreases with N (similarly, v
σ′N
1 (h̃) will increase with N). Clearly, for his-

tories h̃ = (h, ω) of length N (or larger) vσ̃N
1 (h̃) = w̄1(ω) ≥ v

σ̃N+1

1 (h̃).
For shorter histories, σ̃N and σ̃N+1 coincide, so the inequality follows by
backward induction, using our formulas of (b) for vσ̃.

Now consider ϕ(h̃) = vσ̃N
1 (h̃) − v

σ′N
1 (h̃): those are positive, measur-

able functions on histories. For h̃ of length N or more, ϕ(h̃) = w̄1(ω) −
w1(ω) = w0(ω) as defined above. For shorter histories, σ̃N and σ′N coin-
cide; thus, using our formulas (b)—with h̃ = (h, ω) ∈ H̃t, t < N—for vσ̃

and vσ′ , we get that ϕ(h, ω) =
∫

ϕ(h, ω, s, ω̃)dp(ω̃ | ω, s)dσ(s | h, ω). Since
wi+1(ω) = maxs∈S(ω)

∫
wi(ω̃)dp(ω̃ | ω, s), the inequality ϕ(h, ω) ≤ wo(ω)

for h of length N yields by backward induction ϕ(h, ω) ≤ wN−k(ω) for h
of length k. Since wi converges to zero, we conclude that, as N → +∞,
the vσ̃N

1 (h̃) and the v
σ′N
1 (h̃) converge (monotonically) to the same limit.

Since v
σ′N
1 ≤ vσ

1 (h̃) ≤ vσ
1 (h̃) ≤ vσ̃N

1 (h̃), we conclude first that vσ
1 (h̃) exists,

is measurable in h̃, and satisfies w1(ω) ≤ vσ
1 (h, ω) ≤ w1(ω). Similarly, the

recursion formulas (b) for vσ
1 now immediately follow by monotone conver-

gence from those for v
σ′N
1 and vσ̃N

1 .

Thus (a) and (b) are established.

For (c), fix the initial state ω, and let N = N(ω). Since σ and τ coincide
during the first N stages, we get that both vσ

1 (ω) and vτ
1 (ω) lie between

v
σ′N
1 (ω) and vσ̃N

1 (ω). Since 0 ≤ vσ̃N
1 (ω) − v

σ′N
1 (ω) = ϕ(ω) ≤ wN (ω) < ε, we

obtain indeed that |vσ
1 (ω) − vτ

1 (ω)| < ε. The present function N(ω) was
constructed for player 1, say N1(ω). If instead one uses maxn Nn(ω), one
indeed obtains ‖vσ(ω)− vτ (ω)‖ < ε.
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3.6. SUBGAME PERFECTION: THE THEOREM

In the previous paragraphs we have shown that, under our assumptions,
the payoff function is unambiguously defined, whatever the strategy spaces
are, and that Nash equilibria of the game restricted to behavioral strategies
are still Nash equilibria whatever strategy spaces are considered, and thus
qualified unambiguously as Nash equilibria of the stochastic game. We have
also derived the basic properties of the payoff function vσ(h) and vσ(h̃)
conditional to finite histories h and h̃ (Propositions 4 and 5).

For subgame perfection, there is another potential source of ambiguity
to resolve: since a subgame is a subtree such that any position in (or out
of) the subtree is contained in an information set wholly in (or out of) the
subtree, and since the information sets of the players are the measurable
subsets in the space of histories, this would lead us to require that subgames
be measurable. A great number of different possible concepts of subgame
perfection would arise, according to the different σ-fields considered on H.
Note that points in the space of histories do not have to be measurable:
even just in Ω, A may very well have no atoms at all and may also not sep-
arate points. We here take the strongest conceivable definition of subgame
perfection, and we will see that in fact there is no ambiguity after all.

Definition 2 A “subgame-perfect equilibrium” is a strategy vector σ such
that, for any finite history h̃, the vector of conditional strategies σh̃ is a
Nash equilibrium.

Corollary 3 Given a subgame-perfect equilibrium σ, the strategy vectors σh

and σh̃ are also subgame-perfect equilibria for any finite histories h and h̃.

Proposition 6 (a) A strategy vector σ is a subgame-perfect equilibrium if
and only if, given any finite history h̃, no player can profitably deviate
from σh̃ by deviating just in the first stage.

(b) In other words, iff ∀h̃, the σn(dsn | h̃) form a Nash equilibrium of the
game vσ(h̃; (s1, . . . , sn, . . .)).

Proof. The equivalence of the two statements follows from Proposition
5.b. The necessity is obvious. Assume that the conditions are satisfied and
σ is not a subgame-perfect equilibrium: there exists a history h̃0, such that
σh̃0 is not a Nash equilibrium. Thus one player—say 1—has a profitable
deviation, say τ , in the game starting after h̃0.

τ can be extended as follows to a strategy τ̃ of player 1 in the full
game. τ , being a strategy after h̃0, is a (measurable) function on partial
histories h′ = (s0, ω1, s1, ω2, s2, ω3, ...), since ω0 is fixed in this game. For
s0 /∈ S(ω0), τ is not defined. Define it for those s0 by τ(s0, h̃) = τ(s̄0, h̃),
for a fixed s̄0 in S(ω0). Now τ is well defined for any such partial history h′.
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Define τ̄(ω, h′) = τ(h′) for any ω: τ̄ is a well-defined behavioral strategy.
Finally, if h̃0 ∈ H̃t0 , let, for any h ∈ Ht0 , and any h̃, τ̃(h, h̃) = τ̄(h̃), and
for h̃ ∈ H̃s, s < t0, let τ̃(h̃) = σ1(h̃) : τ̃ is a strategy of player 1 in the full
game, which coincides with σ1 before t0, and with τ after h̃0.

By Proposition (5.c), we can change τ̃ so as to coincide with σ1 after
a sufficiently large number N of stages, and it will still be a profitable
deviation after h̃0. Then there is a history h̃1 = (h, ω) of maximal length t
(≤ length (h̃0) + N) extending h̃0 such that τ̃ is still a profitable deviation
after h̃1. There is no loss in changing τ̃ so as to coincide with σ before stage t.
Define τ̄ such as to coincide with τ̃ at stage t, and with σ at all other stages;
since τ̃ was not a profitable deviation after any history h̃ of length > t,
Proposition 5.b implies that τ̄ is a fortiori a profitable deviation after h̃1.

This proves the proposition.

Corollary 4 If σ is not subgame perfect, then for some t and some E ∈ H̃t

and for some player n, there exists a strategy τn that coincides with σn on
all partial histories except for h̃ ∈ E, and s.t. for each of those, τn is a
profitable deviation from σn.

Remark. E satisfies the strictest measurability requirements; this shows
that, even with the weakest concept of subgame perfection, σ would not be
subgame perfect.

Proof. The essential part was done in the above proof, which proved
a bit more than strictly necessary. Consider the deviation τ̄ on histories
h̃ ∈ H̃t: the set E = {h̃ | vτ̄

n(h̃) > vσ
n(h̃)} belongs to H̃t (Proposition

5.a.2), and contains h̃1. Define then τn to coincide with τ̄ on E, and with
σn everywhere else. This proves the corollary. (Even if, under requirements
(A′), the original σ-field A had been extended to B(A) (cf Section 2), E
would contain a set Ẽ containing h̃1 and belonging to the product σ-field
generated by the original σ-fields A (consider the unit mass at h̃1, and that
E is universally measurable). Thus the “subgame” can really be chosen to
satisfy the strictest measurability requirements.)

We thus see that we also obtain a completely unambiguous concept
of subgame-perfect equilibria, which according to the proposition coincide
with the “backward induction equilibria.”

Our result is:

Theorem 1 There exist subgame-perfect equilibria.

The proof will be given in the next three sections.

4. Separability

We show here that it is sufficient to prove the theorem when the σ-field A
is separable.
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Proposition 7 One can assume A separable. More precisely:

a) There exists a minimal σ-field F̃ for which all assumptions of Section
2.2.1 and of Section 3, Proposition 3 are satisfied. F̃ is separable, and
F̃ ⊆ A (resp. B(A)) if the original model satisfies requirements (A)
(resp. (A)’) of Section 2.

b) The functions w and w of Section 3 are F̃-measurable, and equal to
the corresponding functions for (Ω, F̃).

c) Any subgame-perfect equilibrium for (Ω, F̃) is one for the original
model.

Proof. a) Note that, under the assumptions of Section 3.3.2, the σ-field
F of Section 2 fills the bill. Under the more general assumptions of Section
3, Proposition 3, however, nothing guarantees that the vσ0 of Proposition
3.a will be F-measurable.

Consider thus an arbitrary strategy σ, and the corresponding function
vσ (Proposition 5). vσ generates, together with F , a separable σ-field F ′.
Enlarge F ′, as in the proof of Section 2, Proposition 1.c, to the minimal
σ-field Fσ containing F ′ and such that p is a transition probability for Fσ:
Fσ is separable, satisfies the assumption of Section 2.2.1, and those of Sec-
tion 3, Proposition 3. Indeed, 3.a is satisfied by construction, 3.c is satisfied
(when keeping all vσ’s the same, at least for those σ’s that remain strate-
gies) because upper integrals can only increase when σ-fields are decreased,
3.d and 3.e remain true because they were so in the original model, and
3.b because the proof of Section 3, Lemma 8 (which does not depend on
3.b) shows that strategies σn and σn can be chosen to be measurable with
respect to any σ-field for which all other assumptions of Section 3, Propo-
sition 3 and Section 2.2.1 hold, in particular Fσ, and such as to guarantee
the same functions wn and wn (cf last paragraph of the proof): since those
are, by 3.b, valid bounds in the model with the larger σ-field, they are a
fortiori so with the smaller σ-field. This by the way also establishes (b).

Since Fσ satisfies all assumptions, Section 3, Proposition 5 implies that,
for any F-measurable strategy τ (such strategies exist by Section 2, Corol-
lary 2), vτ will be Fσ-measurable, so that we will have Fτ ⊆ Fσ by the mini-
mality property of Fτ . Thus, for any two F-measurable strategies τ0 and τ2,
we will have Fτ1 = Fτ2 : denote this σ-field by F̃ . F̃ satisfies all assumptions,
is separable, and F̃ ⊆ Fσ for any strategy σ, hence its minimality. The inclu-
sion of F̃ in A (resp. in B(A)) follows from its minimality, since those were
σ-fields with respect to which all assumptions held (cf Section 2, Remark
1). This proves (a). (Note that, while we showed that the original functions
wn and wn are measurable w.r.t. the minimal F̃ , we could even have used
Proposition 5.c to show that F̃ is in fact generated as the minimal σ-field
for which Section 2.2.1 holds and for which those functions are measurable.)
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c) follows, by application of Proposition 6.b., because our above proof
shows that the assumptions remain true on the smaller σ-field while keeping
the same functions vσ—for those σ’s that remain strategy vectors — hence
the same vσ(h).

Thus, we henceforth assume A separable, in addition to Section 2.2.1
and Section 3, Proposition 3.

5. The Candidate Set

Denote by P the Euclidean space of vector payoffs. We write for short
K∗Y instead of KY \φ, for any Y . Let Γ—the “space of games”—denote the
subspace of K∗

P×S̄
consisting of the graphs of continuous P -valued functions

defined on sets ΠnCn, with Cn ∈ K∗̄Sn
.

The mapping Φ of Section 3, Proposition 4 is such that, for each ω and
f , [Φ(f)](ω) is a continuous, P -valued function on S(ω). Any such function
can be equivalently described by its graph, which belongs to Γ: redefine φ
then as having values in Γ. Since all conclusions of Section 3, Proposition
4 are for fixed ω, and since on the space of continuous functions on a fixed
set S(ω) the Hausdorff topology on the graphs coincides with the uniform
topology, the conclusions of Section 3, Proposition 4 are not affected by
this redefinition.

Finally, define for Borel maps C : (Ω,A) → K∗P satisfying C(ω) ⊆ W (ω)
(C ∈ Dom(Φ) for short), [Φ(C)](ω) to be the closure in Γ of { [Φ(f)](ω) | f
is a measurable selection from C }. We obtain then

Lemma 9 a) Γ is a Polish space.
b) C ∈ Dom(Φ) ⇒ Φ(C) is a measurable map from (Ω,A) to K∗Γ.
c) Ci ∈ Dom(Φ), Ci → C pointwise ⇒ Φ(Ci) → Φ(C) pointwise.

Proof. a) K∗
P×S̄

is Polish by [5], Proposition 5.a. Let Fk = {K ∈ K∗
P×S̄

|
∃p1, p2, s : (p1, s) ∈ K, (p2, s) ∈ K, ‖p1‖ ≤ k, ‖p2‖ ≤ k, ‖p1 − p2‖ ≥ k−1}:
clearly, Fk is closed, and ∪Fk is the complement of the set of graphs of
continuous functions from a compact subset of S̄ to P . Thus the latter set is
a Gδ in K∗

P×S̄
, hence Polish too. Finally, Γ is closed in the latter set, because

the projection to S̄ is continuous and ΠnK∗̄Sn
is a closed subspace of K∗̄

S

([5], Proposition 6.d and 6.f). Hence Γ is Polish too. The G-measurability of
Φ(f)—as a map from G to P — follows immediately from the assumptions,
and its continuity in s from Section 3, Proposition 4.a. Section 2, Corollary
1 then implies directly that Φ(f) is a Borel map to Γ for any f ∈ F . Hence,
by Section 3, Proposition 4, (a) and (b), all assumptions of [5], Proposition
8 are satisfied: (a) and (c) of that proposition yield then (b) and (c) of
Lemma 9. This finishes the proof.
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From Γ, we have natural projections to each set K∗̄
Sn

; denote the image
of γ ∈ Γ by Sn(γ). Similarly, S(γ) = ΠnSn(γ) is the projection on S̄.
Hence ([5], Proposition 6d) Sn(γ) and S(γ) are continuous functions on Γ.
Denote also by v(γ) or vγ the continuous P -valued function on S(γ) that
corresponds to γ.

Denote by Σn the space of probabilities on S̄n, with the weak∗-topology.
Let Σ = ΠnΣn, X = {(γ, σ) ∈ Γ×Σ | σn is carried by Sn(γ)}, E = {(γ, σ) ∈
X | σ is a Nash equilibrium of γ}, and π : X → P : π(γ, σ) =

∫
vγ(s) d σ(s).

Finally, let X̂(γ) = {γ} × {σ | (γ, σ) ∈ X}, Ê(γ) = {γ} × {σ | (γ, σ) ∈ E}.
Lemma 10 (uppersemicontinuity of the equilibrium correspondence)

a) E and X are closed in Γ× Σ, hence Polish.
b) X̂ and Ê are u.s.c. maps from Γ to K∗(X) and K∗(E) respectively.
c) π is continuous.

Proof. Note that the Σn’s are compact metric; hence it is sufficient
to check closedness and continuity along convergent sequences. A direct
proof could be given, but it is more convenient to use Skohorod’s theorem:
if σi ∈ Σn converges to σ∞, there exists a sequence of S̄n-valued random
variables si(t) on ([0, 1], Lebesgue measure) such that si(t) converges a.e.
to s∞(t) and such that σi (resp. σ∞) is the distribution of si(t) (resp.
s∞(t)). Thus, if σi ∈ Σ converges to σ∞, we get such random variables
si
n(tn) for each player n, where the tn’s are independent uniform random

variables. Since any Borel subset of [0, 1] with Lebesgue measure 1 has a
Borel isomorphism with [0, 1] preserving Lebesgue measure, there is no loss
in further assuming the si(t) to be Borel measurable, with values in the
support of σi, and converging everywhere to s∞(t).

Hence, if (γi, σi) ∈ X converges to (γ∞, σ∞) in Γ × Σ, we have seen
that the Sn(γi)’s converge (Hausdorff) to Sn(γ∞). Since for each t, si

n(t) ∈
Sn(γi) and converges to s∞n (t), it follows that s∞n (t) ∈ Sn(γ∞); hence σ∞n
is carried by Sn(γ∞): (γ∞, σ∞) belongs indeed to X; hence the closedness
of X is proved. Further, π(γi, σi) = E[vγi

(si
1(t1), s

i
2(t2), . . .)] = Evγi

(si(t))
in vector notation. Since (vγi

(si(t)), si(t)) ∈ γi, and since γi → γ∞, the
sequence is compact, and any limit point belongs to γ∞. But the second
coordinate converges to s∞(t), so there is only one possible value for the
limit points in γ∞, i.e., (vγ∞(s∞(t)), s∞(t)). Thus vγi

(si(t)) converges to
vγ∞(s∞(t)). Finally, γi → γ∞ implies that γ∞ ∪ (∪iγ

i) is compact; hence
the sequence vγi

(si(t)) is uniformly bounded: the dominated convergence
theorem implies therefore that Evγi

(si(t)) converges to Evγ∞(s∞(t)), i.e.,
π(γi, σi) → π(γ∞, σ∞): continuity of π is also established.

Closedness of E now follows also: assume (γi, σi) ∈ E, and (γ∞, σ∞) /∈
E. Then one player, say 1, has a profitable deviation: ∃s∞ ∈ S1(γ∞) s.t.
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π1(γ∞; s∞, σ∞2 , σ∞3 , . . .) > π1(γ∞; σ∞1 , σ∞2 , . . .). Since S1(γi) → S1(γ∞), ∃si

∈ S1(γi) such that si → s∞. But then, by the continuity of π, we would
have π1(γi; si, σi

2, σ
i
3, . . .) > π1(γi; σi

1, σ
i
2, . . .), a contradiction.

Since Γ is Polish (Lemma 9), Γ × Σ is too, as a product of two Polish
spaces; hence X and E are Polish, as closed (hence Gδ) subsets of a Pol-
ish space. X̂ and Ê have nonempty values because any such game has an
equilibrium point (we have just shown in particular that the payoff func-
tion is jointly continuous (and is clearly multilinear) on the product of the
compact mixed strategy spaces), and uppersemicontinuity is an immediate
consequence of the compactness of Σ and of the closedness of X and E.

X̂ and Ê will also denote the induced maps on K∗Γ, and similarly π will
still denote the induced map on K∗X or its restriction to the subspace K∗E :

Corollary 5 a) π is a continuous map from K∗X (or K∗E) to K∗P .
b) X̂ and Ê are u.s.c. Borel maps from K∗Γ to K∗X and K∗E resp.
c) K∗Γ, K∗X , K∗E and K∗P are Polish.

Proof. (c) follows from Lemma 10.a, Lemma 9.a and [5], Proposition
5.a.

(a) follows from Lemma 10.c and from [5], Proposition 6.d. (b) follows
from Lemma 10.b ( + (a) for Polishness of X and E) and from [5], Propo-
sition 5, (b) and (c).

Proposition 8 There exists a measurable map N from (Ω,A) to K∗P , which
is in the domain of Φ, such that
a) N = π ◦ Ê ◦ Φ(N).
b) ∀ε > 0, there exists a Borel strategy vector σ in the game where the initial
state is in the graph of N instead of just in Ω—thus σ(h̃) where the h̃’s are
of the form (p, g0, g1, . . . , gt, ω) with p ∈ N(ω0), such that ‖vσ(p, ω0)−p‖ ≤ ε
uniformly on the graph of N .

Proof. First note that, by definition of Φ and of the function wn, w̄n,
any measurable map N to K∗P satisfying (b) lies in the domain of Φ. We first
construct a maximal such map. Fix a stationary strategy σ = (σ0, σ0, . . .);
vσ is measurable; hence N0(ω) = {vσ(ω)} satisfies our requirements. Given
Nk−1 satisfying our requirements, let Xk(ω) = X̂[(Φ(Nk−1))(ω)], and Nk(ω)
= π(Xk(ω)). By Lemma 9, and by the above corollary, Xk and Nk are
measurable maps to K∗X and K∗P resp.; further N0(ω) ⊆ N1(ω), since the
choice σ0 ∈ Σ is available and would yield vσ(ω). Hence, by induction,
Nk−1(ω) ⊆ Nk(ω). Finally, Nk satisfies (b): let σk−1 satisfy (b) with ε/2
on the graph of Nk−1. Let fi be a sequence of Borel selections from the
graph of Nk−1 such that the [Φ(fi)](ω) are dense in [Φ(Nk−1)](ω) for each
ω ([5], Proposition 8.b). Also, let ϕ be a Borel map from the graph of Nk
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to X such that everywhere ϕ(p, ω) ∈ Xk(ω), p = π(ϕ(p, ω)) ([5], Propo-
sition 9). Denote the coordinates of ϕ in Σ and Γ resp. by σ0(p, ω) and
γ(p, ω): those are Borel functions on the graph of Nk such that σ0(p, ω)
is everywhere a strategy vector in γ(p, ω) with payoff p, and such that
γ(p, ω) ∈ (Φ(Nk−1))(ω). Let gi = Φ(fi) : σ0(p, ω) is still a strategy vector in
all gi(ω), with pi(p, ω) = π(gi(ω), σ0(p, ω)) having p = π(γ(p, ω), σ0(p, ω))
as limit point (Lemma 10.c). Let T (p, ω) = min{i | ‖pi(p, ω) − p‖ ≤ ε/2}:
T (p, ω) is Borel, so σk(p) = (σ0(p, ω0), σk−1[fT (p,ω0)(ω1), ω1]) is a Borel
strategy for the game having the graph of Nk as a set of initial states;
since ‖vσk−1(fT (p,ω0)) − fT (p,ω0)‖ ≤ ε/2 and since ‖pT (p,ω)(p, ω) − p‖ ≤ ε/2,
the recursion formula (Section 3, Proposition 5.b) implies ‖vσk(p) − p‖ ≤ ε.
Thus the Nk form an increasing sequence of correspondences satisfying our
requirements. In particular, it follows that Nk(ω) ⊆ W (ω). Since an increas-
ing sequence of compact sets, contained in a fixed compact set, converges
in the Hausdorff topology, it follows that Nk converges pointwise to a Borel
map, say N∞ from (Ω,A) to K∗P . Since the graphs Gk of Nk are Borel
([5], Proposition 9.b), we obtain a Borel strategy σ defined on ∪kGk = G∞
by σ(p) = σk(p) on Gk \ Gk−1 (G−1 = φ); then for each (p, ω) ∈ G∞,
‖vσ(p)(ω) − p‖ ≤ ε. We now obtain a similar strategy σ∞ on the graph of
N∞, which is for each ω the closure of G∞(ω) (Lemma 10.c). Rank in one
sequence all functions fi we have met, at all stages of the induction. Let
T (p, ω) = min{i | ‖fi(ω) − p‖ ≤ ε}, which is Borel on the graph of N∞,
and let σ∞(p, ω) = σ(fT (p,ω)(ω), ω). Thus N∞ satisfies our requirements.
By Lemma 9, Φ(Nk) converges pointwise to Φ(N∞); hence trivially Xk(ω)
converges pointwise to X∞(ω) = X̂[(Φ(N∞))(ω)]. Thus, by Corollary 5(a),
Nk = π ◦Xk converges pointwise to π ◦X∞; N∞(ω) = π(X∞(ω)).

Let us now forget this whole sequence, and write N0 for N∞: we have
a Borel map N0 from (Ω,A) to K∗P that satisfies (b), and is such that
N0 = π◦X̂ ◦ [Φ(N0)]. Hence N1 = π◦Ê ◦ [Φ(N0)] ⊆ N0: defining inductively
Ek = Ê ◦ [Φ(Nk)], Nk+1 = π ◦ Ek we find that the Ek and the Nk are
decreasing sequences of Borel maps (Lemma 9 and Corollary 5) from (Ω,A)
to K∗E and to K∗P respectively. Hence they are pointwise convergent, say to
E∞ and N∞, which are thus also Borel maps from (Ω,A) to K∗E and K∗P .
By Lemma 9, Φ(Nk) converges pointwise to Φ(N∞). Hence, by Corollary
5.b, for fixed ω, any open set U of E containing Ê([Φ(N∞)](ω)) contains
all Ek(ω) = Ê([Φ(Nk)](ω)), for k sufficiently large. Since also N∞ ⊆ Nk

implies that Φ(N∞) ⊆ Φ(Nk) and hence that Ê([Φ(N∞)](ω)) ⊆ Ek(ω), we
find that E∞ = Ê ◦ [Φ(N∞)]. Finally, Ek → E∞ implies, by Corollary 5.a,
that Nk+1 = π◦Ek converges pointwise to π◦E∞, hence N∞ = π◦E∞. Thus
N∞ is a Borel map from (Ω,A) to K∗P , satisfying N∞ = π ◦ Ê ◦ Φ(N∞),
and also satisfying (b) since N∞ ⊆ N0 which satisfies (b). This proves
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Proposition 8.

6. The Equilibrium Strategies

Given the map N of Section 5, Proposition 8, denote by N the set of Borel
selections from N . Let also, for g ∈ G,Ψ(g) = {∫ f(ω)p(dω | g) | f ∈ N},
and denote the graphs of N × S[= ω → N(ω) × S(ω)], N and Ψ resp. by
H,P and F .

Lemma 11 a) Ψ is a Borel map from (G,G) to K∗P , and F is Borel in
Ω× S̄ × P ;

b) P is a Borel in Ω× P ;
c) H is a Borel in Ω× P × S̄;
d) there exist Borel maps σn(p, ω) from P to Σn and ψ(p, g) from H to P

such that ψ(p, g) ∈ Ψ(g) and the σn(p, ω) from a Nash equilibrium with
payoff p of the game with pure strategy sets Sn(ω) and a (continuous)
payoff function u(ω, s) + ψ(p, ω, s)(s ∈ S(ω));

e) there exists a Borel map ϕ from F×Ω to P such that ϕ(g, p, ω) ∈ N(ω)
and

∫
ϕ(g, p, ω)p(dω | g) = p.

Proof. (a) follows from [5], Theorem, a.2. and [5], Proposition 9.b.
(b) follows from [5], Proposition 9.b.
(c) The map ω → (N(ω), S(ω)) ∈ K∗P × K∗̄S is measurable, hence ([5],

Prop 6.f) so is the map ω → N(ω)×S(ω) ∈ K∗
P×S̄

. Hence ([5], Proposition
9.b) its graph H is measurable.

(d) By [5], Proposition 9.c, there exist Borel maps σn(p, ω) and γ(p, ω)
from P to Σn and to Γ such that the σn(p, ω) form a Nash equilibrium with
payoff p of γ(p, ω), and γ(p, ω) ∈ [Φ(N)](ω), because N = π◦Ê ◦Φ(N), and
π is continuous (Section 5, Proposition 8.a and Corollary 5.a). For (p, ω, s) ∈
H, let ψ(p, ω, s) = [γ(p, ω)](s) − u(ω, s), where [γ(p, ω)](s) denotes the
value at s ∈ S(ω) of the payoff function of the game γ(p, ω). Let P̄ denote
the one-point compactification of P . Since Γ is a subspace of K∗̄

P×S̄
, by

definition and by [5], Proposition 6, g, the map (γ, s) → γ ∩ (P̄ × {s})
is Borel from Γ × S̄ to K∗̄

P×S̄
, by [5], Proposition 6.e. By composition,

(p, ω, s) → (γ(p, ω)) ∩ (P̄ × {s}) is Borel on P × S̄. Since the values of the
restriction of this map to H are the singletons {[γ(p, ω)](s)}, it follows that
(p, ω, s) → [γ(p, ω)](s) is Borel onH ([5], Proposition 6.a). Since also u(ω, s)
is measurable, we obtain that ψ is a Borel map fromH to P . Clearly, the fact
that σn(p, ω) is a Nash equilibrium of γ(p, ω) means that σn(p, ω) is a Nash
equilibrium of the game with pure strategy spaces Sn(ω) and (continuous)
payoff function u(ω, s) + ψ(p, ω, s). Finally, ψ(p, g) ∈ Ψ(g) follows from
the compactness of Ψ(p) (point (a)), and from γ(p, ω) ∈ [Φ(N)](ω), which
implies that ψ(p, g) is in the closure of Ψ(g).
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Finally, point (e) follows from point (c) of the theorem in [5].

Lemma 12 The graph of N is the union of the graphs of its Borel selec-
tions. For any Borel selection p(ω) from N(ω), there exist a Borel map p
from (H,H) to P , and a vector of Borel strategies τn, such that
a) for h̃ = (ω) ∈ H̃0, p(h̃) = p(ω)
b) the τn(h, ω) form a Nash equilibrium with payoff p(h, ω) of the game

with pure strategy sets Sn(ω) and continuous payoff function p(h, ω, s)
c) p(h, g) = u(g) +

∫
p(h, g, ω)dp(ω | g)

d) p(h, ω) ∈ N(ω)

Proof. The first statement follows from Section 5, Proposition 8 and
[5], Proposition 7.c. (The measurability of a function on (Ω,A) is preserved
when changing its value on some given atom (separability).) Now define
inductively a Borel function p on (H,H), as follows: for h̃ = (ω) ∈ H̃o,
let p(h̃) = p(ω). Define p on Ht+1 by p(h, ωt, st) = ψ[p(h, ωt), (ωt, st)] for
h ∈ Ht and on H̃t+1 by p(h, gt, ωt+1) = ϕ[gt, p(h, gt), ωt+1]. Lemma 11
immediately implies by induction (composition of Borel functions) that p
is everywhere well defined and is Borel, and that p(h, ω) ∈ N(ω). Now
redefine p(h, g) by adding u(g) to it.

Now let τn(h, ω) = σn(p(h, ω), ω): again the measurability of σn (Lemma
11.d) and of p imply by composition that τn is Borel measurable—it is well
defined because p(h, ω) ∈ N(ω). Thus τn is a Borel map from histories h̃ to
Σn. The rest of the statement follows now from Lemma 11.d for (b), and
Lemma 11.e for (c).

Since N(ω) 6= ∅ (Section 5, Proposition 8), Lemma 12 implies that, in
order to finish the proof of the main theorem, it will be sufficient to prove:

Lemma 13 The strategy vector τ = (τn) of Lemma 12 is a subgame-perfect
equilibrium with vτ (h) = p(h) and vτ (h̃) = p(h̃) for any finite histories h
and h̃.

Proof. Consider the strategy vector τk consisting of playing τ for
the first k stages, and at all later stages k + t (t = 0, 1, . . .), τk(h, h̃) =
σ(p(h, ω), h̃) where h ∈ Hk, h̃ ∈ H̃t, ω denotes the first element of h̃, and σ
is the strategy described in Section 5, Proposition 8.b, with ε = k−1. This
is well defined since p(h, ω) ∈ N(ω) (Lemma 12.d), and is (by composition)
a Borel strategy vector. By definition (Section 3, Proposition 3.c) we have,
for all n and all h̃ ∈ H̃k, |vτk

n (h̃)−pn(h̃)| ≤ k−1. By the recursion formula of
Section 3, Proposition 5.b for vτk

and by Lemma 12, (b) and (c) for the func-
tion p, we obtain now by backward induction that |vτk

n (h̃) − pn(h̃)| ≤ k−1

and |vτk

n (h)−pn(h)| ≤ k−1 for all n and all h̃ ∈ H̃t, h ∈ Ht, and all t ≤ k. By
Section 3, Proposition 5.c, for any h̃, vτk

(h̃) converges to vτ (h̃)—the vτ (h)
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and the vτ (h̃) exist by Section 3, Proposition 5.a.1 and 5.a.2. By points
(a.3) and (b.1) of that proposition, this implies by the dominated conver-
gence theorem that also vτk

(h) converges to vτ (h). Hence vτ (h) = p(h) and
vτ (h̃) = p(h̃).

Hence the conclusion, by Lemma 12.b and Section 3, Proposition 6.b.
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