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1. Introduction

The existence of the value for stochastic games with finitely many states
and actions, as well as for a class of stochastic games with infinitely many
states and actions, is proved in [2]. Here we use essentially the same tools
to derive the existence of the minmax and maxmin for n-player stochastic
games with finitely many states and actions, as well as for a corresponding
class of n-person stochastic games with infinitely many states and actions.

The set of states of the stochastic game Γ is denoted S, the set of
actions of player i ∈ I at state z ∈ S is Ai(z), and the stage payoff and
the transition probability as a function of the state z and the action profile
a ∈ ×i∈IA

i(z) are denoted r(z, a) and p ( · | z, a), respectively. The vector
payoff at stage t, r(zt, at) = (ri(zt, at))i∈I , is denoted xt; note that xt can
be viewed as a function that is defined on the measurable space of infinite
plays (z1, a1, . . . , zt, . . .). If Γ is a two-player zero-sum stochastic game we
write xt for x1

t . A strategy profile σ together with an initial state z1 ∈ S
induces a probability distribution on the (measurable) space of plays. The
expectation w.r.t. this probability distribution is denoted by Ez1

σ or Eσ for
short.

1.1. DEFINITIONS OF THE VALUE AND THE MINMAX

First recall the definition of the value, minmax, and maxmin. We say that
v(z) is the value of a two-person zero-sum stochastic game Γ with initial
state z1 = z if:
1) For every ε > 0 there is an ε-optimal strategy σ of player 1, i.e., a strategy
σ of player 1, such that: there is a positive integer N (N = N(ε, σ)) such
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that for every strategy τ of player 2 and every n ≥ N we have

Ez1
σ,τ

(
1
n

n∑

t=1

xt

)
≥ v(z1)− ε

and

Ez1
σ,τ

(
lim inf
n→∞

1
n

n∑

t=1

xt

)
≥ v(z1)− ε;

and
2) For every ε > 0 there is an ε-optimal strategy τ of player 2, i.e., a
strategy τ of player 2 such that: there is a positive integer N such that for
every strategy σ of player 1 and every n ≥ N we have

Ez1
σ,τ

(
1
n

n∑

t=1

xt

)
≤ v(z1) + ε

and

Ez1
σ,τ

(
lim sup

n→∞
1
n

n∑

t=1

xt

)
≤ v(z1) + ε.

We say that v̄i(z) is the minmax of player i in the I-player stochastic
game Γ with initial state z1 = z if:
1) For every ε > 0 there is an ε-minimaxing I \ {i} strategy profile σ−i in
Γ, i.e., an I \ {i} strategy profile σ−i such that: there is a positive integer
N such that for every n ≥ N and every strategy σi of player i we have

Ez1

σi,σ−i

(
1
n

n∑

t=1

xi
t

)
≤ v̄i(z1) + ε (1)

and

Ez1

σi,σ−i

(
lim sup

n→∞
1
n

n∑

t=1

xi
t

)
≤ v̄i(z1) + ε; (2)

and
2) For every ε > 0 there is a positive integer N such that for every I \ {i}
strategy profile σ−i in Γ there is a (σ−i-ε-N -maximizing) strategy σi of
player i such that for every n ≥ N we have

Ez1

σi,σ−i

(
1
n

n∑

t=1

xi
t

)
≥ v̄i(z1)− ε (3)
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and

Ez1

σi,σ−i

(
lim inf
n→∞

1
n

n∑

t=1

xi
t

)
≥ v̄i(z1)− ε. (4)

We say that vi(z) is the maxmin of player i in the I-player stochastic
game Γ with initial state z1 = z if:
1) For every ε > 0 there is a strategy σi of player i and a positive N such
that for every n ≥ N and every strategy profile σ−i of players I \ {i} we
have

Ez1

σi,σ−i

(
1
n

n∑

t=1

xi
t

)
≥ vi(z1)− ε

and

Ez1

σi,σ−i

(
lim inf
n→∞

1
n

n∑

t=1

xi
t

)
≥ vi(z1)− ε;

and
2) For every ε > 0 there is a positive integer N such that for every strategy
σi of player i in Γ there is an I \{i} strategy profile σ−i such that for every
n ≥ N we have

Ez1

σi,σ−i

(
1
n

n∑

t=1

xi
t

)
≤ vi(z1) + ε

and

Ez1

σi,σ−i

(
lim sup

n→∞
1
n

n∑

t=1

xi
t

)
≤ vi(z1) + ε.

In the above definitions of the value (minmax and maxmin, respectively)
of the stochastic games with initial state z1 the positive integer N may
obviously depend on the state z1. When N does not depend on the initial
state we say that the stochastic game has a value (a minmax and a maxmin,
respectively). Formally, the stochastic game has a value if there exists a
function v : S → R such that ∀ε > 0 ∃σε, τε ∃N s.t. ∀z1 ∈ S ∀σ, τ ∀n ≥ N
we have

ε + Ez1
σε,τ

(
1
n

n∑

t=1

xt

)
≥ v(z1) ≥ −ε + Ez1

σ,τε

(
1
n

n∑

t=1

xt

)

and

ε + Ez1
σε,τ

(
lim inf
n→∞

1
n

n∑

t=1

xt

)
≥ v(z1) ≥ −ε + Ez1

σ,τε

(
lim sup

n→∞
1
n

n∑

t=1

xt

)
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where σ, σε (respectively, τ, τε) stands for strategies of player 1 (respectively,
strategies of player 2).

Similarly, the stochastic game has a minmax of player i if there is a
function v̄i : S → R such that:
1) ∀ε > 0 ∃σ−i ∃N s.t. ∀σi ∀n ≥ N

Ez1

σ−i, σi

(
1
n

n∑

t=1

xi
t

)
≤ v̄i(z1) + ε

and

Ez1

σ−i, σi

(
lim sup

n→∞
1
n

n∑

t=1

xi
t

)
≤ v̄i(z1) + ε;

and
2) ∀ε > 0 ∃σ ∃N s.t. ∀σ−i ∀n ≥ N

Ez1

σ−i, σi

(
1
n

n∑

t=1

xi
t

)
≤ v̄i(z1) + ε

and

Ez1

σ−i, σi

(
lim inf
n→∞

1
n

n∑

t=1

xi
t

)
≥ v̄i(z1)− ε.

There are several weaker concepts of value, minmax and maxmin.

1.2. THE LIMITING AVERAGE VALUE

The limiting average value (of the stochastic game with initial state z1)
exists and equals v∞(z1) whenever ∀ε > 0 ∃σε, τε s.t. ∀τ, σ

ε + Ez1
σε,τ

(
lim inf
n→∞

1
n

n∑

t=1

xt

)
≥ v∞(z1) ≥ −ε + Ez1

σ,τε

(
lim sup

n→∞
1
n

n∑

t=1

xt

)
.

A related but weaker concept of a value is the limsup value. The limsup
value (of the stochastic game with initial state z1) exists and equals v`(z1)
whenever ∀ε > 0 ∃σε, τε s.t. ∀τ, σ

ε + Ez1
σε,τ

(
lim sup

n→∞
1
n

n∑

t=1

xt

)
≥ v`(z1) ≥ −ε + Ez1

σ,τε

(
lim sup

n→∞
1
n

n∑

t=1

xt

)
.
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1.3. THE UNIFORM VALUE

The uniform value of the stochastic game with initial state z1 exists and
equals u(z1) whenever ∀ε > 0 ∃σε, τε ∃N s.t. ∀τ, σ ∀n ≥ N

ε + Ez1
σε,τ

(
1
n

n∑

t=1

xt

)
≥ u(z1) ≥ −ε + Ez1

σ,τε

(
1
n

n∑

t=1

xt

)
.

The stochastic game has a uniform value if there is a function u : S → R
such that ∀ε > 0 ∃σε, τε ∃N s.t. ∀z1 ∀τ, σ ∀n ≥ N

ε + Ez1
σε,τ

(
1
n

n∑

t=1

xt

)
≥ u(z1) ≥ −ε + Ez1

σ,τε

(
1
n

n∑

t=1

xt

)
.

Analogous requirements define the limiting average minmax and maxmin,
the limsup minmax and maxmin, and the uniform minmax and maxmin.

In a given two-player zero-sum stochastic game (1) existence of the
value is equivalent to the existence of both the maxmin and the minmax,
and their equality, (2) existence of the uniform value is equivalent to the
existence of both the the uniform maxmin and the uniform minmax, and
their equality, and (3) existence of the limiting average value is equivalent to
the existence of both the limiting average maxmin and the limiting average
minmax, and their equality.

1.4. EXAMPLES

The following example highlights the role of the set of inequalities used in
the above definitions, and illustrates the differences of the various value
concepts.

Consider the following example of a single-player stochastic game Γ
with infinitely many states and finitely many actions: the state space S is
the set of integers; at state 0 the player has two actions called − and +
and in all other states the player has a single action (i.e., no choice); the
payoff function depends only on the state. The payoff function r is given by:
r(k) = 1 if either (n−1)! ≤ k < n! and n > 1 is even or −n! < k ≤ −(n−1)!
and n > 1 is odd; in all other cases r(k) = 0. The transition is deterministic;
p (1 | 0,+) = 1 = p (−1 | 0,−), p (k+1 | k) = 1 if k ≥ 1, and p (k−1 | k) = 1
if k ≤ −1. The stochastic game Γ can be viewed as a two-player zero-sum
game where player 2 has no choices.

Obviously,

lim inf
n→∞ vn(0) = 1/2 and lim sup

n→∞
vn(0) = 1
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where vn denotes the value of the normalized n-stage game. Therefore, the
stochastic game Γ with the initial state z1 = 0 does not have a uniform
value.

For every strategy σ and every initial state z we have

lim sup
n→∞

1
n

n∑

i=1

xi = 1.

Therefore, the stochastic game Γ with the initial state z1 has a lim sup
value (= 1). Since for every strategy σ and every initial state we have

lim inf
n→∞

1
n

n∑

i=1

xi = 0

we deduce that (for any initial state) the limiting average value does not
exist.

Consider the following modification of the above example. The payoff at
state 0 is 1/2 and p ( 1 | 0, ∗) = 1/2 = p (−1 | 0, ∗). All other data remains
unchanged. The initial state is 0. Thus the payoff at stage 1 equals 1/2.
For every i > 1 the payoff at stage i equals 1 with probability 1/2 and it
equals 0 with probability 1/2. Therefore E( 1

n

∑n
i=1 xi) = 1/2 and therefore

vn(0) = 1/2. In particular, the stochastic game with initial state z1 = 0
has a uniform value (= 1/2). However, since lim infn→∞ 1

n

∑n
i=1 xi = 0

and lim supn→∞
1
n

∑n
i=1 xi = 1 we deduce that the three value concepts—

one based on the evaluation lim infn→∞ 1
n

∑n
i=1 xi of a stream of payoffs

x1, . . . , xi, . . ., one based on the valuation lim supn→∞
1
n

∑n
i=1 xi, and the

other based on the payoff γ(σ, τ) = limn→∞Eσ,τ ( 1
n

∑n
i=1 xi)— give different

results. However, such pathologies cannot arise in a game that has a value.
Section 2 discusses the candidate for the value. In Section 3 we present a

basic probabilistic lemma which serves as the driving engine for the results
to follow. Section 4 introduces constrained stochastic games and uses the
basic probabilistic lemma to prove the existence of a value (of two-player
zero-sum stochastic games) as well as the existence of the maxmin and the
minmax (of n-player stochastic games).

2. The Candidate for the Value

Existence of the value v implies that the limit (as n → ∞) of vn, the
(normalized) values of the n stage games, exists and equals v, and moreover
the limit (as λ → 0+) of vλ, the (normalized) value of the λ-discounted
games, exists and equals v.
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Therefore, the only candidate for the value v is the limit of the values vn

as n →∞, which equals the limit of the values of the λ-discounted games
vλ as λ → 0+.

Assume first that every stochastic game with finitely many states and
actions indeed has a value (and thus in particular a uniform value). Denote
by v(z1) the value as a function of the initial state z1. Note that if σ is an
ε-optimal strategy of player 1 in Γ∞ then it must satisfy

Ez1
σ,τ (v(zn+1)− v(z1)) ≥ −ε (5)

for every strategy τ of player 2 and every positive integer n. Otherwise, there
is a strategy τ ′ of player 2 and a positive integer n such that Eσ,τ ′(v(zn)−
v(z1)) < −ε. Fix ε1 > 0 sufficiently small such that Eσ,τ ′(v(zn)− v(z1)) <
−ε−2ε1. Let τ ′′ be an ε1-optimal strategy of player 2. Consider the strategy
τ of player 2 that coincides with τ ′ in stages 1, . . . , n and with τ ′′ thereafter,
i.e., τi = τ ′i if i < n and τi(z1, a1, . . . , zi) = τ ′′i−n+1(zn, an, . . . , zi) if i ≥ n. It

follows that for k sufficiently large Eσ,τ

(
1
k

∑k
i=1 xi − v(z1)

)
< −ε, which

contradicts the ε-optimality of σ.
The ε appearing in inequality (5) is essential. It is impossible to find

for every two-person zero-sum stochastic game an ε-optimal strategy σ of
player 1 such that for every n sufficiently large Eσ,τ (v(zn)− v(z1)) ≥ 0 for
every strategy τ of player 2: the only such strategy σ in the big match is the
one that always plays the non-absorbing action, and given such a strategy
σ of player 1 there is a strategy τ of player 2 such that for ε > 0 sufficiently
small and every n we have Eσ,τ

(
1
n

∑n
i=1 xi

)
< v(z1)− ε.

The variable v(zn) represents the potential for payoffs starting at stage
n. The above discussion shows that targeting the future potentials alone
is necessary but insufficient; the player also has to reckon with the stream
of payoffs (xn)∞n=1. Therefore, in addition to securing the future potential,
player 1’s ε-optimal strategy has to correlate the stream of payoffs (xn)∞n=1

to the stream of future potentials (v(zn))∞n=1.
The constructed ε-optimal strategies σε of player 1 will thus guarantee

in addition that for sufficiently large n,

Eσε,τ

(
1
n

n∑

i=1

(xi − v(zi))

)
≥ −ε (6)

which together with inequality (5) guarantees that Eσε,τ

(
1
n

∑n
i=1 xi

) ≥
v(z1)− 2ε.

The delicate point of the contraction of ε-optimal strategies is thus to
find a strategy σ that guarantees both (5) and (6). We anchor the construc-
tion on the following inequality that holds for any behavioral strategy of
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player 1 that plays at stage i the optimal mixed action of the λi-discounted
stochastic game:

Eσ,τ (λixi + (1− λi)vλi
(zi+1) | Hi) ≥ vλi

(zi), (7)

where Hi is the σ-algebra generated by the sequence z1, a1, . . . , zi of states
and actions up to the play at stage i. Moreover, player 1 can guarantee these
inequalities to hold also for a sequence of discount rates λi that depends on
the past history (z1, a1, . . . , zi). The term λixi +(1−λi)vλi(zi+1) appearing
in (7) is a weighted average of the stage payoff xi and an approximation
vλi

(zi+1) of the future potential v(zi+1). Note that inequality (7) states
that the conditional expectations of this weighted average is larger than an
approximation vλi(zn) of the potential starting at stage n, v(zn).

In proving the existence of the minmax (of an I-player stochastic game
with finitely many players, states and actions) we first define for every λ > 0
the functions v̄i

λ : S → R by

v̄i
λ(z) = min

σ−i
max

σi
Eσi,σ−i(λ ri(z1, a1) + (1− λ)v̄i

λ(z2) | z1 = z)

= min
y

max
x

λ ri(z, x, y) + (1− λ)
∑

z′∈S

p (z′ | z, x, y) v̄i
λ(z′)

where the first min is over all I \ {i}-tuples of strategies σ−i = (σj)j 6=i

and the second min is over all I \ {i}-tuples y = (yj)j 6=i of mixed actions
yj ∈ ∆(Aj(z)); similarly, the first max is over all strategies σi of player i and
the second max is over all mixed actions x ∈ ∆(Ai(z)) of player i; r(z, x, y)
and p (z′ | z, x, y) are the multilinear extension of r and p respectively.

Next, we observe that the functions λ 7→ v̄i
λ(z) are bounded and semi-

algebraic and thus converge as λ → 0+ to v̄i(z), which will turn out to be
the minmax of player i.

Next, we show that for every ε > 0 there is a positive integer N = N(ε)
and a sequence of discount rates (λt)∞t=1 such that λt is measurable w.r.t.
the algebras Ht and such that if σ is a strategy profile such that for every
t ≥ 1 we have

Eσ(λt ri(zt, at) + (1− λt) v̄i
λt

(zt+1) | Ht) ≤ v̄i
λt

(zt), (8)

then for every n ≥ N inequalities (1) and (2) hold. Therefore an I \ {i}
strategy profile σ−i such that for every strategy σi of player i the strategy
profile (σ−i, σi) obeys (8) is an ε-minimaxing I \ {i} strategy profile.

Similarly, for every ε > 0 there is a positive integer N = N(ε) and a
sequence of discount rates (λt)∞t=1 such that λt is measurable w.r.t. the Ht

and such that if σ is a strategy profile such that for every t ≥ 1 we have

Eσ(λt ri(zt, at) + (1− λt) v̄i
λt

(zt+1) | Ht) ≥ v̄i
λt

(zt), (9)
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then for every n ≥ N inequalities (3) and (4) hold. Given an I \ {i} strat-
egy profile σ−i = (σj)j 6=i, we can assume without loss of generality (using
Kuhn’s theorem) that σj is a behavioral strategy and therefore there exists
a strategy σi of player i such that (9) holds and thus we conclude that v̄i

is indeed the maxmin of the stochastic game.

3. The Basic Lemma

The next lemma is stated as a lemma on stochastic processes. The statement
of the lemma is essentially a reformulation of an implicit result in [2] and its
proof is essentially identical to the proof there. Without needing to repeat
and replicate the proof, the reformulation enables us to use an implicit
result of [2] in various other applications, like (1) the present existence of
the minmax in an n-player stochastic game, (2) the existence of the minmax
of two-player stochastic games with imperfect monitoring [1], [4], [5], and
(3) the existence of an extensive-form correlated equilibrium in n-player
stochastic games [6].

We use symbols and notations that indicate its applicability to stochas-
tic games. Let (Ω,H∞) be a measurable space and (Ht)∞t=1 an increasing
sequence of σ-fields with H∞ the σ-field spanned by ∪∞t=1Ht. Assume that
for every 0 < λ < 1, (rt, λ)∞t=1 is a sequence of (real-valued) random vari-
ables with values in [-1,1] such that rt, λ is measurable with respect to Ht+1

and (v t, λ)∞t=1 is a sequence of [−1, 1]-valued functions such that vt, λ is
measurable w.r.t. Ht. In many applications to stochastic games, the mea-
surable space Ω is the space of all infinite plays, and Ht is the σ-algebra
generated by all finite histories (z1, a1, . . . , zt). In stochastic games with
imperfect monitoring the σ-algebra Ht may stand for (describe) the infor-
mation available to a given player prior to his choosing an action at stage
t; see [1], [4] and [5].

The random variable vt, λ may play the role of the value of the λ-
discounted stochastic game as a function of the initial state zt, or the
minmax value of the λ-discounted stochastic game as a function of the
initial state zt. Note that in this case it is independent of t. More generally,
vt, λ can stand for the solution of an auxiliary system of equations of the
form vt, λ = supx infy f(x, y, t, λ) where the domain of x and y may depend
on zt, t and λ and the function f is measurable w.r.t. Ht.

The random variable rt, λ may play the role of the t-th stage payoff to
player i, i.e., ri(zt, at). Note that in this case it is independent of λ. More
generally, rt, λ can stand for a payoff of an auxiliary one-stage game that
depends on the state zt as well as on the discount parameter λ, in which
case it does depend on λ .
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Lemma 1 Assume that for every δ > 0 there exist two functions, L(s) and
λ(s), of the real variable s, and a positive constant M > 0 such that λ is
strictly decreasing with 0 < λ(s) < 1 and L is integer-valued with L(s) > 0,
and such that, for every s ≥ M , |θ| ≤ 3 and ω ∈ Ω,

4L(s) ≤ δs (10)

|λ(s + θL(s))− λ(s)| ≤ δλ(s) (11)

|vn, λ(s+θL(s))(ω)− vn, λ(s)(ω)| ≤ 4δL(s)λ(s) (12)
∫ ∞

M
λ(s) ds ≤ δ. (13)

Then, a) the limit limλ→0+ vt,λ exists and is denoted vt,∞, and b) for every
ε > 0 and λ0 > 0 there is n0 sufficiently large and a sequence (λt)∞t=1 with
0 < λt < λ0 and λt measurable w.r.t. Ht such that for every probability P
on (Ω,H∞) with

EP (λtrt,λt + (1− λt)vλt,t+1) | Ht) ≥ vλt,t − ελt,

we have

EP

(
1
n

n∑

t=1

rt,λt

)
≥ v1,∞ − 5ε ∀n ≥ n0 (14)

EP

(
lim inf
n→∞

1
n

n∑

t=1

rt,λt

)
≥ v1,∞ − 5ε (15)

EP (
∑

t≥1

λt) < ∞. (16)

In the case that vt,λ(ω) is either the λ-discounted value of a two-player
zero-sum stochastic game or the minmax (or maxmin) of player i of the
λ-discounted stochastic game it is actually a function of the two variables
λ and zt (which depends obviously on ω and t). Whenever the stochastic
game has finitely many states and actions, each one of the (finitely many)
functions λ 7→ vt,λ(ω) is a bounded semialgebraic function. Therefore, the
set of functions λ 7→ vt,λ(ω), where t and ω range over all positive integers
t and all points ω ∈ Ω, is a finite set of bounded real-valued semialgebraic
functions. In that case, the assumption and conclusion (a) of Lemma 1
hold. Indeed, it follows (see, e.g., [3]) that there is a constant 0 < θ < 1
and finitely many functions fj :]0, θ] → R, j ∈ J , which have a convergent
expansion in fractional powers of λ: fj(λ) =

∑∞
i=1 ai,jλ

i/m where m is a
positive integer, such that for every t and ω there is j ∈ J such that for
0 < λ ≤ θ, vt,λ(ω) = fj(λ). Therefore, one could take L(s) = 1, λ(s) =
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s−1− 1
M where M is sufficiently large. Alternatively, one can choose L(s) = 1,

λ(s) = 1/(s ln2 s), and M sufficiently large. Conclusion (a) holds since the
limit (as λ → 0+) of a bounded semialgebraic function exists.

Proof of Lemma 1. We assume w.l.o.g. that δ < 1/4. We first note that
conditions (10), (11), (12) and (13) on the positive constant M , the strictly
decreasing function λ : [M,∞) → (0, 1) and the integer-valued function
L : [M,∞) → N imply that the limit limλ→0+ vn,λ(ω) exists for every ω
and n, and denoting this limit by vn,∞(ω) we have vn,λ(s)(ω) →s→∞ vn,∞(ω)
and

|vn,λ(s)(ω)− vn,∞(ω)| ≤ δ. (17)

Indeed, define inductively q1 = M and qk+1 = qk + 3L(qk). It follows
from (11) that λ(s) ≥ (1 − δ)λ(qk) for every qk ≤ s ≤ qk+1 and thus∫ qk+1

qk
λ(s)ds ≥ 3L(qk)(1− δ)λ(qk). Therefore,

∞∑

k=1

4δL(qk)λ(qk) ≤ 4δ

3(1− δ)

∫ ∞

M
λ(s)ds

which by (13) (and using the inequality δ < 1/4) is ≤ δ/2.
Using (12), the sequence (vλ(qk), n)∞k=1 is a Cauchy sequence and thus it

converges to a limit, vn,∞, and

|vn,λ(qk) − vn,∞| ≤
∞∑

k=1

4δL(qk)λ(qk) ≤ 4δ

3(1− δ)

∫ ∞

M
λ(s)ds ≤ δ/2.

Given s ≥ M , let k be the largest positive integer such that qk ≤ s.
It follows that s = qk + θL(qk) with 0 ≤ θ ≤ 3, and thus, using (12),
|vn,λ(s) − vn,λ(qk)| ≤ 4δL(qk)λ(qk) →k→∞ 0. Therefore vn,λ(s) →s→∞ vn,∞
(moreover, the convergence is uniform) and |vn,λ(s) − vn,∞| ≤ δ for every
s ≥ M .

Recall that the above step is redundant in the special case where the
set of functions λ 7→ vn, λ(ω), 0 < λ ≤ 1, where n and ω range over all
positive integers and all points ω ∈ Ω, constitute a finite set of bounded
semialgebraic functions.

We now continue with the proof. Fix ε > 0 sufficiently small (ε <
1/2) and set δ = ε/12. As λ is strictly decreasing and integrable by (13),
lims→∞ sλ(s) = 0; hence by (10) it follows that lims→∞ λ(s)L(s) = 0 and
therefore by choosing M sufficiently large

λ(s)L(s) ≤ δ for s ≥ M. (18)

Define inductively, starting with s0 ≥ M :

Lk = L(sk), Bk+1 = Bk + Lk, B0 = 1,
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sk+1 = max{M, sk +
∑

Bk≤ i < Bk+1

(ri, λ(sk) − vBk+1, λ(sk) + 2ε)}.

Define λi = λ(sk) for Bk ≤ i < Bk+1. Let P be a distribution on Ω such
that for every j ≥ 1,

EP (λj rj, λj + (1− λj) vj+1, λj | Hj) ≥ vj, λj − ελj = vj,λj − 12δλj . (19)

In order to simplify the notation in the computations below we denote
αk = λBk

, wk = vBk,αk
, Fk = HBk

and tk =
∫∞
sk

λ(s) ds. Define

Yk = vBk,αk
− tk.

We will prove that (Yk)∞k=0 is a submartingale adapted to the increasing
sequence of σ-fields (Fk)∞k=0, and moreover that

EP (Yk+1 − Yk | Fk) ≥ 3δLkαk. (20)

Note that Yk+1 − Yk = vBk+1,αk+1
− vBk,αk

+
∫ sk+1

sk
λ(s)ds. In the computa-

tions that follow and prove (20) we replace vBk+1,αk+1
by vBk+1,αk

and the
resulting error term is ≤ 4δLkαk, and we replace the term

∫ sk+1

sk
λ(s)ds by

αk(sk+1−sk) and the resulting error term is bounded by 3δαkLk. The defi-
nition of sk+1 implies that sk+1−sk ≥ 24δLk+

∑
Bk≤i<Bk+1

(ri,αk
−vBk+1,αk

)
and we bound the sum

∑
Bk≤i<Bk+1

(ri,αk
−vBk+1,αk

) from below, using the
inequalities 1 ≥ (1− αk)j ≥ 1− αkLk for 1 ≤ j ≤ Lk, with


 ∑

Bk≤i<Bk+1

(1− αk)i−Bk(ri,αk
− vBk+1,αk

)


− 2αkL

2
k.

The assumption that the functions ri, λ and vn, λ are [−1, 1]-valued and
that ε < 1/2 imply that |ri,λ|+ |vn,λ|+2ε < 3. Therefore, for every k, there
is |θ| ≤ 3 such that sk+1 − sk = θLk. Therefore,

|sk+1 − sk| ≤ 3Lk (21)

and it follows from (12) that

|vBk+1,αk
− vBk+1,αk+1

| ≤ 4δLkαk. (22)

Fix k ≥ 1 and let gi = rBk+i,αk
and ui = vBk+i,αk

for 0 ≤ i ≤ Lk. Taking
conditional expectations (with respect to Fk) of the inequalities (19) for
Bk ≤ j = Bk + i < Bk+1, 0 ≤ i < Lk, and multiplying the resulting
inequality by (1− αk)i we have for every 0 ≤ i < Lk,

EP

(
αk(1− αk)igi + (1− αk)i+1ui+1 − (1− αk)iui | Fk

) ≥ −εαk = −12δαk.
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Summing the above inequalities over 0 ≤ i < Lk we have

EP

(
αk

Lk−1∑

i=0

(1− αk)igi + (1− αk)LkuLk
− u0 | Fk

)
≥ −12δLkαk,

or, as 1− λ
∑

0≤i<L(1− λ)i = (1− λ)L,

EP


uLk

− u0 + αk

∑

0≤i<Lk

(1− αk)i(gi − uLk
) | Fk


 ≥ −12δLkαk.

The inequalities 1−λL ≤ (1−λ)i ≤ 1, 0 ≤ i ≤ L, imply that
∑

0≤i<Lk
(gi−

uLk
)≥∑

0≤i<Lk
(1−αk)i(gi−uLk

)−2LkLkαk. By (18), LkLkαk < δLk, and
therefore we have

EP (uLk
− u0 + αk

∑

0≤i<Lk

(gi − uLk
) | Fk) ≥ −14δLkαk.

Hence, using sk+1− sk ≥
∑

0≤i<Lk
(gi−uLk

+ 2ε) by the definition of sk+1,
and vBk+1,αk

≤ vBk+1,αk+1
+ 4δLkαk by (22), we deduce that

E(wk+1−wk +αk(sk+1− sk) | Fk) ≥ (−14− 4)δLkαk + 2εLkαk = 6δLkαk.

Finally, as αk(sk+1 − sk) ≤
∫ sk+1

sk
λ(s)ds + 3δαkLk (using (21) and (11)),

we deduce that

EP (wk+1 − wk +
∫ sk+1

sk

λ(s)ds | Fk) ≥ 3δLkλk,

i.e.,
EP (Yk+1 − Yk | Fk) ≥ 3δLkαk,

which proves (20).
The random variables Yk − Yj are bounded by 3. Therefore,

3 ≥ E(Yk − Y0) ≥ 3δEP

(∑

i<k

Liαi

)
.

Hence, by the monotone convergence theorem,

EP

(∑

k

Lkαk

)
≤ 1/δ.
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As Lkαk ≥ L(M)λ(M)Isk=M ≥ λ(M)Isk=M , it follows that

EP

(∑

k

λ(M)Isk=M

)
≤ 1/δ.

Therefore,

EP

(∑

k

Isk=M

)
≤ 1

δλ(M)
. (23)

Also, as
∑

k Lkαk =
∑

t λt, (16) follows. Let k(i) be the smallest integer
such that Bk is greater than i. For every i, k(i) is a random variable which is
measurable w.r.t.Hi; and let `i = vBk(i),αk(i)−1

. Note that for Bk ≤ i < Bk+1

we have vBk+1,αk
= `i. The definition of sk implies that if sk+1 6= M then

sk+1− sk =
(∑

Bk≤i<Bk+1
(ri,αk

− `i)
)

+ 24δLk, and that if sk+1 = M then
sk+1 − sk ≤ 0 ≤ ∑

Bk≤i<Bk+1
(ri,αk

− `i) + 24δLk + 2Lk. Hence,

sk+1 − sk ≤

 ∑

Bk≤i<Bk+1

(ri,αk
− `i)


 + 24δLk + 2LkIsk+1=M .

Summing the above inequalities over k′ ≤ k and rearranging the terms we
have ∑

i<Bk

rt,λt ≥ sk − s0 +
∑

t<Bk

`t − 24δBk − δM
∞∑

k=0

Isk+1=M .

Hence, for any n we have

n∑

i=1

ri,λi ≥
n∑

i=1

`i − 3(Bk(n) − n)− 24δn− s0 − δM

∞∑

k=0

Isk+1=M . (24)

Note that sk ≤ s0 + 3Bk for every k, and thus

Bk(n) − n ≤ L(sk(n)−1) ≤ δsk(n)−1/4 ≤ (δ/4)(s0 + 3n). (25)

Therefore, using also (23) and the bound Bk(n)−n ≤ (δ/4)s0 +δn, we have

E(
1
n

n∑

t=1

rt,λt) ≥ E(
1
n

n∑

t=1

`t)− 2ε− 4
n

(δn)− 2s0

n
− M

nλ(M)
.

Since for sufficiently large k we have 3δ + 4
n(δn) + 2s0

Bk
+ M

Bkλ(M) < ε and
EP (`i) ≥ v1,∞ − 2ε, inequality (14) follows.
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Next, as (Yk) is a bounded submartingale we deduce that P a.e. Yk →k→∞
Y∞ and that EP (Y∞ | F1) ≥ Y1. It follows from (16) (which has already
been proved) that λt → 0 a.e. (w.r.t. P ), and therefore P a.e. tk → 0 and
thus `i → Y∞ a.e. implying that 1

n

∑n
t=1 `t → Y∞ a.e. As

∑∞
k=1 Isk=M is

integrable by (23), it is finite a.e. and therefore we have

1
n

∞∑

k=1

Isk=M →n→∞ 0 P a.e.

Obviously, s0
n →n→∞ 0. Therefore, we deduce that

EP (lim inf
n→∞

1
n

n∑

t=1

rt,λt) ≥ v1,∞ − 5ε,

which proves (15).
The next lemma provides conditions on the random variable vn,λ which

imply the assumption of the previous lemma.

Lemma 2 Assume that 1) the random variables vt,λ/λ are uniformly Lip-
schitz as a function of 1/λ and that 2) for every α > 0 there exists a
sequence λi (0 < λi < 1) such that λi+1 ≥ αλi, limi→∞ λi = 0 and∑∞

i=1 ‖vλi,· − vλi+1,·‖ < ∞ where ‖ · ‖ is the supremum (over n ≥ 1 and
ω ∈ Ω) norm. Then the assumption of Lemma 1 holds.

Whenever the random variables vn,λ are the values or the minmax or the
maxmin of the λ-discounted stochastic game (with uniformly bounded stage
payoff), assumption (1) of Lemma 2 holds.

The proof of Lemma 2 can be found in [2]. The assumption that the
variables vn,λ/λ are uniformly Lipschitz as a function of 1/λ is a corollary of
the assumption there that vn,λ are the values of the λ-discounted stochastic
game with uniformly bounded stage payoff.

4. Existence of the Minmax

Let Γ be a two-player zero-sum stochastic game with finitely many states
and actions. For every state z ∈ S and player i = 1, 2, let Xi(z) be a non-
empty subset of ∆(Ai(z)), the mixed actions available to player i at state
z. Set Xi = (Xi(z))z∈S and X = (Xi)i=1,2. An Xi-constrained strategy
of player i is a behavioral strategy σ such that for every finite history
z1, a1, . . . , zt we have σi(z1, a1, . . . , zt) ∈ Xi(zt).

The λ-discounted minmax (of player 1) in the X-constrained stochastic
game, w̄1

λ ∈ RS , is defined by

w̄1
λ(z) = inf

τ
sup

σ
Ez

σ,τ

(
λ

∞∑

t=1

(1− λ)t−1 r(zt, at)

)
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where the supremum is over all X1-constrained strategies σ of player 1 and
the infimum is over all X2-constrained strategies τ of player 2.

Similarly, the λ-discounted maxmin (of player 1) in the X-constrained
stochastic game, w1

λ ∈ RS , is defined by

w1
λ(z) = sup

σ
inf
τ

Ez
σ,τ

(
λ

∞∑

t=1

(1− λ)t−1 r(zt, at)

)

where the supremum is over all X1-constrained strategies σ of player 1 and
the infimum is over all X2-constrained strategies τ of player 2.

For every 0 < λ < 1 we consider the system of equations

w(z) = sup
x

inf
y

(
λ r(z, x, y) + (1− λ)

∑

z′∈S

p (z′ | z, x, y) w(z′)

)
(26)

in the variable w(z), z ∈ S, and where the sup is over all x ∈ X1(z) and
the inf is over all y ∈ X2(z). The system of equations depends on the data
〈S, A, r, p〉. As we show below, its solution wλ ∈ RS turns out to be the
λ-discounted maxmin of player 1.

We use the classical contraction argument to show that the system (26)
has a unique solution: for every 0 < λ < 1 the map T : RS → RS where

[Tw](z) = sup
x∈X1(z)

inf
y∈X2(z)

(
λ r(z, x, y) + (1− λ)

∑

z′∈S

p (z′ | z, x, y)w(z′)

)

is a strict contraction, and thus has a unique fixed point wλ ∈ RS . Let wλ

be the unique fixed point of the contraction map T . Finally, a point w ∈ RS

is a solution of (26) if and only if it is a fixed point of T .
The definition of wλ enables us to construct, as a function of any (0, 1)-

valued function λ defined on all finite histories (equivalently, a sequence of
(0, 1)-valued functions λt defined on all histories z1, a1, . . . , zt of length t):
a) an X1-constrained strategy of player 1, and b) for every X1-constrained
strategy σ of player 1 an X2-constrained strategy τ = τ(σ), such that a
proper system of inequalities holds. The details follow.

The definition of wλ implies that:
1) for every sequence (λt)∞t=1 with 0 < λt < 1 and λt measurable w.r.t. Ht,
there is an X1-constrained strategy σ of player 1 such that for every history
h = (z1, . . . , zt) and every mixed action y ∈ X2(zt),

λtr(zt, σ(h), y) + (1− λt)
∑

z′∈S

p (z′ | zt, σ(h), y)wλt(z
′)) ≥ wλt(zt)− ελt
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where λt also stands for λt(h) for short, and thus for every X2-constrained
strategy τ of player 2 we have

Eσ,τ (λt xt + (1− λt) wλt(zt+1) | Ht) ≥ wλt(zt)− ελt (27)

where xt stands for r(zt, at) for short, and
2) for every sequence (λt)∞t=1 with 0 < λt < 1 and λt measurable w.r.t. Ht,
and every X1-constrained strategy σ of player 1 there is an X2-constrained
strategy τ of player 2 such that for every history h = (z1, . . . , zt),

λtr(zt, σ(h), τ(h))+(1−λt)
∑

z′∈S

p (z′ | zt, σ(h), τ(h))wλt(z
′)) ≤ wλt(zt)+ελt

and thus

Eσ,τ (λt xt + (1− λt) wλt(zt+1) | Ht) ≤ wλt(zt) + ελt. (28)

In particular, if λt = λ is a constant discount rate, it follows (by multi-
plying the inequalities (27) by (1− λ)t−1 and summing over all t ≥ 1) that
there is an X1-constrained strategy σ of player 1 such that for every X2-
constrained strategy τ of player 2, Eσ,τ

(∑∞
t=1 λ(1− λ)t−1xt

) ≥ wλ(z1)− ε,
and for any X1-constrained strategy σ of player 1 there is an X2-constrained
strategy τ of player 2 such that Eσ,τ

(∑∞
t=1 λ(1− λ)t−1xt

) ≤ wλ(z1) + ε.
Therefore, wλ is the λ-discounted maxmin of the constrained stochastic
game.

We prove the existence of the minmax and maxmin under the additional
assumption that the constrained sets Xi(z) are semialgebraic subsets of
∆(Ai(z)), which is thus assumed in the sequel.

The map λ 7→ wλ is bounded and semialgebraic [3] and therefore the
function λ 7→ wλ is of bounded variation on ]0, 1] and thus in particular it
has a limit w∞ as λ → 0+.

Theorem 1 (a) For every ε > 0 there is n0 sufficiently large and an X1-
constrained strategy σ of player 1 such that for every X2-constrained strat-
egy τ of player 2, the following inequalities hold:

Eσ,τ

(
1
n

n∑

t=1

rt(zt, at)

)
≥ w∞(z1)− ε ∀n ≥ n0

and

Eσ,τ

(
lim inf
n→∞

1
n

n∑

t=1

rt(zt, at)

)
≥ w∞(z1)− ε.
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(b) For every ε > 0 there is n0 sufficiently large such that for every X1-
constrained strategy σ of player 1, there is an X2-constrained strategy τ of
player 2 such that:

Eσ,τ

(
1
n

n∑

t=1

rt(zt, at)

)
≤ w∞(z1) + ε ∀n ≥ n0

and

Eσ,τ

(
lim sup

n→∞
1
n

n∑

t=1

rt(zt, at)

)
≤ w∞(z1) + ε.

Moreover, these “maximizing” and “minimizing” constrained strategies, σ
in part (a) and τ = τ(σ) in part (b), can be chosen as arbitrary strategies
that satisfy a proper list of inequalities. The following parts (a*) and (b*)
are generalizations of parts (a) and (b) respectively.
(a*) For every ε > 0 and λ0 > 0 there is n0 sufficiently large and a sequence
(λt)∞t=1 with 0 < λt < λ0 and λt measurable w.r.t. Ht such that for every
strategy σ of player 1 such that for every history h = (z1, . . . , zt) and every
mixed action y ∈ X2(zt),

λtr(zt, σ(h), y) + (1− λt)
∑

z′∈S

p (z′ | zt, σ(h), y) wλt(z
′) ≥ wλt(zt)− ελt,

the following inequalities hold:
for every (X2(z))z∈S-constrained strategy τ of player 2,

Eσ,τ

(
1
n

n∑

t=1

rt(zt, at)

)
≥ w∞(z1)− 5ε ∀n ≥ n0

and

Eσ,τ

(
lim inf
n→∞

1
n

n∑

t=1

rt(zt, at)

)
≥ w∞(z1)− 5ε.

(b*) For every ε > 0 and λ0 > 0 there is n0 sufficiently large and a sequence
(λt)∞t=1 with 0 < λt < λ0 and λt measurable w.r.t. Ht such that for every
X1-constrained strategy σ of player 1, and every strategy τ of player 2 such
that for every history h = (z1, . . . , zt),

λtr(zt, σ(h), τ(h)) + (1− λt)p (zt, σ(h), τ(h)) · wλt ≤ wλt(zt) + ελt,

the following inequalities hold:

Eσ,τ

(
1
n

n∑

t=1

rt(zt, at)

)
≤ w∞(z1) + 5ε ∀n ≥ n0
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and

Eσ,τ

(
lim sup

n→∞
1
n

n∑

t=1

rt(zt, at)

)
≤ w∞(z1) + 5ε.

Proof. W.l.o.g. we assume that the payoff function r has values in
[−1, 1]. It follows that the solution of the system of equations (26) is also
[−1, 1]-valued. Let Ω be the measurable space of all plays of the stochas-
tic game, and Ht the σ-field spanned by all histories z1, a1 . . . , zt. Setting
vn,λ(ω) = wλ(zn) we deduce that the assumption of Lemma 1 holds, i.e.,
for every δ > 0 there exist two functions, L(s) and λ(s), of the real variable
s, and a positive constant M > 0 such that λ is strictly decreasing with
0 < λ(s) < 1 and L is integer-valued with L(s) > 0, and such that, for
s ≥ M , |θ| ≤ 3 and every ω ∈ Ω inequalities (10), (11), (12), and (13) hold.

Fix ε > 0 sufficiently small (e.g., ε < 3) and set δ = ε/12. Set rn,λ =
r(zn, an).

By the basic probabilistic lemma there is for every λ0 > 0 a sufficiently
large positive integer n0 and a sequence λt with 0 < λt < λ0 such that λt

is measurable w.r.t. Ht and such that for every probability P on (Ω,H∞)
with

EP (λtr(zt, at) + (1− λt)wλt(zt+1)) | Ht) ≥ wλt − ελt,

inequalities (14), (15), and (16) hold; i.e., we have

EP

(
1
n

n∑

t=1

r(zt, at)

)
≥ w∞ − 5ε ∀n ≥ n0 (29)

EP

(
lim inf
n→∞

1
n

n∑

t=1

r(zt, at)

)
≥ w∞ − 5ε (30)

EP (
∑

i≥1

λi) < ∞. (31)

Fix such a sequence (λt)∞t=1. By the definition of wλ there is a strategy σ of
player 1 such that for every history h = (z1, . . . , zt) and every mixed action
y ∈ X2(zt),

λtE
zt

σ(h),y(r(zt, at)) + (1− λt)Ezt

σ(h),y(wλt(zt+1)) ≥ wλt(zt)− ελt.

Therefore, for every X2-constrained strategy τ of player 2 we have

Eσ,τ (λtr(zt, at) + (1− λt)wλt(zt+1) | Ht) ≥ wλt − ελt

and thus inequalities (29), (30), and (31) hold.
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Similarly, by the basic probabilistic lemma there is for every λ0 > 0 a
sufficiently large positive integer n0 and a sequence (λt)∞t=1 with 0 < λt < λ0

such that λt is measurable w.r.t. Ht and such that for every probability P
on (Ω,H∞) with

EP (λtr(zt, at) + (1− λt)wλt(zt+1) | Ht) ≤ wλt + ελt,

we have

EP

(
1
n

n∑

t=1

r(zt, at)

)
≤ w∞ + 5ε ∀n ≥ n0 (32)

EP

(
lim sup

n→∞
1
n

n∑

t=1

r(zt, at)

)
≤ w∞ + 5ε (33)

EP (
∑

i≥1

λi) < ∞. (34)

Fix such a sequence (λt)∞t=1. It follows from the definition of wλ that for any
X1-constrained strategy of player 1, there is an X2-constrained strategy τ
of player 2 such that

Eσ,τ (λtr(zt, at) + (1− λt)wλt(zt+1) | Ht) ≤ wλt + ελt

and thus inequalities (32), (33), and (34) hold.
Theorem 1 establishes the existence of the maxmin of player 1 in a

two-player constrained stochastic game with semialgebraic constraints and
finitely many states and actions. By duality, the minmax exists.

Consider an I-player stochastic game with finitely many states and ac-
tions and standard signaling (perfect monitoring). Every I \ {i} strategy
profile is equivalent by Kuhn’s theorem to a strategy profile σ−i = (σj)j 6=i

of behavioral strategies. Therefore, the study of player i’s minmax in the
I-player stochastic game is equivalent to the study of the minmax of player
1 in a two-player constrained stochastic game where player 1 (represents
player i and) has action sets Ai(z) and is not constrained, i.e., X1(z) =
∆(A1(z)), and player 2 (represents the set I \{i} of players and) has action
sets ×j 6=iA

i(z) and with constraint sets X2(z) = ×j 6=i∆(Aj(z)). The set
X2(z) is a semialgebraic subset of ∆(×j 6=iA

j(z)). Thus, the existence of
the minmax of player i is a direct corollary of Theorem 1.

Before stating the corollary, we recall that the existence of the uniform
minmax of player i, v̄i(z1), in an I-player stochastic game with initial state
z1 and standard signaling, implies that the λ-discounted minmax of player
i, v̄i

λ(z1), converges as λ ↓ 0 to v̄i(z1). Moreover, if the stochastic game has
a uniform minmax of player i the convergence is uniform in z = z1.
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Corollary 1 Fix an I-player stochastic game with finitely many states and
actions.
a) The minmax v̄i : S → R of player i exists.
Moreover,
b) for every 0 < λ0 < 1 and ε > 0 there is a sequence of discount rates
0 < λt < λ0, where λt is measurable w.r.t. Ht, such that every I \ {i}
strategy profile σ−i that satisfies: for every strategy σi of player i and every
t ≥ 1 we have

Ez
σ−i,σi

(
λtr

i(zt, at) + (1− λt)vlt(zt+1) | Ht

) ≤ vλt(zt) + ελt/5,

is an ε-minimaxing I \ {i} strategy profile, and
c) for every 0 < λ0 < 1 and ε > 0 there is a positive integer N and a
sequence of discount rates 0 < λt < λ0, where λt is measurable w.r.t. Ht,
such that for every I \ {i} strategy profile σ−i, if the strategy σi = σi(σ−i)
of player i satisfies for every t ≥ 1 the inequality

Ez
σ−i,σi

(
λtr

i(zt, at) + (1− λt)vlt(zt+1) | Ht

) ≥ vλt(zt)− ελt/5,

then σi is a σ−i-ε-N -maximizing strategy.

The conclusions of Corollary 1 and Theorem 1 also apply to stochastic
games with infinitely many states and actions whenever the payoffs are
bounded and the solutions wλ of (26) obey assumption (2) of Lemma 2.

It should be pointed out that throughout this paper we have stressed
in addition to the main conclusion a structural property of the established
minimaxing (or optimal) strategies. The advantage of the additional struc-
tural property is that it can be used to derive various results concern-
ing, e.g., the existence of stationary minimaxing strategies when additional
structure, e.g., irreducibility, of the stochastic game is given.
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