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Abstract. After a brief survey of iterative algorithms for general stochas-
tic games, we concentrate on finite-step algorithms for two special classes
of stochastic games. They are Single-Controller Stochastic Games and Per-
fect Information Stochastic Games. In the case of single-controller games,
the transition probabilities depend on the actions of the same player in
all states. In perfect information stochastic games, one of the players has
exactly one action in each state. Single-controller zero-sum games are effi-
ciently solved by linear programming. Non-zero-sum single-controller
stochastic games are reducible to linear complementary problems (LCP).
In the discounted case they can be modified to fit into the so-called LCPs of
Eave’s class L. In the undiscounted case the LCP’s are reducible to Lemke’s
copositive plus class. In either case Lemke’s algorithm can be used to find
a Nash equilibrium. In the case of discounted zero-sum perfect informa-
tion stochastic games, a policy improvement algorithm is presented. Many
other classes of stochastic games with orderfield property still await efficient
finite-step algorithms.

1. Introduction

From the point of view of modelling real-life applications of discrete dy-
namic games as stochastic games, the key issue is, having modelled practical
problems as stochastic games, how would one solve for equilibrium payoffs
and strategies for such stochastic games? What are some efficient algo-
rithms for stochastic games that can be solved in finite arithmetic steps?
Here we report some recent progress in this direction.
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2. Zero-Sum Two-Person Stochastic Games with Discounted
Payoff

Imagine two players playing one of possibly different matrix games at each
stage, and the game at each stage depends on the previous game and the
entry selected by the players. Games with just such conceptual structure
are called stochastic games. They were introduced in a seminal paper by
Shapley [44]. Let A1, A2, . . . , AN be real matrices known to the two players.
By state s we mean the matrix game As. Players start in, say, state s. They
play the matrix game As. Immediately thereafter, player I receives the
payoff from player II and the game moves to Ak with probability q(k|s, is, js)
which depends on the choices is, js by players I and II in state s. At the
next stage they play Ak, and so on. The transition probabilities known to
both players are assumed to be Markovian in the sense that the probability
of the next game is determined only by the immediate past and not by the
entire history. The aim of player I is to get as much as possible. The aim of
player II is to lose as little as possible. Of course, a repeated matrix game is
a very special case of this game where A1 = A2 = . . . = AN . Since the game
never ends it is not clear what is meant by maximizing the payoff. We shall
emphasize two particular payoff criteria that are commonly considered in
the literature.

In the discounted payoff, with 0 ≤ β < 1, one takes as payoff

∞∑

n=1

βn−1r(sn, in, jn) (1)

where r(sn, in, jn) = a
(sn)
injn

= payoff on the n-th time point, where the
matrix game Asn is played, and row in and column jn are chosen there.
Under the above criterion, the current rewards are more important than
the future prospects.

In the undiscounted payoff, or the limiting average payoff, also called
the Cesaro average payoff, one takes as payoff

lim inf
N→∞

1
N

N∑

n=1

r(sn, in, jn). (2)

While one may envisage the possibility of developing complex strategies
based on all the accumulated history at each time point, in his fundamen-
tal paper [44] Shapley showed that β-discounted stochastic games1 can be

1Actually, Shapley considered games with positive stopping probabilities in every
instance; however, the analysis of the games introduced in [44] is equivalent to the analysis
of the classical discounted stochastic games, and it is the latter class that was studied in
subsequent publications.
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played optimally using stationary strategies. A stationary strategy is one
where the players play in a “memoryless” way in the following sense: for
each matrix game As, player I (player II) selects a fixed probability dis-
tribution on the rows (columns) of As and no matter how the matrix As

is reached, the rows (or columns) are chosen according to the fixed prob-
ability distribution. Finally, an even simpler strategy is to select for each
matrix game As a particular row (or column) to be played whenever state
s is reached. These are called pure stationary strategies, and will be seen to
be adequate for some very special classes of stochastic games [43].

3. Iterative Algorithms for Discounted Zero-Sum Games

In his fundamental paper [44], Shapley showed that player I, by using an op-
timal stationary strategy f0, can guarantee the expected discounted payoff
of v(s), no matter what strategy the opponent adopts. Similarly for an op-
timal stationary g0, the expected discounted payoff φβ(f, g0)(s) is at most
v(s) against all strategies f of player I.

Shapley’s proof contained an algorithm to compute approximately the
value and optimal stationary strategies. This can be illustrated for the
following stochastic game with two states and discount factor β = .5.

Example 1

s = 1 s = 2[
3/1 0/2
0/2 1/1

] [
0/2

]

Here, in state s = 1, when players choose row 1 and column 1 or row 2
and column 2, the play remains in the same state. Otherwise it moves to
state 2, where the play is permanently absorbed. Imagine God separately
promising players I (II) to play for his/her side after their first choice. In
state 2, the players have no action. In state 1, player I and player II can
choose row 1, column 1 and player I can expect 3 + .5v1 where v1 is what
God can get for him/her if He played from the beginning. If they choose
row 1 and column 2, player I can expect 0 + 0.5.v2. Here v1 and v2 are the
optimal value starting at states 1 and 2. Clearly v2 = 0 and thus we are led
to an auxiliary game with payoffs

A(v1) =
[

3 + .5(v1) 0
0 1 + .5(v1)

]
.

Playing the original stochastic game optimally corresponds to playing this
auxiliary game optimally. Shapley showed that this corresponds to solving
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the non-linear equation: v = (v1, v2) where

v1 = value
[

3 + .5(v1) 0
0 1 + .5(v1)

]
v2 = value

[
0 + .5(v2)

]
.

The map φ : v → value[A(v)] is a contraction and v is the unique fixed point
of this operator. We can therefore solve the game iteratively as follows.
− Step 1: τ = 1, v1 = 0. The auxiliary game to solve for vτ is

v2 = value
[

3 + .5(0) 0
0 1 + .5(0)

]
=

3
4
.

− Step 2: τ = 2, v2 = 3
4 . The auxiliary game to solve for v3 is

v3 = value
[

3 + .5(3
4) 0

0 1 + .5(3
4)

]
.

The matrix games appearing in the equations defining vτ (τ > 1) are
completely mixed and the value can be found by the formula for completely
mixed games. The simple arithmetic computations yield v3 = 297

304 v4 is
approximately 1.0433. Indeed, the iterates vτ converge as τ → ∞ to the
value v1 = −4+2

√
13

3 of the discounted game.
In general, solving the discounted stochastic game can be quite slow.

More generally, the built-in algorithm of Shapley can be stated as follows.
Algorithm 1 (Shapley [44]).
− Step 1: Start with any approximation for the true value v(s) of the

stochastic game, say v1(s), for every state s.
− Step 2: Define recursively, for each state s,

v(n)(s) = value [a(s)
ij + β

∑
t

q(t | s, i, j)vn−1(t)]. (3)

It can easily be shown that the above sequence of approximations converges
to v(s), the unique fixed point of the non-linear functional equations:

v(s) = value [a(s)
ij + β

∑
t

q(t | s, i, j)v(t)]. (4)

Remark. While near-optimal stationary strategies can be derived from
the above scheme when vn is sufficiently close to v, it should be noted
that Shapley’s algorithm does not utilize the information contained in the
optimal strategies of As(vn)’s at each iteration.

The literature on stochastic games now contains a number of iterative
algorithms that attempt to improve on the preceding basic scheme of Shap-
ley based on non-linear programming techniques [18], [49], [37], [45], [52],
[12].
Algorithm 2 (Hoffman and Karp [18])
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− Step 1: Set v0(s) = 0 for each state s and τ = 0.
− Step 2: Find an optimal strategy for player II in the matrix games

As(vτ ) for each state s. Let gτ+1 be one such optimal strategy.
− Step 3: Solve the MDP (Markov Decision Process) problem vτ+1 =

maxf φβ(f, gτ+1).
− Step 4: Put τ := τ + 1 and return to Step 2.

It can be shown that vτ → v, the value vector of the stochastic game, as
τ → ∞. Note that this algorithm iterates in both the value space and the
strategy space. Since we are moving in both policy and value space, we
use past information. The MDP can be solved by linear programming (see
[22]).
Algorithm 3 (Pollatschek and Avi-Itzhak [37])

− Step 1: Select an arbitrary initial approximation v0 = (v0(1), . . . , v0(N))
to the value vector.

− Step 2: At iteration τ , vτ is known. Solve the N matrix games As(vτ )
for optimal strategies f τ (s), gτ (s) for players I and II.

− Step 3: Set f τ = (f τ (1), . . . , f τ (N)) and gτ = (gτ (1), . . . , gτ (N)).
Compute vτ+1 = [I − βQ(f τ , gτ )]−1r(f τ , gτ ).

− Step 4: Set τ := τ + 1 and return to Step 2.

Theorem 1 (Pollatschek and Avi-Itzhak [37]) The above algorithm con-
verges when

max
s
{
∑

t

[max
i,j

q(t | s, i, j)−min
i,j

q(t | s, i, j)]} ≤ 1− β

β
.

The algorithm of Pollatschek and Avi-Itzhak is closer to the classical Newton-
Raphson procedure. For example, if the value of the auxiliary game φ(v) is
differentiable in v with first two partial derivatives in a neighborhood of v,
the algorithm reduces to applying Newton’s method to solve the equation
φ(v)−v = 0. Breton, in her Ph.D. thesis [6], made empirical studies on this
algorithm and other algorithms of an iterative nature. With random data
and with 15 states and 15 actions in each state, Breton observed that
• The Pollatschek–Avi-Itzhak algorithm is the fastest whenever it con-

verges.
• Shapley’s algorithm is better at getting ε-optimal strategies than Hoff-

man and Karp’s.
• Hoffman and Karp’s algorithm is better at getting ε value vector than

Shapley’s.
There are other algorithms that use fictitious play [13]. They are known

to be slow and we know that fictitious play is unsuitable even for ordinary
bimatrix games [23].
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4. Orderfield Property

The data defining an n-person discounted stochastic game consists of imme-
diate rewards, transition probabilities, and the discount factor. We say that
the game has orderfield property if all the entries to at least one solution to
the problem lie in the smallest ordered subfield F of reals that contains the
data. Since all field elements are generated from the data by finite arith-
metic operations, one hopes to solve such games by a finite arithmetic step
algorithm. Our first example (Example 1) has no orderfield property. Its
value vector (v1, v2) = (−4+2

√
13

3 , 0) is irrational. Its unique stationary opti-
mal strategies also have irrational coordinates. From an algorithmic point
of view, it therefore becomes important to look for subclasses of stochastic
games possessing orderfield property.

Theorem 2 The following classes of stochastic games possess orderfield
property.

• Discounted and undiscounted single-controller zero-sum stochastic games.
(Here the transition depends upon the actions of the same player in all
states.)

• Discounted and undiscounted SER-SIT stochastic games. (Here the re-
wards are separable and the transitions are state-independent.)

• Discounted and undiscounted zero-sum switching control stochastic games.
(Here the transition depends on the action of at most one player in each
state.)

• Discounted and undiscounted zero-sum ARAT games. (Here the re-
wards and transitions are additive.)

• Discounted and undiscounted zero-sum games of perfect information.
(Here at most one player has more than one action in each state.)

• Discounted and undiscounted non-zero-sum single-controller games.
• Discounted and undiscounted non-zero-sum games of perfect informa-

tion.
• Discounted and undiscounted non-zero-sum SER-SIT games.

(See [13].)
Even though many such subclasses of stochastic games do possess or-

derfield property (see [39], pp. 446-447), we will concentrate on two special
classes, namely single-controller stochastic games and perfect information
stochastic games. These two classes have been studied extensively in both
discounted and Cesaro average payoffs [35], [51], [20], [43], [33],[32],[41],
[16], [26], [7], [27], [53], [40].
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5. Zero-Sum Two-Person Single-Controller Stochastic Games

Consider the following stochastic game with two states and with immediate
rewards.

A1 =




1 2
5 0
0 4


 A2 =

[
0 3 6
6 2 0

]

↓ ↓ ↓ ↓ ↓

1 2 1 2 1

Here the transitions are controlled by player II, the column player. His
choice of column determines the transitions. If player II chooses column
2 in state 1, the game moves to state 2. In state 2, if player II chooses
column 3, the game moves to state 1. It was shown by Parthasarathy and
Raghavan [35] that in this class of games and, more generally, when the
transition probability q(t | s, i, j) is of the type q(t | s, j), the game has
orderfield property in both discounted and Cesaro average payoffs. The
game can easily be found by linear programming (LP). The reason is quite
simple. With a discount β the two auxiliary games are given by

A1(v1, v2) =




1 + βv1 2 + βv2

5 + βv1 0 + βv2

0 + βv1 4 + βv2




A2(v1, v2) =
[

0 + βv1 3 + βv2 6 + βv1

6 + βv1 2 + βv2 0 + βv1

]
.

Every list of variables, (x1, x2, x3), (ξ1, ξ2), (v1, v2), such that v1 + v2

maximizes the sum u1+u2 subject to (x1, x2, x3), (ξ1, ξ2) being a stationary
strategy (i.e., x1+x2+x3 = 1, ξ1+ξ2 = 1, and x1, x2, x3, ξ1, ξ2 ≥ 0) such that
(x1, x2, x3) guarantees in A1(u1, u2) a payoff ≥ u1 (i.e., x1 +5x2 +βu1 ≥ u1

and 2x1 + 4x3 + βu2 ≥ u1) and (ξ1, ξ2) guarantees in A2(u1, u2) a payoff
≥ u2 (i.e., 6ξ2 + βu1 ≥ u2, 3ξ1 + 2ξ2 + βu2 ≥ u2, and 6ξ1 + βu1 ≥ u2),
consists of a list of optimal stationary strategies of player I and the values
v1 and v2 of the discounted stochastic games. Therefore, the stationary
optimal strategies of player I can be found among optimal solutions of the
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linear programming problem

max v1 + v2

subject to
x1 + 5x2 + 0x3 + βv1 ≥ v1

2x1 + 0x2 + 4x3 + βv2 ≥ v1

0ξ1 + 6ξ2 + βv1 ≥ v2

3ξ1 + 2ξ2 + βv2 ≥ v2

6ξ1 + 0ξ2 + βv1 ≥ v2

x1 + x2 + x3 = 1
ξ1 + ξ2 = 1
x1, x2, x3, ξ1, ξ2 ≥ 0.

In solving a discounted stochastic game, we can always assume that the
immediate rewards are positive. Thus we can also assume that the above LP
has an optimal solution v1, v2 bounded by C

(1−β) where C is the maximum
immediate payoff over all states. Indeed, the dual to the above LP can be
used to construct an optimal stationary strategy {(y1, y2), (η1, η2, η3)} for
player II.

In general terms, the primal in player-II-control games is to find an
optimal solution to the LP

max
∑

t v(t)
subject to
−∑

i r(s, i, j)fi(s)− β
∑

t q(t | s, j)v(t) + v(s) ≤ 0 ∀ j, s∑
i fi(s) = 1 ∀ s

fi(s) ≥ 0 ∀ , s, i
v(s) arbitrary.

The dual LP is given by

min
∑

s θ(s)
subject to
−∑

j r(s, i, j)yj(s) + θ(s) ≥ 0 ∀ i, s (corresponding to variable fi(s))∑
s

∑
j{δ(t/s)− βq(t | s, j)}yj(s) = 1 ∀ (states t corresponding to v(t))

yj(s) ≥ 0, θ(s) arbitrary.
(Here δ(t/s) is the Kronecker delta.)

From the above we see that
∑

j yj(t) > 0 ∀ t, feasible{yj(s)}. Nor-
malizing them will give a stationary strategy for player II. By complemen-
tary slackness we can conclude that for an optimal f◦ for player I, and
the stationary g◦ induced by normalizing an optimal (y◦(s), θ◦(s)) of the
dual, we get r(f, g◦) ≤ θ◦(s)/

∑
j yj(s) for all stationary f with equality at
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f = f◦. Thus r(f, g◦) ≤ r(f◦, g◦). Premultiplying by the nonnegative ma-
trix (I − βQ(g◦))−1 we get the β-discounted payoff φβ(f, g◦) ≤ φβ(f◦, g◦).
Thus g◦ is optimal for player II.

In a general two-person zero-sum stochastic game any optimal station-
ary strategy of player I will depend on the discount factor β. However, for
every zero-sum two-person single-controller stochastic game there is a sta-
tionary strategy g◦ for player II (controlling player), which remains optimal
for all β sufficiently close to 1. Such a strategy is called a uniform optimal
strategy.

Example 2 Consider the stochastic game with two states given by

A1 =

[
3 4
7 0

]

↓ ↓
1 2

A2 =

[
4 1
0 5

]

↓ ↓
1 2

In the above stochastic game, player II has (1
2 , 1

2), (1
2 , 1

2)) as the uniform
optimal stationary strategy for all β close to 1. However, the unique optimal
strategy for player I is f◦(1) = (7+β

8 , 1−β
8 ), f◦(2) = (5−β

8 , 3+β
8 ).

Remark. Solving efficiently for the uniform optimal strategy for player
II is still unresolved.

However, for undiscounted single-controller games with Cesaro average
payoffs, just the existence of uniform optimal strategies for the controller
helps one to solve the problem by a single linear program. This reduction is
closely related to an algorithm by Hordijk and Kallenberg [19] for Markov
decision processes which in turn is based on a sharp estimate of the Cesaro
payoff for MDP via discounted payoff.
Theorem 3 (Blackwell [3]) Consider an MDP with rewards r(s, i), tran-
sitions p(t/s, i) where i ∈ A(s), the finite action space at state s. Given a
stationary policy f , let Q(f) be the Cesaro limit of the stationary transition
matrix P (f) = (p(t/s, f). Then the discounted payoff φβ(f) using f and the
Cesaro payoff φ(f) satisfies

φβ(f) =
φ(f)
1− β

+ u(f) + e(f, β),

where e(f, β) → 0 as β ↑ 1.
One can exploit the above to develop an LP algorithm to solve for

undiscounted single-controller games.
Theorem 4 (Hordijk and Kallenberg [20], Vrieze [51]) Consider a player-
II-control stochastic game. Then an optimal (f, φ, u) to the following dual
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linear programming problems can be used to find the value and optimal
stationary strategies. Any optimal φ is the undiscounted value. Any optimal
f is an optimal stationary strategy for player I. The LP and its dual are
given by

max
∑

t φ(t)
subject to
φ(s)−∑

t q(t | s, j)φ(t) ≤ 0
(the associated dual variables are xj(s) ∀s, j)
φ(s) + u(s)−∑

i r(s, i, j)fi(s)− q(t | s, i, j)u(t) ≤ 0 ∀s, j∑
i fi(s) = 1 ∀s

fi(s) ≥ 0, φ(s), u(s) unrestricted ∀i, s.

min
∑

s θ(s)
subject to∑

s

∑
j xj(s)[δ(t/s)− q(t | s, j)] +

∑
s

∑
j δ(t/s)yj(s) = 1 ∀t∑

s

∑
j yj(s)[δ(t/s)− q(t | s, j)] = 0 ∀t

−∑
j r(s, i, j)yj(s) + θ(s) ≥ 0 ∀i, s

xj(s), yj(s) ≥ 0, θ(s) unrestricted ∀ s, j.

At an optimal solution for the dual problems let
∑

j yj(t) = y.(t),
∑

j xj(t) =
x.(t). From the above inequalities we have for each t either y.(t) > 0 or
x.(t) > 0. We first normalize the vector (y1(t), y2(t), . . .) to get a mixed
strategy for each state t. In case y.(t) = 0, we have x.(t) > 0. Normaliz-
ing the vector (x1(t), x2(t), . . .), we get a mixed strategy at state t. Such
a choice gives an optimal stationary strategy g◦ for player II. Thus we
can solve zero-sum single-controller undiscounted games by a single linear
program.

6. Single-Controller Non-Zero-Sum Two-Person Stochastic
Games

Fink [14] and independently Takahashi [47] first extended the theorem
of Shapley for n-person non-zero-sum discounted stochastic games. They
showed that stationary Nash equilibrium strategies exist for these games.

When the transition is controlled by a single player, Parthasarathy and
Raghavan [35] showed that these games admit a Nash equilibrium in sta-
tionary strategies with orderfield property. They also showed that undis-
counted single-controller stochastic games have stationary Nash equilibria
and they too possess orderfield property.

Nowak and Raghavan [34] proved the following theorem which contains
a recipe for a finite-step algorithm.
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Theorem 5 In a player-II-control game let f1, f2, .., fm be an enumera-
tion of all pure stationary strategies for player I and let g1, g2, .., gn be
an enumeration of all pure stationary strategies for player II. Let (A =∑

s A(s),
∑

s B(s)) be an m× n bimatrix game where

A(s) = (r1(s, fi(s), gj(s)) B(s) = (φβ(fi, gj)(s).

Let (ξ∗, η∗) be a mixed strategy Nash equilibrium point to the bimatrix game
(A,B). Then
(a) f∗ =

∑
i ξ
∗
i fi and g∗ =

∑
j η∗j gj constitute a Nash equilibrium pair for

the discounted game.
(b) For each state s, the equilibrium payoff for player II in the stochastic
game is the same as the equilibrium payoff for player II in the bimatrix
games (A(s), B(s)).
(c) In the case of the undiscounted irreducible player-II-control games, if
we replace the above matrix B by the matrix C = (

∑
s φ2(fi, gj), then any

equilibrium point (ξ∗, η∗) of the bimatrix game (A,C) induces as in the dis-
counted case a stationary equilibrium point (f∗, g∗). Further, for the irre-
ducible case, Nash equilibrium payoffs are independent of the starting state.

We will use an example from [34] to illustrate the above algorithm. The
stochastic game has three states and each player has two actions at each
state. Here the discount factor β = .8. We take the entries as immediate
penalties. The players want to minimize their expected discounted penal-
ties.
Example 3

s = 1 s = 2 s = 3[
(6, 3) (0, 8)
(0, 5) (7, 1)

] [
(0, 10) (9, 2)
(7, 5) (0, 8)

] [
(3, 0) (0, 5)
(0, 4) (4, 0)

]
.

↓ ↓
1 2

↓ ↓
2 3

↓ ↓
3 1

There will be eight pure stationary strategies for each player that could
be lexicographically enumerated as (111), (112), . . . , (222) with the under-
standing that (ijk) corresponds to choosing the i-th row in state 1, the j-th
row in state 2, and the k-th row in state 3. Similarly, one can define pure
stationary strategies for player II. Using the Lemke-Howson algorithm [25]
we can get the Nash equilibrium point

ξ∗ = (0, 0,
192
1613

,
408
1613

, 0, 0, 0,
1013
1613

)

η∗ = (0, 0,
10
91

,
39
91

, 0, 0,
42
91

, 0).
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The stationary strategies f∗, g∗ are obtained from ξ∗, η∗ by taking the
marginal sums. For example, ξ∗112 + ξ∗122 + ξ∗212 + ξ∗222 = f∗2 (3). The sta-
tionary strategies are given by

f∗ =





( 600
1613 , 1013

1613) for s=1
(0, 1) for s=2
( 192
1613 , 1421

1613 for s=3

and

g∗ =





( 7
13 , 6

13) for s=1
(0, 1) for s=2
(4
7 , 3

7) for s=3.

Remark. Even though the problem is reduced to solving for a Nash
equilibrium point of a bimatrix game, the full enumeration of the entire
matrix is undesirable. What is desirable is to solve the game via some
pivoting algorithm.

7. Discounted Single-Controller Game via Lemke’s LCP
Algorithm

The linear complementarity problem can be stated as follows. Given a vec-
tor q ∈ Rn and a matrix M ∈ Rn×n, find a vector z such that:

w = q + Mz (5)

z, w ≥ 0 (6)

zT w = 0. (7)

The above system is usually denoted by LCP(q,M). A pair (w, z) of
vectors satisfying the above system of inequalities is called a solution to
the LCP(q, M). For the literature on Lemke’s algorithm to solve LCP(q, M)
see [24]. For a recent book on the linear complementarity problem see [8].
It can be shown that the LCP is a generalization of the well-known LP
(linear program). In the historic work of Lemke [24], a simplex-like pivoting
algorithm to process LCP’s is given. Unfortunately, the algorithm does not
always find a solution to a given LCP. There are, however, certain classes
of matrices M for which Lemke’s algorithm will process LCP(q,M).

8. LCP for Discounted Single-Controller Games

For discounted non-zero-sum two-person games where player II alone con-
trols the transitions, [32] gave one such linear complementarity reduction.
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The following lemma facilitates such a reduction of the original problem to
a linear complementarity problem.
Lemma 1 Consider the following auxiliary stochastic game with N states
controlled by player II with immediate costs rα(s, i, j) α = 1, 2 to the two
players. Player I pays just the immediate cost for the first day and no more,
while player II pays the usual β-discounted cost over the infinite horizon.
Any Nash equilibrium of the game with payoffs in stationary strategies f, g
for players I and II given by

A(s) = r1(f, g)(s), B(s) = φβ(f, g)(s), s = 1, . . . , N

is also a stationary equilibrium for the single-controller stochastic game.

Proof. For a proof see Lemma 2.3 of [35].
Thus, solving single-controller games is reduced to solving for equilibria of
the above games. We are ready to recast this problem as a linear comple-
mentarity problem.
Theorem 6 The pairs (f◦(s), g◦(s)) and (v1(s), v2(s)) form Nash equilib-
rium strategies with corresponding equilibrium costs for players I and II iff
they satisfy the following system of equations:

uj(s)−
∑

i

r2(s, i, j)fi(s)−
∑

t

βq(t | s, j)φβ(t)+φβ(s) = 0 ∀ j, and ∀s (8)

wi(s)−
∑

j

r1(s, i, j)gj(s) + v1(s) = 0 ∀ s and ∀ i (9)

θ(s)−
∑

i

fi(s) = −1, ∀ s (10)

τ(s)−
∑

j

gj(s) = −1 ∀ s (11)

wi(s), fi(s), uj(s), gj(s) ≥ 0 ∀ i, j, s (12)

wi(s).fi(s) = 0, uj(s).gj(s) = 0, ∀i, j, s. (13)

θ(s).v1(s) = 0, τ(s).φβ(s) = 0, ∀ s, (14)

where φβ(s) is the β-discounted equilibrium cost for player II.
For each fi(s), gj(s), the complementary slack variables are respectively
wi(s) and uj(s). Similarly for variables v1(s), φβ(s), the corresponding com-
plementary slack variables are θ(s) and τ(s). Suppressing s, the above equa-
tions can be cast as the LCP



0 −r2 0 Q
−r1 0 1 0
−1 0 0 0

0 −1 0 0







g
f
v1

φβ


 +




u
w
τ
θ


 =




0
0
−1
−1



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g.u = 0, f.w = 0, v1.θ = 0, φβ.τ = 0.

Lemke’s algorithm when applied to the above LCP may terminate in a
secondary ray. See [8] for its definitions and more details. However, adding
the square matrix Λ with all entries unity to the immediate payoff part

[
0 −r2

r1 0

]

Mohan et al. [32] showed that the LCP(q, M̄) belongs to class L of Eaves
[9], with the following property.

Theorem 7 LCP(d, M̄) has a unique solution when d > 0, or when d = 0.

While for this class of matrices Lemke’s algorithm with any positive cover-
ing vector will compute a unique solution to LCP(q, M̄), in our case the q
vector is not > 0. However, by Theorem 3.5 of Garcia [15], Lemke’s algo-
rithm will process this LCP and hence compute a Nash equilibrium point
to the auxiliary game.

9. Non-Zero-Sum Undiscounted Single-Controller Stochastic
Games

Let S = {1, 2, . . . , s} be the states and let A(t) = {1, 2, . . . , at}, B(t) =
{1, 2, . . . , bt} be action spaces at state t for players I and II respectively.
Let r1(t, a, b), r2(t, a, b) be immediate costs to players I and II at state t
when a ∈ A(t), b ∈ B(t) are their actions. For any generic states i, j we will
denote by p[i, a, b]j the conditional probability of the game moving from
state i to state j when a, b are actions chosen by players I and II at state
i. If the game is controlled by player II, then p[i, a, b]j = p[i, b]j .

In this section we will consider player-II-control games and show that
under the limiting average cost criterion, these games can also be solved by
a single Lemke-processible LCP.

Consider the induced undiscounted MDP where player I fixes his strat-
egy to a stationary strategy π. When player II chooses action b in state t,
the immediate cost incurred is given by r̃2(t, b) =

∑
a∈A(t) πa(t)r2(t, a, b).

The transitions of the MDP are the same as those of the original game since
π has no influence over them. Using the LP formulation for limiting average
MDP’s, player II’s best reply to π comes as a solution to the following pair
of dual LP’s:

Primal

Maximize
1
s

∑

i

φ(i) (15)
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subject to

φ(i)−
∑

t

p[i, b]jφ(j) ≤ 0 ∀ i ∈ S, ∀ b ∈ B(i) (16)

φ(i) + u(i)−
∑

j

p[i, b]ju(j) ≤ r̃2(i, b) ∀ i ∈ S,∀ b ∈ B(i) (17)

φ(i), u(i) unrestricted ∀ i ∈ S. (18)

Dual

Minimize
s∑

i=1

∑

b∈B(i)

r̃2(i, b)xib (19)

subject to

∑

b∈B(j)

xjb +
∑

b∈B(j)

yjb −
s∑

i=1

∑

b∈B(i)

p[i, b]jyib =
1
s
∀ j ∈ S (20)

∑

b∈B(j)

xjb −
s∑

i=1

∑

b∈B(i)

p[i, b]jxib = 0 ∀ j ∈ S (21)

xib ≥ 0, yib ≥ 0 ∀ i ∈ S, ∀ b ∈ B(i). (22)

In this setup we have yib and xib complementary to the slack variables
of (16) and (17) respectively. Conversely, we have φ(j) and u(j) comple-
mentary slack variables to (20) and (21) respectively. Suppose we have an
optimal solution for both programs, say (φ∗, u∗, x∗, y∗). Then player II’s
optimal strategy ρ∗ (against π) would be extracted as follows.

ρ∗(i, b) =
{

x∗ib/
∑

c∈B(i) x∗ic when
∑

c∈B(i) x∗ic > 0
y∗ib/

∑
c∈B(i) y∗ic otherwise.

One can verify, using (20), that ρ∗ is well defined. Also we have φ∗(i) =
φ2(π, ρ∗). A key property of this pair of LP’s is that those states i ∈ S for
which

∑
c∈B(i) x∗ic = 0 are transient in the Markov chain induced by ρ∗.

Next we make some adjustments to (19)-(22) so that they can be put
into LCP form.

• Replace = 0 on the right-hand side of (21) by ≥ 0.
This is still equivalent to the original LP.
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• Tighten the constraints on u(i)’s.
Namely, the u(i)’s can be restricted to being nonnegative. (Note that
for any constant θ changing from u(i) to u(i)+ θ,∀ i leaves the objec-
tive function of primal LP unchanged.) The complementary slackness
of the new (9.7) will be untouched.

• We can assume that all immediate costs are positive.
This has the effect that any optimal φ∗ > 0 in the primal LP. We can
replace (20) by the weaker inequality

s.t.
∑

b∈B(j)

xjb +
∑

b∈B(j)

yjb −
s∑

i=1

∑

b∈B(i)

p[i, b]jyib ≥ 1
s
∀ j ∈ S. (23)

• One additional adjustment is to replace the right-hand side of (17)
with

φ(i)+u(i)−
∑

t

p[i, b]ju(j) ≤ r̃2(i, b)+
s∑

i=1

∑

b∈B(i)

xib ∀ s ∈ S,∀ j . (24)

Its effect is to introduce complementary variables on the one side, while
at an optimal solution all it does is to add 1 to all coordinates of an
optimal φ.

Next we take care of the player I side with complementary inequalities.
Consider the following set of inequalities:

∑

b∈B(i)

r1(i, a, b)ρ∗(i, b) ≥ v(i) ∀ i ∈ S,∀ a ∈ A(i) (25)

∑

a∈A(i)

z̃ia ≥ 1 ∀ i ∈ S (26)

z̃ia, v(i) ≥ 0 ∀ i ∈ S,∀ a ∈ A(i) (27)

along with the complementary conditions

z̃ia[
∑

b∈B(i)

r1(i, a, b)ρ∗(i, b)− v(i)] = 0 ∀ i ∈ S,∀ a ∈ A(i) (28)

v(i)[
∑

a∈A(i)

z̃ia − 1] = 0 ∀ i ∈ S. (29)

We can normalize z̃ia’s to get a stationary strategy π̃ for player I if in
the above equation we have a complementary solution with v(i) > 0 ∀i.
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This is easily achieved by replacing (25) and (28) with

s∑

i=1

∑

a∈A(i)

z̃ia +
∑

b∈B(i)

r1(i, a, b)ρ∗(i, b) ≥ v(i) ∀ i ∈ S,∀ a ∈ A(i). (30)

z̃ia[
s∑

i=1

∑

a∈A(i)

z̃ia+
∑

b∈B(i)

r1(i, a, b)ρ∗(i, b)−v(i)] = 0 ∀ i ∈ S, ∀ a ∈ A(i). (31)

We begin by writing equations and inequalities mnemonically where the
last ones below are the complementarity conditions.
w1

ia = π.. + (r1x)ia − v(i) ∀ i, a
w2

ib = (Pφ)ib − φ(i) ∀ i, b
w3

ib = x.. + (π.r2)ib + (Pu)ib − u(i)− φ(i) ∀ i, b
w4

j = x.j − (xP )j

w5
j = −1

s + x.j + y.j − (yP )j

w6
i = −1 + πi.

All variables are nonnegative
w1 ⊥ π; w2 ⊥ y; w3 ⊥ x; w4 ⊥ u; w5 ⊥ φ; w6 ⊥ v.

Let z = (π, y, x, φ, u, v). The above LCP can be written as w = Mz + q
where the matrix M is a partitioned matrix of the type

M =
[ R A
−AT 0

]

where

R =



C∞ 0 D
0 0 0
E 0 C∈


 and A =




0 0 F
P∞ 0 0
G P∈ 0




where the three-way split is partitioned as π|y|x for the rows of R as well
as its columns. We define all entries of C∞ and C∈ to be equal to 1. The
(πia, xib)-th entry of D is r1(i, a, b) for ∀ i ∈ S, ∀ a ∈ A(i), ∀ b ∈ B(i).
The other entries of D are 0. The (xib, πia)-th entry of E is r2(i, a, b) for
∀ i ∈ S,∀ a ∈ A(i), ∀ b ∈ B(i). The other entries of E are 0. This completes
the definition of R.

The (πia, v(i))-th entry of F is −1 for ∀ i ∈ S,∀ a ∈ A(i). The rest of
the entries of F are 0. If i 6= j then the (yib, φ(j))-th entry of P∞ is given
by p[i, b]j . If i = j then the (yib, φ(j))-th entry is p[i, b]j − 1. P∞ and P∈
are actually identical. Formally we have that the (xib, u(j))-th entry of the
former is the same as the (yib, φ(j))-th entry of the latter. The (xib, φ(i))-th
entry of G is −1 for ∀ i ∈ S, ∀ b ∈ B(i). The other entries of G are all 0.
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To complete the construction of the LCP we need to define the vector
q. Like z, q is also an n× 1 vector. We set all the coordinates of q to 0 with
the exception of the indices (u, v). Those coordinates of q in u will have
value −1

s . The coordinates in v will have value −1.

Lemma 2 Lemke’s algorithm will provide a solution to LCP(q, M).

Proof. It is easy to show show that LCP(q, M) is feasible. Observe

M + MT =
[ R+RT 0

0 0

]
.

It is easy to check that the matrix M is copositive plus, that is:

zT Mz ≥ 0, ∀ z ≥ 0
zT Mz = 0 ⇒ (M + MT )z = 0, ∀ z ≥ 0.

Thus by a theorem of Lemke [24] (see also [9]), Lemke’s algorithm will
process the LCP and will terminate.

Indeed, the LCP solution vector z∗ = (π∗, y∗, x∗, φ∗, u∗, v∗) supplies
a stationary equilibrium strategy for the undiscounted single-controller
stochastic games. We can use y∗, x∗ to construct an equilibrium stationary
strategy ρ∗ for player II. We can use π∗ to serve as the stationary equilib-
rium strategy for player I. We can use φ∗ − 1 to recover the equilibrium
payoff to player II.

10. Discounted Stochastic Games of Perfect Information

Here we consider the special class of discounted stochastic games with
perfect information. In perfect information games, at each state at most
one player has more than one action to choose from his action set. If the
player who has one action is the same one in all states then it is the classic
Markovian Decision Process (MDP). One can solve the discounted MDP
via Howard’s policy improvement algorithm [21]. Our task here is to adapt
the policy improvement algorithm of the discounted MDP to these games.
The existence theorem for perfect information stochastic games imposes a
strong combinatorial structure on them. This then serves as a motivation
for our algorithm, which is an extension of the Howard–Blackwell [3] policy
improvement algorithm for the discounted stochastic game.

Shapley [44] showed that under the discounted payoff criterion, perfect
information stochastic games admit optimal pure stationary strategies, for
both players. For a pair of pure stationary strategies (f, g) we define as usual
φβ(f, g) to be the vector of expected discounted payoffs, resulting from f
and g. For every pair t, s of states we denote by Qt,s(f, g) the probability of
transition from state t to state s given the stationary strategies f of player
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1 and g of player 2. Since the immediate transition probability Qt(f, g) =
(Qt,s(f, g))s∈S at each state t is determined by the action of at most one
player for perfect information games, we can always write either Qt(f, g) =
Qt(f) or Qt(f, g) = Qt(g) as the case may be. In case it is a state with
exactly one action for each player, the transitions are given a priori for
nature and so in such states t we could even suppress the dependence of
Qt on f or g. Likewise, we write r(f, g) to be the vector indexed by the
state space whose t-th component is r(t, f(t), g(t)). Just like Q(f, g), the
coordinate r(t, f(t), g(t)) of r(f, g) does not depend on g (on f) whenever
player II (player I) has a single action in state t.

For the discounted MDP there is the policy improvement algorithm of
Howard [21], which can be used to determine optimal policies. This algo-
rithm starts at an arbitrary policy f0 and produces a sequence of improve-
ments f1, f2, . . . , fk until an optimal policy is reached. In the sequence of
policies the corresponding values φβ are strictly monotonic and therefore
the algorithm must terminate (there are only a finite number of pure sta-
tionary policies). Extending the policy improvement algorithm of MDP’s
to stochastic games was initially attempted by Pollatschek and Avi-Itzhak
[37]; however, they were only able to prove that their algorithm terminates
for games with a stringent condition on the transitions and the discount
factor [51], [49].

We rearrange the states so that player I has more than one action and
player II has exactly one action in states 1, . . . , t1 and player I has exactly
one action and player II has more than one action in states t1+1, . . . , t1+t2.
The rest of the states can likewise be dubbed as states of nature. When
a strategy of one player is fixed, we are in a discounted MDP and it is
enough to find the best pure stationary strategy among all pure stationary
strategies. For a pair of pure stationary strategies (f, g) we write [(f, g) =
(f(1), g(1)), . . . , (f(s), g(s)] where (f(t), g(t)) is the pair of actions chosen
in state t under (f, g). For any state t at least one of f(t) or g(t) is 1. (The
player is essentially a dummy for that state.) An adjacent improvement of
type I is a new pair of pure stationary strategies (h, g) where:

1. h and f differ in exactly one state, namely there exists t̄, 1 ≤ t̄ ≤ t1,
with h(t̄) 6= f(t̄) and h(τ) = f(τ) for τ 6= t̄.

2. φβ(h, g) ≥ φβ(f, g) and φβ(h, g)t > φβ(f, g)t for some 1 ≤ t ≤ s.

The purpose of the second condition is clearly that player I is better off
playing h than f against player II’s g. The first condition is an adjacency
condition required in our algorithm. It states that h differs from f in ex-
actly one state. Of course we have the corresponding definition for adjacent
improvement of type II, namely it is a pair (f, h) where:
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1. ∃t′ , t1 + 1 ≤ t
′ ≤ t1 + t2, with g(t

′
) 6= h(t

′
) and g(τ) = h(τ) for τ 6= t

′

such that
φβ(f, h) ≤ φβ(f, g) and φβ(f, h)t < φβ(f, g)t for some 1 ≤ t ≤ s.

Notice that in both cases we require a strict improvement in φβ value
in some state. A pair of pure stationary strategies (f ′, g′) will be called an
improvement of (f, g) if it is a strict but adjacent improvement of either
type I or type II. Note that in such a case we would have either f ′ = f or
g′ = g depending on the type of improvement.

In our algorithm we start with a pair of pure stationary strategies and
generate a sequence of improvements via lexicographic search. That is, we
start in state 1 and proceed as follows. We always look for an adjacent
improvement of type I for player I. If such an improvement doesn’t exist
then we search for an improvement of type II (of course, we will not find
them in states where player II is a dummy). Now if neither exists then the
search moves to state 2 and we repeat the procedure. After an improvement
of either type is found, we move to the new pair and begin searching for
improvements back from state 1 again. We will prove that such a procedure
must terminate in an optimal pair (f∗, g∗).
Algorithm 4

1. Choose arbitrarily a pair of pure stationary strategies (f0, g0) (e.g.,
f0(t) = g0(t) = 1 for t = 1, . . . , s) and set α = 0.

2. Search lexicographically for an improvement (fα+1, gα+1) of (fα, gα)
always looking first for player I and then only for player II. There are
three cases:

Case 1: An improvement f for player I is found. In this case let
(fα+1, gα+1) = (f, gα) and α = α + 1, and repeat step 2.

Case 2: There are no improvements for player I, but there is an im-
provement g for player II. In this case let (fα+1, gα+1) = (fα, g)
and α = α + 1, and repeat step 2.

Case 3: There are no improvements. Go to step 3.

3. The pair (f∗, g∗) = (fα, gα) is an optimal pure stationary strategy pair
for the two players.

Remark. The claim that a lexicographically locally optimal pair is op-
timal for the stochastic game does not follow directly from local optimality
or from MDP. It depends on some intrinsic properties of stochastic games
of perfect information and we develop them now.

Remark. In an ordinary matrix game A = (aij) with value v, if apq = v,
it does not mean p, q are good pure strategies.

Curiously, however, for the case of stochastic games with perfect infor-
mation, we have the following.
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Lemma 3 In a zero-sum perfect information stochastic game Γ, a pair of
pure stationary strategies (f◦, g◦) is optimal if and only if φβ(f◦, g◦) =
φβ(Γ), the value of the stochastic game.

For what follows we require some notation. Let t ∈ S be a fixed state.
For any X ⊂ A(t) we let Γt

X be the subgame in which only the actions in
X are allowed in state t. The corresponding pure stationary strategy sets
will be denoted by F t

X and Gt
X . For the original game Γ we write F and G

for the pure stationary strategy sets of players I and II respectively.
When one of the players, say player I, restricts his actions in state t to

only those in the set X, while player II has no restrictions at all in any
state, we reach the subgame Γt

X . The pure stationary strategy space Gt
X

for player II for this subgame is the same as G in the original game because
player II’s strategy is not constrained.

Lemma 4 For t ∈ S, X ⊂ A(t), Y ⊂ A(t), X ∩ Y = ∅ we have for each
starting state k, φ(Γt

X∪Y )(k) = max{φβ(Γt
X)(k), φβ(Γt

Y )(k)}. In fact, as
vectors, either φβ(Γt

X) ≥ φβ(Γt
Y ) or φβ(Γt

X) ≤ φβ(Γt
Y ).

An obvious player II analog of the lemma exists using B(t) instead of
A(t).

Theorem 8 The strategy pairs (fα, gα), α = 0, 1 . . . obtained at step 2
along the algorithmic path never cycle and hence the algorithm must ter-
minate. The terminal pair (f∗, g∗) is locally optimal, in the sense that no
adjacent improvement is possible for either player. It is also a globally op-
timal strategy pair for the stochastic game.

Remark. Unlike in the policy improvement algorithm of MDP, in our
case we cannot expect any monotonicity property of the payoffs along the
algorithmic path.

Proof. A proof can be given by an induction on the total number n of
actions available for the two players in all states, that is, n =

∑s
i=1(ai +bi).

For details see [41].

11. Undiscounted Simple Stochastic Games

From the point of view of complexity theory, perfect information stochastic
games in undiscounted and total payoffs have been of interest to computer
scientists [7], [17], [27], [28], [53].

Condon [7] studied the so-called simple stochastic games (SSG). These
are special classes of stochastic games called recursive games of perfect
information [10]. In recursive games the immediate payoff is 0 at all non-
absorbing states. In simple stochastic games, one further assumes that the
immediate payoff is 1 just at one absorbing state called the I-sink and the
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immediate payoff is 0 at exactly one absorbing state called the II-sink.
Depending on the maximizer, or minimizer, or nature (who has two actions
in that state), they are called max, min and average states. In average states
a coin is tossed to choose one of two available actions. The maximizer prefers
the game to get absorbed into I-sink. The minimizer prefers the game to
get absorbed into II-sink. Also in these games, the law of motion is exact,
in the sense that from, say, a max state, depending on the action of the
player, the game moves to another state in unit time with probability 1.

Condon gives a polynomial time value iteration algorithm when the
game has exact law of motion and there are no average states. The algorithm
is quite simple and intuitive. If from any max state t there is an action
taking the game to a state with value 1, we define the value at state t as
v(t) = 1. If all actions at a max state end in a state with value 0, we define
v(t) = 0. Similar definitions apply at min states. If from an average state
τ one reaches the two states t or t

′
with values v(t), v(t

′
) respectively, the

value satisfies v(τ) = 1
2v(t) + 1

2v(t
′
). Since the value is known at the two

sinks, the value is determined at all other states by backward induction.
She also presents an algorithm for the case when the game terminates with
probability one into one of the two sinks. For simple stochastic games a
policy iteration-type algorithm is given by Ludwig [27]. He also assumes
that for every strategy pair the termination occurs with probability 1 in
one of the two sinks. Ludwig’s algorithm can be described as follows.

1. Given a simple stochastic game with N states, start with an arbitrary
max state s and any pure stationary σ for player I. Consider the sub-
stochastic game where player I will follow σ(s) when s is reached.

2. Recursively solve for an optimal strategy σ
′
of the substochastic game

for player I and extend this to a strategy of the original game by setting
σ
′
(s) = σ(s).

3. Solve for an optimal τ
′

for the MDP for player II (minimizer) with
player I’s strategy fixed at σ

′
.

4. If σ
′
, τ

′
is optimal, then stop. Otherwise, change the alternative at state

s to the second available alternative for player I and set σ(t) = σ
′
(t)

for t 6= s. Go to step 1 again.

Remark. The problem of solving efficiently for undiscounted value and
optimal stationary strategies for zero-sum two-person stochastic games of
perfect information is open. So are ARAT undiscounted games [43].

We are unable to prove that our algorithm will not cycle in the undis-
counted case. Once it can be solved, one can solve for Nash equilibria for
non-zero-sum perfect information stochastic games. Though they may not
be stationary, they consist of a pair of stationary strategies, namely a sta-
tionary part with a stationary threat [48].
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Remark. Switching control games are still open for efficient algorithms
even for discounted or undiscounted zero-sum games.
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