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Abstract. In this chapter we will review several topics that are used ex-
tensively in the study of n-player stochastic games. These tools were used
in the proof of several results on non-zero-sum stochastic games.

Most of the results presented here appeared in [17],[16], and a few ap-
peared in [12],[13].

The first main issue is Markov chains where the transition rule is a
Puiseux probability distribution. We define the notion of communicating
sets and construct a hierarchy on the collection of these sets. We then relate
these concepts to stochastic games, and show several conditions that enable
the players to control the exit distribution from communicating sets.

1. Markov Chains

A Markov chain is a pair (K, p) where K is a finite set of states, and
p : K → ∆(K) is a transition rule, where ∆(K) is the set of probability
distributions over K.

The transition rule p, together with an initial state k ∈ K, defines a
process on the states. Denote by kn the state of the process at stage n,
n = 1, 2, . . .. Let Pk,p be the probability distribution induced by p and the
initial state k over the space of infinite histories.

A subset C ⊆ K is recurrent if for every k ∈ C

1.
∑

k′∈C p(k, k′) = 1.
2. For every k′ ∈ C, Pk,p(kn = k′ for some n ≥ 1) = 1.
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Let A = A(p) = {k ∈ K | p(k, k) = 1} be the set of absorbing states. In
this section we consider only transition rules that satisfy the following two
assumptions:
A.1 A 6= ∅.
A.2 Pk,p(∃n ≥ 1 s.t. kn ∈ A) = 1 for every initial state k ∈ K.
In words, the process eventually reaches an absorbing state with probability
1.

We define the arrival time to state l by

rl = min{n > 1 | kn = l},

where a minimum over an empty set is infinity. For a subset B ⊆ K \A we
define the exit time from B by

eB = min{n ≥ 1 | kn 6∈ B}.

By A.1-A.2, eB is finite a.s. Let Ql
k,p(B) = Pk,p(keB = l) be the probability

that the first state outside B that the process visits is l. Clearly, this prob-
ability depends on the initial state. We denote by Qk,p(B) = (Ql

k,p(B))l∈K

the exit distribution from B. Since eB is finite a.s., this is a probability
distribution. It will be used only when k ∈ B.

A B-graph is a set of pairs g = {[k → l] | k ∈ B, l ∈ K} such that
− for each k ∈ B there is a unique l ∈ K \ {k} with [k → l] ∈ g;
− g has no cycle; that is, there are no positive integers J and k1, . . . , kJ ∈

B with [kj → kj+1] ∈ g for every j = 1, . . . , J (addition modulo J).
This definition implies that for every k ∈ B there exists a unique l 6∈ B

such that [k → k1], [k1 → k2], . . . , [kJ → l] ∈ g for some J and k1, . . . , kJ .
In such a case we say that k leads to l in g.

We denote by GB the set of all B-graphs, and by GB(k → l) all the
B-graphs in which k leads to l.

The weight of g w.r.t. p is

p(g) =
∏

[k→l]∈g

p(k, l).

The following lemma relates the exit distribution from B to the weights
of all B-graphs.

Lemma 1 (Freidlin and Wentzell [6], Lemma 6.3.3) If k ∈ B and l 6∈ B,

Ql
k,p(B) =

∑
g∈GB(k→l) p(g)
∑

g∈GB
p(g)

.
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Assumptions A.1-A.2 imply that the denominator is positive.
Lemma 1 implies that Ql

k,p(B) is continuous as a function of the tran-
sition rule p, for every fixed B, k ∈ B and l 6∈ B.

Example 1 K = {1, 2, a, b}, p(a, a) = p(b, b) = 1, p(1, 2) = p(1, a) = 1/2
and p(2, 1) = 1 − p(2, b) = 3/4. Thus, A = {a, b} and the process reaches
an absorbing state in finite time a.s. Graphically, the Markov chain looks
as follows.
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Take B = {1, 2}. There are three B-graphs with positive weight: g1 =
{[1 → 2], [2 → b]}, g2 = {[1 → a], [2 → 1]} and g3 = {[1 → a], [2 → b]}.
GB(1 → a) = {g2, g3}, GB(1 → b) = {g1}, GB(2 → b) = {g1, g3} and
GB(2 → a) = {g2}.

It is easy to verify that p(g1) = p(g3) = 1/8 and p(g2) = 3/8. One can
now calculate, using Lemma 1, that Qa

1,p(B) = 4/5, while Qa
2,p(B) = 3/5.

2. Puiseux Markov Chains

Puiseux series were introduced to the study of stochastic games by Bewley
and Kohlberg [3]. Since Puiseux series form a real closed field, they proved
to be a useful tool in analyzing asymptotic properties of discounted stochas-
tic games. The asymptotic properties were used by Mertens and Neyman [7]
to prove the existence of the uniform value in zero-sum games, by Solan [12]
and Solan and Vieille [14] for n-player stochastic games, and by Coulomb
[4] and Rosenberg et al. [10],[9] to prove the existence of the uniform min-
max value in stochastic games with imperfect monitoring. Puiseux series
were used in other fields as well (see, e.g., Eaves and Rothblum [5]).

All the definitions and results we have stated in Section 1 do not rely
on the fact that the field over which the transition rule is defined is the
field of real numbers. Consider now the field F of Puiseux functions; that
is, all functions f̂ : (0, 1) → R that have a representation

f̂ε =
∞∑

i=L

aiε
i/M (1)

in an open neighborhood of 0, for some integer L and positive integer M . As
a rule, Puiseux functions are denoted with a hat. The valuation of a Puiseux
function f with representation (1) is defined by w(f̂) = min{i | ai 6= 0}/M .
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For every Puiseux function f̂ with w(f̂) ≥ 0 define

f̂0 = lim
ε→0

f̂ε =

{
0 w(f̂) > 0
a0 w(f̂) = 0

. (2)

It is easy to verify that

w(f̂ ĝ) = w(f̂) + w(ĝ), (3)

lim
ε→0

f̂ε

ĝε
= 0 whenever w(f̂) > w(ĝ), and (4)

lim
ε→0

f̂ε is finite implies that w(f̂) ≥ 0. (5)

A Puiseux transition rule is a function p̂ : K ×K → F such that (i) for
every k, l ∈ K, p̂(k, l) is a non-negative Puiseux function, and (ii) for every
ε ∈ (0, 1), p̂ε(·, ·) is a transition rule. A Puiseux Markov chain is a pair
(K, p̂) where K is a finite set, and p̂ : K ×K → F is a Puiseux transition
rule. Note that the valuation of p̂(k, l) is non-negative for every k, l ∈ K.

An important property of Puiseux functions is that if a Puiseux func-
tion has infinitely many zeroes in any neighborhood of 0, then it is the
zero function. In particular, if a Puiseux function is not zero, then it has
no zeroes in a neighborhood of 0. Therefore, in a neighborhood of 0, the
collection of recurrent sets of a Puiseux Markov chain (and the collection
of absorbing states) is independent of ε.

In the sequel we will consider Puiseux transition rules p̂ such that for
every ε sufficiently small, p̂ε satisfies A.1 and A.2.

The weight of a B-graph is a Puiseux function p̂(g) =
∏

[k→l]∈g p̂(k, l).
From (3) it follows that w(p̂(g)) =

∑
[k→l]∈g w(p̂(k, l)).

Since Puiseux functions form a field, it follows by Lemma 1 that for
every Puiseux transition rule p̂, Ql

k,p̂(B) is a Puiseux function. By (2) and
(5), the limit limε→0 Qk,p̂ε(B) exists, and is a probability distribution.

Define Gmin
B to be the collection of all B-graphs g ∈ GB that have

minimal valuation among all B-graphs in GB. Set Gmin
B (k → l) = GB(k →

l) ∩Gmin
B . This set may be empty. By (4) it follows that if k ∈ B then

lim
ε→0

Ql
k,p̂ε

(B) = lim
ε→0

∑
g∈Gmin

B (k→l) p̂ε(g)
∑

g∈Gmin
B

p̂ε(g)
, (6)

where the sum over an empty set is 0.

3. Communicating Sets

Bather [2] introduced the notion of communicating sets to the theory of
Markov chains: a set B is communicating if for every k, l ∈ B, l is accessible
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from k (that is, Pk,p(rl < +∞) > 0). A communicating set B is closed if
whenever k ∈ B and l is accessible from k, l ∈ B as well.

Ross and Varadarajan [11] defined another notion of communication in
Markov decision processes. A set B in a Markov decision process is strongly
communicating if it is recurrent under some transition rule.

Avs.ar and Baykal-Gürsoy [1] generalized the definition of strongly com-
municating sets to stochastic games. However, contrary to their claim, un-
der their definition two strongly communicating sets may have non-trivial
intersection (compare their Lemma 1 and Example 2 below).

In the present section we generalize Bather’s definition of communicat-
ing sets to Puiseux Markov chains. In the next section we provide another
definition of communicating sets for stochastic games. When reduced to
Markov decision processes, this definition coincides with the one given by
Ross and Varadarajan [11]. We then study the relation between the two
definitions.

Let (K, p̂) be a Puiseux Markov chain.

Definition 1 A set B ⊆ K \ A is communicating w.r.t. p̂ if for every
k, k′ ∈ B

lim
ε→0

Pk,p̂ε(eB < rk′) = 0;

that is, the probability that the process leaves B before it reaches any state
in B goes to 0. Equivalently, as ε → 0, the number of times the process
visits any state in B before leaving B increases to +∞. This implies the
following.
Lemma 2 If B is communicating w.r.t. p̂, then B is closed under p̂0.

We denote by C(p̂) the collection of all communicating sets w.r.t. p̂.
Note that if C ∈ C(p̂) is communicating, if B ⊂ C and if k ∈ C \B, then

lim
ε→0

∑

l∈B

Ql
k,p̂ε

(C \B) = 1. (7)

Define a hierarchy (or a partial order) on C(p̂) by set inclusion. Definition
1 implies that two communicating sets are either disjoint or one is a subset
of the other. Hence the directed graph of this partial order is a forest (a
collection of disjoint trees). A similar hierarchy was already studied by Ross
and Varadarajan [11], and a different type of hierarchy is used in Avs.ar and
Baykal-Gürsoy [1].

Let B and C be communicating sets w.r.t. p̂. B is a child of C if B is a
strict subset of C and there is no communicating set D that satisfies B ⊂
D ⊂ C. Equivalently, B is a child of C if it is its child in the corresponding
tree (when we represent the hierarchy as a forest).

Definition 1 implies the following.
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Lemma 3 If B is communicating w.r.t. p̂ then limε→0 Qk,p̂ε(B) is indepen-
dent of k, provided k ∈ B.

For every B ∈ C(p̂), the limit Q∗
p̂(B) = limε→0 Qk,p̂ε(B), which is inde-

pendent of k ∈ B, is the exit distribution from B (w.r.t. p̂).
Let C be a communicating set, and let D1, . . . , DL be the children of

C. Define a new Markov chain (K̃, q) as follows.

− The state space is K̃ = {d1, . . . , dL} ∪ (K \ ∪L
l=1Dl), where d1, . . . , dL

are L distinct symbols.
− The transition q is given as follows.

• q(k, k′) = p̂0(k, k′) for k, k′ 6∈ ∪lDl.

• q(k, dl) =
∑

k′∈Dl
p̂0(k, k′) for k 6∈ ∪lDl.

• q(dl, k
′) = Q∗,k′

p̂ (Dl) for k′ 6∈ ∪lDl.

• q(dl, dl′) =
∑

k′∈Dl′ Q
∗,k′
p̂ (Dl).

In words, we replace each maximal communicating subset Dl of C by a
single state dl. Transitions from those new states are given by the exit
distribution, whereas transitions from states that are not in any communi-
cating set (transient states) are given by the limit probability distribution
p̂0.

Eq. (7) implies the following.

Lemma 4 Under the above notations, C is recurrent in (K̃, q).

4. Stochastic Games

From now on we concentrate on stochastic games, and we study when an
exit distribution from a communicating set can be controlled by the two
players.

Let (S, A, B, r, p) be a two-player stochastic game.
We denote by Pz,σ,τ the probability distribution over the space of infinite

histories induced by the initial state z and the strategy pair (σ, τ), and by
Ez,σ,τ the corresponding expectation operator.

Definition 2 A Puiseux strategy for player 1 is a function α̂ : (0, 1)×S →
∆(A) such that for every z ∈ S and every a ∈ A, α̂a

z is a Puiseux function.

Observe that for every ε ∈ (0, 1), α̂ε is a stationary strategy of player 1.
Any pair of Puiseux strategies (α̂, β̂) defines a Markov chain over S with

Puiseux transition rule q̂:

q̂(z, z′) =
∑

a,b

α̂a
z β̂

b
zp(z′|z, a, b).
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In particular, with every pair of Puiseux strategies (α̂, β̂) we can associate
the collection of communicating sets C(α̂, β̂) and the corresponding hierar-
chy.

For every C ∈ C(α̂, β̂) we denote by Q∗
α̂,β̂

(C) the exit distribution from
C in the corresponding Puiseux Markov chain.

A weaker definition of communication in stochastic games is the follow-
ing.

Definition 3 Let (α, β) be a pair of stationary strategies, and C ⊂ S. C
is weakly communicating w.r.t. (α, β) if for every z ∈ C and every δ > 0
there exists a pair of stationary strategies (α′, β′) such that

1. ‖α− α′‖∞ < δ and ‖β − β′‖∞ < δ.
2. C is closed under (α′, β′); that is, p(C | z′, α′, β′) = 1 for every z′ ∈ C.
3. Pz′,α′,β′(zn = z for some n ≥ 1) = 1 for every z′ ∈ C.

Observe that if C is weakly communicating w.r.t. (α, β), then it is closed
under (α, β).

We denote by D(α, β) the set of weakly communicating sets w.r.t. (α, β).

Lemma 5 Let (α̂, β̂) be a pair of Puiseux strategies, and let (α̂0, β̂0) be the
limit stationary strategy profile. Then

C(α̂, β̂) ⊆ D(α̂0, β̂0).

Proof. Let C ∈ C(α̂, β̂). We will prove that C ∈ D(α̂0, β̂0). Fix δ > 0
and z ∈ C.

Let g ∈ Gmin
C\{z}. By (7) and (6), all states z′ ∈ C \ {z} lead to z in g.

For each [z′ → z′′] ∈ g choose an action pair (az′ , bz′) that minimizes
w(p̂(z′, a, b)) among all action pairs (a, b) such that p̂(z′′ | z′, a, b) > 0.
Define a stationary profile in C by

α′(z′) = (1− δ)α̂0(z′) + δaz′ , and β′(z′) = (1− δ)β̂0(z′) + δbz′ .

In particular, (1) of Definition 3 holds.
The choice of (az′ , bz′) implies that (2) of Definition 3 holds. Indeed, oth-

erwise there would be z′ ∈ C \{z} and z? 6∈ C such that p(z? | z′, α′z′ , β′z′) >
0.

Define a B-graph g′ by replacing the unique edge that leaves z′ in g by
the edge [z′ → z?]. Then w(g′) ≤ w(g), and therefore g′ ∈ Gmin

C\{z}. By (6)
this contradicts the fact that Q∗,z

α̂,β̂
(C \ {z}) = 1.

Since all states in C \ {z} lead to z under g, (3) of Definition 3 holds.
The following example shows that the two notions of communication

are not equivalent.
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Example 2 Consider a game with 4 states. States 2 and 3 are dummy
states, where each player has a single action, and the transition in each
of these two states is: with probability 1/2 remain at the same state and
with probability 1/2 move to state 1. State 4 is absorbing. In state 1 both
players have 3 actions and transitions are deterministic. Graphically, tran-
sitions are as follows.

1 3 4

1 4 2

1 1 1

State 1

1
21 + 1

22

State 2

1
21 + 1

23

State 3

4

State 4

Figure 2
Denote by D(T,L) the set of weak communicating sets w.r.t. the pure

strategy profile where the players play the Top-Left entry in state 1. One
can verify that D(T,L) = {{1}, {1, 2}, {1, 3}, {1, 2, 3}}. However, it is easy
to see that {1, 2, 3} is not communicating w.r.t. any Puiseux strategy.

Having established the relation between communication (w.r.t. Puiseux
strategies) and weak communication (w.r.t. stationary strategies), we shall
deal only with the latter.

5. Controlling Exits from a Communicating Set

In this section we will see how players can control the behavior of each
other in a weak communicating set, using statistical tests and threats of
punishment, and how such control can be used to induce a specific exit
distribution from this set.

Let (α, β) be a stationary strategy pair, and let C ∈ D(α, β) be a weak
communicating set. We define three types of elementary exit distributions:

QC
1 (α, β) = {p(· | z, a, βz), where z ∈ C and p(C | z, a, βz) < 1},

QC
2 (α, β) = {p(· | z, αz, b), where z ∈ C and p(C | z, αz, b) < 1},

QC
3 (α, β) = {p(· | z, a, b), where z ∈ C, p(C | z, a, βz) = p(C | z, αz, b) = 1

and p(C | z, a, b) < 1}.

The first set corresponds to unilateral exits of player 1, the second to uni-
lateral exits of player 2, and the third to joint exits. Note that an exit can
give positive probability to a state in C. The set of all exit distributions is

QC(α, β) = co{QC
1 (α, β) ∪QC

2 (α, β) ∪QC
3 (α, β)}.
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QC(α, β) is the set of all exit distributions from C that can be generated if
the players at every stage play mainly (α, β), and perturb to other actions
with low probability.

Whenever Q ∈ QC(α, β), we can represent

Q =
∑

l∈L1

ηlPl +
∑

l∈L2

ηlPl +
∑

l∈L3

ηlPl,

where Pl ∈ QC
j (α, β) for l ∈ Lj . This representation is not necessarily

unique, but this fact will not cause any difficulty.
Let Q = (Q[z])z∈S be an exit distribution from C, and let γ ∈ (R2)S be

a payoff vector. γ should be thought of as a continuation payoff once the
game leaves C, and Q is the exit distribution we would like to ensure.

In the sequel, EQ[γ] =
∑

z Q[z]γz, E[γ | z, αz, βz] = Ep(·|z,αz ,βz)[γ], and
vi = (vi

z)z∈S is the min-max value of player i (see [8]).

Definition 4 Q is a controllable exit distribution from C (w.r.t. γ) if for
every δ > 0 there exist a strategy pair (σδ, τδ) and two bounded stopping
times P 1

δ , P 2
δ such that for every initial state z ∈ C the following conditions

hold.
1. Pz,σδ,τδ

(eC < ∞) = 1, and Pz,σδ,τδ
(zeC = z′) = Q[z′] for every z′ ∈ S.

2. Pz,σδ,τδ
(min{P 1

δ , P 2
δ } ≤ eC) < δ.

3. For every σ, Ez,σ,τδ

(
γ1(zeC )1eC<P 1

δ
+ v1(zP 1

δ
)1eC≥P 1

δ

)
≤ EQ[γ1] + δ.

4. For every τ , Ez,σδ,τ

(
γ2(zeC )1eC<P 2

δ
+ v2(zP 2

δ
)1eC≥P 2

δ

)
≤ EQ[γ2] + δ.

In this definition, (σδ, τδ) should be thought of as strategies that support
the exit distribution Q, and (P 1

δ , P 2
δ ) are two statistical tests that check for

deviations. Condition 1 says that if the players follow (σδ, τδ) then the
game will eventually leave C with the desired exit distribution. Condition
2 says that the probability of false detection of deviation is small, whereas
conditions 3 and 4 ensure that no player can benefit more than δ by a
deviation that is followed by a min-max punishment once detected.

A simple control mechanism was used by Vrieze and Thuijsman [18] for
two-player absorbing games (see [15]).

In the sequel we prove several conditions which imply that some exit dis-
tributions are controllable. The exit distribution induced by the strategies
we construct is only approximately Q, rather than equal to Q. By slightly
changing the construction (at the cost of higher complexity) one can ensure
that the exit distribution is equal to Q. In any case, for our purposes it is
sufficient to have the exit distribution arbitrarily close to Q.

In our construction, we omit the subscript δ from the strategies and
stopping times, since we do not specify what is the exact δ that should be
taken.
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Lemma 6 Let C be a weak communicating set w.r.t. (α, β), let γ ∈ (R2)S

be a payoff vector, and let Q =
∑

l∈L ηlPl be an exit distribution. Assume
that the following conditions hold.

1. γi
z ≥ vi

z and γz = EQ[γ] for every i = 1, 2 and z ∈ C.
2. EPl

[γ1] = EQ[γ1] for every l ∈ L1.
3. EPl

[γ2] = EQ[γ2] for every l ∈ L2.
4. For every z ∈ C and every a ∈ A, E[v1(·) | z, a, βz] ≤ EQ[γ1].
5. For every z ∈ C and every b ∈ B, E[v2(·) | z, αz, b] ≤ EQ[γ2].

Then Q is a controllable exit distribution from C w.r.t. γ.

Sketch of Proof. Fix δ?, ε > 0 sufficiently small.
By the definition of weak communication, for every z ∈ C there exists a

stationary strategy pair (αz, βz) that satisfies (i) ‖ (αz, βz)− (α, β) ‖< δ?,
and (ii) if the players follow (αz, βz), the game leaves C with probability
0, and reaches the state z with probability 1 in finite time (provided the
initial state is in C).

The strategy pair (σ, τ) is defined as follows. In a cyclic manner do the
following for each exit distribution Pl.

1. Denote by z the state at which the exit Pl occurs. Play (αz, βz) until
the game reaches z.

2. Denote δ = δ?ηl.

(a) If l ∈ L1 (that is, Pl = p(· | z, a, βz)), play ((1− δ)αz + δa, βz).
(b) If l ∈ L2 (that is, Pl = p(· | z, αz, b)), play (αz, (1− δ)βz + δb).
(c) If l ∈ L3 (that is, Pl = p(· | z, a, b)), play ((1−√δ)αz +

√
δa, (1−√

δ)βz +
√

δb).

3. Continue cyclically to the next exit.
Define the stopping times P 1 and P 2 as follows.

a) If player 1 (resp. player 2) plays an action which is not compatible
with σ (resp. τ), P 1 (resp. P 2) is stopped.

b) For every l ∈ L1, consider all stages where the game has been in step
(2) for that l, and check whether the distribution of the realized actions
of player 2 in those stages is approximately βz (where z is the state
at which Pl occurs). If the answer is negative (that is, the difference
between the distribution of the realized actions and β in the supremum
norm is larger than ε), P 2 is stopped.
This test is done only if the number of times the play was in step (2) for
that exit is sufficiently large, so that the probability of false detection
of deviation is small.

c) A similar test is done for player 1 for every l ∈ L2.
d) For every l ∈ L3, consider all stages where the play has been in step

(2) for that l, and check whether the opponent perturbed to a (or to
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b) approximately in the specified frequency. That is, whether the ratio
between

√
δ and the number of times the realized action of player 1

(resp. player 2) was a (resp. b) is in (1− ε, 1 + ε).
This test is done only if the number of times the play was in step (2) for
that exit is sufficiently large, so that the probability of false detection
of deviation is small.

We have already seen how to implement test (b) in [15].
If δ? and ε are sufficiently small, test (d) can be employed effectively,

since exiting C occurs after O(1/δ?) stages, whereas each player should
perturb with probability O(

√
δ?). Hence, until exiting occurs, each player

should perturb O(1/
√

δ?) times, which is enough for an effective statistical
test.

One last possible deviation that we should take care of is, what hap-
pens if all exits are unilateral exits of some player, and that player has an
incentive never to leave C. To deal with such a deviation, we choose t?

sufficiently large such that under (σ, τ) exiting from C occurs before stage
t? with high probability, and we add the following constraint to P 1 and P 2:

e) P 1 and P 2 are bounded by t?.

Thus, there is no profitable deviation, and therefore Q is a controllable
exit distribution from C w.r.t. γ, and the lemma is proved.

This lemma also holds for general n-player games. It is used in Solan [12]
for three-player absorbing games, and in Solan and Vieille [14] for n-player
stochastic games.

The two players in the conditions of Lemma 6 are symmetric. We will
now see a more sophisticated mechanism to control exits from a weak com-
municating set, where the players are not symmetric.

Lemma 7 Let C ∈ D(α, β) be a weak communicating set, let γ ∈ (R2)S be
a payoff vector, and let Q be an exit distribution from C. Assume that

1) γi
z ≥ vi

z and γz = EQ[γ] for every i = 1, 2 and z ∈ C.
2) For every z ∈ C and a ∈ A, E[v1 | z, a, βz] ≤ EQ[γ1].
3) For every z ∈ C and b ∈ B, E[v2 | z, αz, b] ≤ EQ[γ2].
4) There exists a representation Q =

∑M
m=1 ηmQm such that for every

m = 1, . . . , M :

(a) EQm [γ1] = EQ[γ1].

(b) There exists Fm ∈ D(α, β) such that Fm ⊆ C and Qm is a con-
trollable exit distribution from Fm w.r.t. γ.

(c) There exists a state zm ∈ Fm and an action am ∈ A of player 1
such that p(C | zm, am, βzm) = 1 and p(Fm | zm, am, βzm) < 1.

Then Q is a controllable exit distribution from C w.r.t. γ.
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Proof. Consider the following construction. Player 1 chooses m ∈
{1, . . . , M}, according to the probability distribution η = (ηm)M

m=1. Us-
ing the action am in state zm (condition (4.c)) player 1 signals his choice
to player 2. Once m is known to both players, they implement an exit from
Fm according to Qm (condition (4.b)). By condition (4.a) player 1’s payoff
is independent of the chosen m. Conditions (1), (2) and (3) ensure that no
deviation is profitable.

However, exiting Fm does not necessarily mean exiting C. If the game
remains in C, the players start from the beginning: player 1 chooses a new
m, signals it to player 2, and so on.

We shall now define the strategies (σ, τ) and the stopping times P 1, P 2

more formally. Let δ > 0 be sufficiently small.

1) Player 1 chooses m? ∈ {1, . . . , M}. Each m is chosen with probability
ηm, independently of the past play.

The players set m = 1, and do as follows.

2) (a) If m? = m, player 1 chooses whether to signal this fact during
the coming phase (with probability δ), or whether not to signal
(with probability 1− δ).

(b) The players play the stationary strategy (αzm , βzm) until the game
reaches zm.

(c) In zm, player 2 plays the mixed action βzm . Player 1 plays αzm

if m? = m and he chose to signal that fact to player 2, and
(1− δ)αzm + δam otherwise.

The players repeat steps (2.b)-(2.c) 1/δ4 times (with the same choice
that was made at step (2.a)), or until player 1 has played am in zm for
the first time, whichever occurs first.

3) If player 1 played the action am in step (2.b), the players increase
cyclically m by 1, and go back to step (2).

4) Otherwise, the players continue with the strategy pair (σm, τm) that
supports Qm as a controllable exit distribution from Fm w.r.t. γ, until
the game leaves Fm.

5) If by leaving Fm the game also leaves C, we are done. Otherwise, the
players go back to step (1).

If the players follow (σ, τ), then in each round of step 2, if m? = m

a signal is sent to player 2 with probability (1 − δ)1/δ4
< δ. Moreover,

in 1/δ2 repetitions of steps (1)-(3), the probability that in (2.a) player
1 ever chooses to signal to player 2 is 1 − (1 − δ)1/δ2

> 1 − δ, and the
probability that player 1 will not play the action am when m 6= m? is
1 − (1 − (1 − δ)1/δ4

)1/δ2
< δ. It follows that the expected continuation

payoff is approximately EQ[γ].
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The stopping times are defined as in the proof of Lemma 6, with the
following addition.

f) Whenever the play is in step (4), the players use the stopping times
that support Qm as a controllable exit distribution from Fm w.r.t. γ,
disregarding the history up to the stage where they started to follow
(σm, τm).

Let us verify that no player can profit too much by deviating.

− Since player 1’s expected payoff is EQ[γ1], regardless of the m he
chooses, he cannot profit by deviating in the lottery stage.

− Since player 1 reveals the signal to player 2 each time with probability
δ, the expected continuation payoff, conditional on player 1 not having
played any action am in step (2.b), is approximately EQ[γ2].

− Once player 2 is notified of m?, the game is in Fm? . Since Qm? is
controllable, there is no profitable deviation.

− Conditions (2) and (3) ensure that detectable deviations are not prof-
itable once m? is revealed.

Remark 1 Note that if Qm =
∑L

l=1 νlPl is supported by unilateral exits
(Pl) of player 1, and EPl

[γ1] = EQ[γ1] for all these exits, then condition
(4.c) for this m is not needed. Indeed, instead of signaling whether m?

is equal to m or not, the players will try to use just once each exit Pl

with probability δνl, as was done in the proof of Lemma 6. Thus, when the
counter in step (2) points to that set, we replace step (2) with the following:

2) Set l = 1, and do the following.

a) Denote Pl = p(· | z, a, βz).

b) Play the stationary strategy (αz, βz) until the game reaches z.

c) Play ((1− δνl)αz + δνla, βz).

d) If a is played in (c), we are done. Otherwise, increase l by one,
and go back to (a). If l = L, continue to the next m.

Since player 1 is indifferent between his unilateral exits, he cannot profit by
deviating. Since any exit is used with low probability, the overall expected
continuation payoff of player 2 is close to EQ[γ2], so he cannot profit by
deviating either.

Remark 2 More generally, if Qm satisfies the conditions of Lemma 6 w.r.t.
C and γ, then condition (4.c) is not needed for this m. m? will be chosen
by player 1 from the set {1, . . . ,M} \ {m}, with the normalized probability
distribution. The players play as in the proof of Lemma 7, but when the
counter has the value m, they follow steps (1)-(3) in the proof of Lemma 6
once for each exit.
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It can be verified that if the players follow this strategy profile then the
exit distribution is approximately EQ[γ]. The statistical tests employed in
the proof of Lemma 6 can be employed here to deter players from deviating.
Remark 3 If (i) M = 2, (ii) F1 = F2 = C, (iii) Q1 is supported by
unilateral exits of player 1 and (iv) Qm satisfies the conditions of Lemma 6
w.r.t. C and EQm [γ] for m = 1, 2, then condition (4.c) is not needed at all.

Instead of alternately signaling to player 2 whether m? = 1 or m? = 2,
player 1 first signals to player 2 whether m? = 1, and, if no signal is sent,
both players continue as if m? = 2.

The way to signal whether m? = 1 is, as in Remark 1, for player 1 to
use one of the unilateral exits that support Q1.

We now state another condition that ensures that an exit distribution
is controllable, which follows from Lemma 7 and the last three remarks.
This condition is used in Vieille’s [16] proof of existence of equilibrium in
two-player non-zero-sum stochastic games.

Lemma 8 (Vieille [16]) Let C ∈ D(α, β) be a weak communicating set, let
γ ∈ (R2)S be a payoff vector, and let Q =

∑
l∈L νlPl be an exit distribution.

Assume that the following conditions hold.
1) γi

z ≥ vi
z and γz = EQ[γ] for every i = 1, 2 and z ∈ C.

2) EPl
[γ1] = EQ[γ1] for every l ∈ L1.

3) For every z ∈ C and every a ∈ A, E[v1 | z, a, βz] ≤ EQ[γ1].
4) For every z ∈ C and every b ∈ B, E[v2 | z, αz, b] ≤ EQ[γ2].
5) There exists a partition (L0

2, . . . , L
M
2 ) of L2 and weak communicating

subsets F1, . . . , FM ∈ D(α, β) of C such that L0
2 = {l ∈ L2 | EPl

[γ2] =
EQ[γ2]} and, for every m ≥ 1,
(a) EPl

[γ2] = EQm [γ2] for every l ∈ Lm
2 , where Qm =

∑
l∈Lm

2

νl∑
l∈Lm

2
νl

Pl.

(b) For every z ∈ Fm and b ∈ B,
− if p(Fm | z, αz, b) < 1 then p(C | z, αz, b) < 1;
− if p(C | z, αz, b) < 1 then E[γ2 | z, αz, b] ≤ EQm [γ2].

(c) EQm [γ1] = EQ[γ1].
(d) EQm [γ2] ≥ maxz∈Fm v2

z .
(e) For every l ∈ Lm

2 , the state in which Pl occurs is in Fm.
Then Q is a controllable exit distribution from C w.r.t. γ.

Sketch of Proof. First we note that the conditions imply that for every
m, Qm is a controllable exit distribution from Fm w.r.t. EQm [γ]. Indeed, by
(5.a) Qm is supported by unilateral exits of player 2, and player 2 receives
the same continuation payoff using any one of them. By conditions (1) and
(5.b) player 2 does not have a profitable deviation, and by (2), (3) and (5.c)
player 1 does not have profitable deviations.
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Second, define

Q′ =

∑
l∈L1∪L3∪L0

2
νlPl∑

l∈L1∪L3∪L0
2
νl

.

Then Q is a convex combination of Q′ and (Qm)M
m=1. If for every m there

exist a state zm and an action am such that p(C | zm, am, β) = 1 while
p(Fm | zm, am, β) < 1, it follows by Lemma 4.3 and Remark 2 that Q is a
controllable exit distribution from C w.r.t. γ.

Otherwise, one can show that L3 = ∅ and player 2 is indifferent between
his exits (that is, either M = 0, or M = 1, L0

2 = ∅ and F1 = C). If M = 0
we are done, since then the conditions of Lemma 6 are satisfied.

If M = 1 and L0
2 = ∅, then Q′

2 =
∑

l∈L1
νlPl∑

l∈L1
νl

is an exit distribution from

C that is supported by unilateral exits of player 1, Q′
1 =

∑
l∈L2

νlPl∑
l∈L2

νl
is an

exit distribution from C that is supported by unilateral exits of player 2,
and player 2 is indifferent between his exits. Since L3 = ∅, Q is a convex
combination of Q′

1 and Q′
2.

Since EQ′1 [γ
1] = EQ[γ1], it follows that EQ′2 [γ

1] = EQ[γ1]; hence Q′
2 is a

controllable exit distribution from C w.r.t. γ. By Remark 3 it follows that
Q is a controllable exit distribution from C w.r.t. γ.
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