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1. Introduction

In this chapter, we focus on finite two-player non-zero-sum stochastic games.
Following the notations used in earlier chapters, we let S be the state space,
and A and B be the action sets of players 1 and 2 respectively. All three
sets S,A and B are finite. Generic elements of S, A and B will be de-
noted by z, a and b. We let p(·|z, a, b) be the transition function of the
game and r : S × A× B → R2 be the (stage) payoff function of the game.
We deal with games with complete information, perfect recall and perfect
monitoring. Thus, at each stage n ≥ 0, the two players know the play
hn = (z1, a1, b1, ..., zn) up to that stage, and simultaneously choose actions
an and bn. The next state zn+1 is drawn according to p(·|zn, an, bn) and the
play proceeds to the next stage.

The goal of this chapter, together with the next one, is to give an
overview of the proof of Theorem 1.

Theorem 1 Any finite two-player stochastic game has a uniform equilib-
rium payoff.

The proof partitions the state space S into three kinds of (disjoint)
regions: solvable sets, controlled sets and remaining states. We devise an ε-
equilibrium (σ, τ) that coincides with a simple (periodic-like) profile (σ∗, τ∗)
until at least one player detects a deviation from the equilibrium play. From
that stage on, a punishment threat is activated, i.e., each player switches
to an ε-optimal strategy in a related zero-sum game.

Under (σ∗, τ∗), the play eventually reaches a solvable set and remains
there forever. In each controlled set, (σ∗, τ∗) is of the type discussed in [4],
Section 5. Outside of the solvable sets and of the controlled sets, (σ∗, τ∗)
coincides with a stationary profile.
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We shall only describe the structure of the proof, and provide selected
details. For the complete proof, we refer to [8],[9].

We define solvable sets in Section 2. Section 3 explains the division of
the proof into two parts, and describes the structure of the first part. The
last two sections contain details.

Given C ⊂ S, we let θC := inf {n : zn /∈ C} denote the first exit stage
from C. Given a measure µ , expectations with respect to µ are denoted by
Eµ. We abbreviate Ep(·|z,αz ,βz) [·] to E [·|z, αz, βz].

2. Solvable Sets

We let Γ be any finite two-player stochastic game. We denote by Γi, i = 1, 2
the zero-sum game obtained from Γ when the other player minimizes player
i′s payoff and we let vi : S → R be the uniform value of Γi.

2.1. DEFINITION

Let (α, β) be a stationary profile, and R be a recurrent set for the Markov
chain over S induced by (α, β). By the ergodic theorem for Markov chains,
limn→+∞ γn(z, α, β) exists and is independent of z ∈ R. We simply write
γ(R, α, β). For each C ⊆ S, we denote by RC(α, β) the (possibly empty)
collection of sets R ⊆ C such that R is recurrent under (α, β).

Definition 2 A solvable set is a triple (C, (α, β), µ) where (i) (α, β) is a
stationary profile, (ii) C ⊆ S is a weak communicating set w.r.t. (α, β),
and (iii) µ is a probability distribution over RC(α, β) such that, for every
z ∈ C, a ∈ A and b ∈ B,

∑
R∈RC(α,β) µ(R)γ1(R,α, β) ≥ E

[
v1|z, a, βz

]
∑

R∈RC(α,β) µ(R)γ2(R, α, β) ≥ E
[
v2|z, αz, b

]
.

Weak communicating sets are defined in [4], Definition 4.2. The concept
of solvable set is slightly more general than the concept of easy initial states,
introduced by Vrieze and Thuijsman [6]. For simplicity, we abuse definitions
and say that C ⊆ S is a solvable set as soon as (C, (α, β), µ) is a solvable
set for some (α, β) and µ.

2.2. MAIN PROPERTIES

Solvable sets do exist (see [6] or [7] for two players, and [10] for a generaliza-
tion to N -player games). Existence for two-player games is also a corollary
to Proposition 8 below.
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Lemma 3 Let (C, (α, β), µ) be a solvable set. Then

∑

R∈RC(α,β)

µ(R)γ(R, α, β)

is a uniform equilibrium payoff, provided the initial state z belongs to C.

The players will play history-dependent perturbations of (α, β) such that
the average payoff converges to

∑
R∈RC(α,β) µ(R)γ(R,α, β). The properties

of a solvable set ensure that a unilateral deviation, followed by indefinite
punishment, is not profitable.

Proof. Let ε > 0 and z ∈ C be given. Since C is a weak communi-
cating set w.r.t. (α, β), one can construct a profile (σ∗, τ∗) such that (i)
‖(σ∗(hn), τ∗(hn))− (αzn , βzn)‖ < ε for every history hn, (ii) Pz,σ∗,τ∗(θC <
+∞) = 0 and (iii) limn→+∞ rn =

∑
R∈RC(α,β) µ(R)γ(R, α, β),Pz,σ∗,τ∗-a.s.

Adding to (σ∗, τ∗) appropriate punishment threats yields a 2ε-equilibrium.

Remark 4 Lemma 3 holds as soon as current states and payoffs are ob-
served by the players.

We now proceed to a first modification of the game. For each solvable
set (C, (α, β), µ) and each z ∈ C, turn z into an absorbing state with payoff∑

R∈RC(α,β) µ(R)γ(R, α, β).1 Denote by Γ′ the game obtained this way. It
can be checked that: (i) the solvable sets of Γ′ coincide with the absorbing
states of Γ and (ii) each equilibrium payoff of Γ′ is an equilibrium payoff of
Γ. The converse to (ii) does not hold.

3. Overview

Let Γ = (S, A, B, r, p) be a game, and ε > 0. By the previous section, we
may assume that the solvable sets of Γ coincide with the absorbing states.
W.l.o.g., we assume that r1(·) < 0 < r2(·). We denote by S∗ ⊆ S and S0 =
S\S∗ the subsets of absorbing and of non-absorbing states respectively. A
profile (σ, τ) is ε-absorbing if Pz,σ,τ (θS0 < +∞) ≥ 1 − ε for each z ∈ S.
Given such a profile, the play reaches S∗ with high probability.

3.1. A FEW DEFINITIONS

Definition 5 A controlled set is a pair (C,Q), where C ⊆ S0, and Q is an
exit distribution from C that is controllable for any payoff vector γ ≥ v.

1For states z that belong to several solvable sets, choose any of the corresponding
payoffs.
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Controllable exit distributions are introduced in [4], Definition 5.1. For
simplicity, we sometimes refer to the set C itself as a controlled set.

Given a controlled set (C, Q), we let ΓC be the game obtained from
Γ by turning the subset C into a dummy state {C}, where transitions
are specified by Q, irrespective of actions being played, and payoffs are
arbitrary. Thus, the state space of ΓC is S\C ∪ {C}.

More generally, let C be a family of disjoint controlled sets. We let ΓC be
the game obtained from Γ by turning each set C ∈ C into a dummy state.
To avoid confusion, the transition function of ΓC is denoted by pC , and we
will add such subscripts whenever useful. For instance, S0,C is the set of
non-absorbing states of ΓC . It coincides with (S0\ ∪C∈C C) ∪ (∪C∈C{C}).

It can be shown that if ΓC has an ε-absorbing ε-equilibrium for each
ε > 0, then so does Γ. (Note in particular that this excludes the possibility
of “cycles” between the different controlled sets.)

Definition 6 Let D ⊆ S0 and β be a stationary strategy. The pair (β,D)
is a blocking pair for player 1 if for each z ∈ D, a ∈ A,

{
p(D|s, a, βz) < 1 ⇒ E

[
v1|s, a, βz

]
< max

D
v1

}
.

A blocking pair (α, D) for player 2 is defined by exchanging the roles of
the two players in Definition 6.

We also extend this definition to games obtained by reducing Γ.

Definition 7 Let C be a family of disjoint controlled sets. A pair (β, D),
where D ⊆ S0,C, is a reduced blocking pair for player 1 if for each z ∈
D, a ∈ A,

{
pC(D|s, a, βz) < 1 ⇒ EC

[
v1|s, a, βz

]
< max

z∈D
v1

}
.

We stress the fact that the value v1 that is used is the value associated
with the original game, and not the value v1

C of the reduced game.2 A
state z ∈ S0,C is either a state of S0 or a controlled set C ∈ C. In the latter
case, we set vi(C) = supz′∈C vi(z′). There is no relation between reduced
blocking pairs and blocking pairs of the reduced game.

The notion of reduced blocking pair is relative to the family C of con-
trolled sets. No ambiguity should ever arise.

2There is no specific relation between v and vC . In particular, vC may depend on the
choice of the payoff in the dummy states which replace the controlled sets.
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3.2. STRUCTURE OF THE PROOF

We here list the main steps of the proof, summarized by Propositions 8, 9
and 10 below. The corresponding proofs will be sketched in later sections.
The proof is divided into two independent parts.

The first part (see Proposition 8) consists of constructing a (possibly
empty) family of disjoint controlled sets C that, in a sense, exhausts the
blocking opportunities for one player, say for player 1. We then turn the
corresponding reduced game ΓC into a recursive game ΓR, by setting the
payoff function to zero in each non-absorbing state, and by leaving ΓC
unchanged in other respects. It will follow from the properties of C that
any ε-absorbing ε-equilibrium profile of ΓR is an ε-absorbing ε-equilibrium
profile of the reduced game ΓC , when supplemented with a punishment
threat (see Proposition 9).

The second part of the proof (see Proposition 10) consists of showing
that recursive games such as ΓR do have ε-absorbing ε-equilibrium profiles.

Proposition 8 There is a collection C of disjoint controlled sets such that
there is no reduced blocking pair for player 2.

Of course, there is nothing specific about player 2. The same result holds
for player 1 as well.

Let ΓR be the game obtained from ΓC by setting to zero the payoff
function in each non-absorbing state.

The game ΓR is recursive (see [1], [5]). Moreover,

F1 all absorbing payoffs of player 2 (resp. of player 1) are positive (resp.
negative).

F2 for every α, there exists β, such that (α, β) is (0)-absorbing.

Proposition 9 If ΓR has a uniform equilibrium payoff, the game ΓC has
an ε-absorbing ε-equilibrium profile, for every ε > 0.

Proposition 10 Every (finite, two-player) recursive game that satisfies F1
and F2 has a uniform equilibrium payoff.

Section 4 provides insights into the proof of Proposition 8. Proposition
9 is in most respects standard (see Section 5). Proposition 10 is discussed
in the next chapter.

4. The Reduction

We here prove Proposition 8. If there is no blocking pair, the statement
holds vacuously. We thus deal with games that have at least one blocking
pair. In Sections 4.1 and 4.2, we prove that such games have a controlled set
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(see Proposition 13). This is not sufficient by itself, since the corresponding
reduced game may contain additional reduced blocking pairs. In Section
4.3, we explain how to proceed iteratively.

4.1. THE BASIC PRINCIPLE

We start with a basic yet crucial observation. Denote by αλ an optimal
strategy of player 1 in the λ-discounted version of the zero-sum game Γ1.
Hence,

λr1(z, αλ
z , b) + (1− λ)E

[
v1
λ(·)|z, αλ

z , b
]
≥ v1

λ(z) for every z ∈ S and b ∈ B.
(1)

Set α := limλ→0 αλ, where the limit is taken up to a subsequence. Letting
λ go to zero in (1), one gets

E
[
v1(·)|z, αz, b

] ≥ v1(z), for every z ∈ S and b ∈ B.

Define also β as a limit, as λ converges to zero, of optimal stationary strate-
gies of player 2 in the discounted zero-sum game Γ2.

Lemma 11 Let (α, D) be a blocking pair for player 2. There exists D ⊆ D,
such that: (i) v2 is constant on D; (ii) D is a weak communicating set w.r.t.
(α, β); (iii) (α, D) is a blocking pair for player 2.

Proof. Let D̃ =
{
z ∈ D : v2(z) = maxD v2

}
contain the states in D

where v2 is highest. Clearly, (α, D̃) is a blocking pair for player 2. In par-
ticular, D̃ is closed for the Markov chain induced by (α, β). Consider the
subsets of D̃ which are maximal for the (weak) communication property.
At least one of them will satisfy (i), (ii) and (iii).

Lemma 11 is the simplest statement of a basic principle that underlies
the reduction algorithm. Apply Lemma 11 to any blocking pair (α, D) for
player 2.

− If p(D|z, a, βz) < 1 and E
[
v1|z, a, βz

] ≥ maxD v1, for some z ∈ D,
a ∈ A, then D is a controlled set. Indeed, choose, among those pairs, a
pair (z∗, a∗) for which E

[
v1|z, a, βz

]
is highest. It can be checked that

the exit distribution p(·|z∗, a∗, βz∗) from D is controllable for every
continuation payoff vector γ ≥ v.

− Otherwise, (β,D) is a blocking pair for player 1. Apply again Lemma
11 to the pair (β, D), with the roles of the two players exchanged, and
let D ⊆ D be the corresponding subset. Then, as above,

• either the exit distribution p(·|z∗, αz∗ , b
∗) from D is controllable,

for some pair (z∗, b∗) ∈ D ×B,
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• or (α, D) is a blocking pair for player 2.

In the latter case, notice that (α, D) is a blocking pair for player 2 and
(β, D) is a blocking pair for player 1. Hence we have proven Corollary 12
below.
Corollary 12 Let (α, D) be a blocking pair for player 2. There exists D ⊆
D, such that either D is a controlled set or both (α,D) and (β, D) are
blocking pairs.

In the next section, we prove that, in the latter case, there is a con-
trollable exit distribution from D, based on joint perturbations of the two
players.

4.2. THE RELATION BETWEEN CONTROLLED AND SOLVABLE SETS

We let D ⊆ S0 be a weak communicating set w.r.t. (α, β), such that both
(α, D) and (β, D) are blocking pairs. We shall prove that either D is solvable
or there is some controllable exit distribution from D. Since, by assumption,
S0 does not contain any solvable set, this yields Proposition 13 below.

Proposition 13 If Γ has a blocking pair, then Γ has a controlled set.

The argument in Section 4.1 used only the subharmonic properties of
v1 (resp. of v2) with respect to the kernel p(·|z, αz, βz) (resp. p(·|z, αz, βz)).
We here use arguments of a different nature.

For expository purposes, we assume that for each state z ∈ D, and each
action pair (a, b), one has p(D|z, a, b) = 0 as soon as p(D|z, a, b) < 1.

4.2.1. Reminder about ε-Optimal Strategies
We first point out a consequence of the proof of the existence of the value
in finite zero-sum stochastic games (see [3]).

Let (αλ)λ≤λ0 and (βµ)µ≤µ0 be parametric families of stationary strate-
gies, where λ0 > 0 and µ0 > 0. Assume that, for every z ∈ S, λ ∈ (0, λ0),
µ ∈ (0, µ0), one has

λr1(z, αλ
z , βµ

z ) + (1− λ)E[v1
λ|z, αλ

z , βµ
z ] ≥ v1

λ(z). (2)

Then, close inspection of the proof in [2] shows that for every ε > 0, the
following holds under (2). There exists a strategy σ which always plays
according to some αλ, in the sense that, for each finite history hn, there is
λ(hn) < λ0 such that σ(hn) = α

λ(hn)
zn , such that: for each strategy τ which

always plays like some βµ, and each initial state z,

γ1
n(z, σ, τ) ≥ v1(z)− ε, for n large enough. (3)



288 NICOLAS VIEILLE

Moreover, the same result holds in every subgame, in the following sense.
Given a finite history hp, let (σhp , τhp ) be the profile induced by (σ, τ) in
the subgame initiated at hp, and let zp be the initial state of that subgame.
Then, for every n large enough, one has γ1

n(zp, σ
hp , τhp ) ≥ v1(zp)− ε.

Observe also that if the inequality (2) holds for each λ ∈ (0, λ0), it
holds a fortiori for each λ ∈ (0, λ0), provided λ0 ≤ λ0. Therefore, one may
assume that λ(hn) < ε, for every finite history hn.

Finally, it can be checked that if some states z ∈ S0 are replaced by
absorbing states with payoff v(z)+ ε, then the conclusion (3) will still hold
in the modified game.3

4.2.2. Application
In Mertens and Neyman’s original proof, αλ is taken to be an optimal
strategy of player 1 in the λ-discounted zero-sum game. No restriction on
the strategies of player 2 is needed.

By contrast, we here define αλ as follows. By definition of α, there exists,
for each λ > 0, an optimal stationary strategy αλ in the λ-discounted game
such that limλ→0 αλ = α. For z ∈ D, set Az = {a ∈ A, p(D|z, a, βz) = 1},
and define αλ

z to be the conditional distribution of αλ
z , conditioned on Az.

Define βµ accordingly for player 2, by conditioning β
µ on the set Bz =

{b ∈ B, p(D|z, αz, b) = 1}. It is straightforward to check that:

− limλ→0 αλ = α, and limµ→0 βµ = β.
− For every z, the inequality (2), together with its counterpart for player

2, holds, provided λ and µ are small enough.

It will be convenient to apply the result of Section 4.2.1 to a slightly
modified game. Let ε > 0 be given. Turn each state z /∈ D into an absorbing
state with payoff (v1(z) + ε, v2(z) + ε). Using the final remark of Section
4.2.1, there exists a profile (σε, τε) of strategies, such that:

1. for each history hn = (z1, a1, b1, · · · , zn), there exists λn and βn such
that σε(hn) = αλn

zn
and τε(hn) = β

µn

zn
. Moreover, both ||σε(hn)−αzn || <

ε and ||τε(hn)− βzn
|| < ε hold.

2. For n large enough, γn(z, σε, τε) ≥ v(z)− ε, and the same holds in any
subgame.4

Let pε := Pz,σε,τε(θD < +∞) be the probability that the play ever leaves
D. We discuss two non-mutually exclusive cases.

3Where the left-hand side is the expected average payoff in the new game, while the
right-hand side contains the value of the original game. We use here the fact that the
value of the new game is at least the value of the original game.

4In this inequality, γn(z, σε, τε) stands for the average payoff in the new game, and
v(z) for the value in the original game.



TWO-PLAYER NON-ZERO-SUM GAMES: A REDUCTION 289

Case 1 There is a sequence (εn) converging to zero, with pεn = 1 for
every n.

We here argue that there is a controllable exit distribution from D.
Indeed, let ε belong to the sequence (εn), and denote by

Qε(·) = Pz,σε,τε(zθD
= ·)

the law of the exit state from D. Since θD is a.s. finite, limn γn(z, σε, τε) =
EQε [v] + ε. Therefore,

EQε [v] ≥ v(z)− 2ε. (4)

On the other hand, p(D|zn, σε(hn), βzn
) = 1 = p(D|zn, αzn , τε(hn)), for

every history hn. Thus, Qε belongs to the set Q2(α, β) (see [4]), that is,
Qε is a convex combination of the distributions p(·|z, a, b) where (z, a, b) ∈
D × A × B is any triple such that p(D|z, a, βz) = p(D|z, αz, b) = 1. Since
Q2(α, β) is compact, and using (4), there is a distribution Q ∈ Q2(α, β)
with EQ [v] ≥ v(z).

Since Q involves no unilateral exits, and since both pairs (α,D) and
(β, D) are blocking, it is not difficult to conclude that the exit Q is control-
lable (with respect to any γ ≥ v).

Case 2 There is a sequence (εn) converging to zero, with pεn < 1, for
every n.

We here argue that D is solvable. Indeed, let ε belong to the sequence
(εn). Let hp be any history following which the probability Pz,σε,τε(θD <
+∞|hp) of leaving D in finite time is close to 0. Since pε < 1, such a
history exists. Following previously used notations, let (σhp

ε , τ
hp
ε ) be the

profile induced by (σε, τε) in the subgame initiated at hp, and let zp be the
initial state of that subgame. Since σε and τε always play approximately
like α and β, the average payoff γn(zp, σ

hp
ε , τ

hp
ε ) is, for n large, close to

the convex hull of the payoff vectors γ(R, α, β), R ∈ RD(α, β). Letting ε
converge to zero, this shows the existence of µ ∈ ∆(RD(α, β)) such that∑

R∈RD(α,β) µDγ(R, α, β) ≥ v.
Since D is a weak communicating set w.r.t. (α, β), and since both pairs

(α, D) and (β, D) are blocking, the triple (D, (α, β), µ) is solvable.

4.3. THE ALGORITHM

In the previous section, we showed why the existence of a blocking pair
implies the existence of a controlled pair. This is not sufficient by itself, since
the corresponding reduced game may contain additional blocking pairs. In
that case, the above proof needs to be applied again to the reduced game.
This raises a difficulty. Indeed, the proof ultimately relied on the fact that
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all solvable sets in the game correspond to absorbing states. This need not
be the case for the reduced game. The reduced game being only a fiction,
such additional solvable sets would be very difficult to interpret in the
original game.

It turns out that such troubles can safely be avoided by somehow re-
versing the argument and by proceeding in only two steps.

Step 1 Let D be the collection of all sets D ⊆ S0 that satisfy D1-3
below:

D1 v is constant on D;
D2 D is a weak communicating set w.r.t. (α, β);
D3 (β, D) is a blocking pair for player 1.

Let D′ be the collection that consists of the maximal (w.r.t. inclusion)
elements of D. Any two distinct elements of D′ are disjoint subsets of S0.
As shown above, for each D ∈ D′, there is a controllable exit distribution
from D, based on perturbations of (α, β).

Lemma 14 Consider the reduced game ΓD′. There is no set D ⊆ S0,D′,
such that (β, D) is a reduced blocking pair for player 1.

Proof. We argue by contradiction, and assume that there is such a
reduced blocking pair (β, D), where D contains only non-absorbing states
of ΓD′ . It is easy to check that there is a subset D̃ ⊆ D such that: (i) v2

is constant on D̃ and (ii) (β, D̃) is a reduced blocking pair for player 1. A
variation on Lemma 11 shows that there exists a subset D ⊆ D̃ such that
v is constant on D and (β, D) is a reduced blocking pair. Identifying D to
a subset of S0, the pair (β, D) is a blocking pair for player 1 in the original
game Γ. Note in addition that, for each D ∈ D′, one either has D ⊆ D or
D ∩D = ∅. Since elements of D′ are transient states in the reduced game
ΓD′ , the set D cannot coincide with an element of D′ −a contradiction to
the definition of D′.

Step 2 For given C ⊆ S0,D′ , we define the properties C1 and C2 as:

C1 v2 is constant on C;
C2 for some α, C is communicating for (α, β) and (α, C) is a reduced

blocking pair for player 2.

Let C1 be a maximal subset of S0,D′ (if any) that satisfies both C1 and
C2. Iteratively, we let Cl be a maximal subset of S0,D′\(C1 ∪ ...Cl−1) that
satisfies both C1 and C2, if any. Let E be the collection of subsets of S0

D′
obtained in this way.5

5It is not uniquely defined.
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Let C be an arbitrary element of E . By Step 1, the pair (C, β) is not a
reduced blocking pair for player 1. This can be shown to imply that (C, β)
is not a blocking pair for player 1. Therefore, for some (z, a) ∈ C × A, the
pair (C, p(·|z, a, βz)) is a controlled set.

As above, we may view elements of E as subsets of S0. We finally let
C = E ∪D1, where D1 is the collection of sets D ∈ D′ that are disjoint from
each C ∈ E .

The next lemma is a slightly involved variant of Lemma 14. It concludes
the sketch of the proof of Proposition 8.

Lemma 15 Consider the reduced game ΓC . There is no reduced blocking
pair for player 2.

5. Reduced Games and Recursive Games

It remains to prove Proposition 9. It is based on the next lemma, which
itself relies on the idea that the reduction eliminated all blocking pairs for
player 2.

Lemma 16 Let C be a collection of disjoint controlled sets such that there is
no reduced blocking pair for player 2. In the reduced game ΓC, the following
holds. For each stationary strategy α, there exists β such that the profile
(α, β) is (0)-absorbing and γ2(z, α, β) ≥ v2(z).

We stress once more the fact that v2 is the value associated to the orig-
inal game Γ2.

Proof. Choose β such that, for each z, the support of βz consists exactly
of those b ∈ B such that

E
[
v2|z, αz, b

] ≥ v2(z),

and notice that EC
[
v2|z, a, b

] ≥ E
[
v2|z, a, b

]
, for every (z, a, b). It can be

shown that β satisfies both conclusions.
We conclude by sketching the proof of Proposition 9. Let (σ, τ) be an ε-

absorbing ε-equilibrium of ΓR. For N ∈ N large enough, the profile which
plays (σ, τ) up to stage N , and punishment strategies afterwards, is an
ε′-absorbing ε′-equilibrium, where ε′ > ε goes to zero with ε.6
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