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1. Introduction

This chapter complements [9], and completes the proof of existence of uni-
form equilibrium payoffs in two-player non-zero-sum stochastic games with
finite state and action sets. It is devoted to the analysis of games that are
recursive in the sense of [6], and that have some further properties.

We shall follow the notations in use in earlier chapters. In particular,
we let S be the state space, and A and B be the action sets of players 1
and 2 respectively. All three sets S, A and B are finite. Generic elements
of S, A and B will be denoted by z, a and b. We let p(·|z, a, b) be the
transition function of the game and r : S × A × B → R2 be the (stage)
payoff function of the game. Generic stationary strategies for the two players
will be denoted by α and β. The sets of stationary strategies of the two
players are respectively denoted by Σs = ∆(A)S and Ts = ∆(B)S . The
subset of S consisting of absorbing states is denoted by S∗ and we set
S0 = S\S∗. For each z ∈ S∗, we may assume w.l.o.g., for the purpose of
this chapter, that r(z, ·, ·) is constant, and we write r(z). For each C ⊂ S,
θC := inf {n ≥ 1 : zn /∈ C} is the first exit time from C.

All games considered here satisfy the following three assumptions:

− Recursive For each z /∈ S∗, r(z, ·, ·) = 0.
− Positive For each z ∈ S∗, r2(z) > 0.
− Absorbing For every initial state z, and each stationary profile (α, β)

such that βz′(b) > 0 for every (z′, b) ∈ S × B, one has Pz,α,β(θS0 <
+∞) = 1.

Assumptions Recursive and Positive together ensure that player 2
would rather reach S∗ than remain forever within S0. Assumption Ab-
sorbing ensures that S∗ is a.s. reached in finite time, provided that player
2 assigns positive probability to each action in each state. Note that, for
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each initial state z and each pair (σ, τ) of strategies, one has

γ(z, σ, τ) := Ez,σ,τ

[
r(zθS0

)1θS0
<+∞

]
= lim

n→+∞ γn(z, σ, τ).

We present the proof of the following result.

Theorem 1 Every finite stochastic game that satisfies Recursive, Posi-
tive and Absorbing has a uniform equilibrium payoff.

Together with the results of [9], Theorem 1 implies the existence of
uniform equilibrium payoffs in every finite two-player stochastic game. In
[9], it was shown that one could further assume r1(z) < 0 for each z ∈ S∗.
It is not clear whether adding this assumption would simplify the proof of
Theorem 1.

Let Γ be a stochastic game that satisfies Recursive, Positive and
Absorbing. We shall define a family (Γε)ε>0 of auxiliary games, in which
player 2’s strategy choice is constrained. For each ε > 0, we define a modi-
fied best-reply map in the space of stationary profiles of Γε, with fixed point
(αε, βε). We will prove that, for each z, limε→0 γ(z, αε, βε) exists and is a
uniform equilibrium payoff of Γ. We use extensively the tools introduced in
[5].

Section 2 gives an example of a game with no stationary ε-equilibrium.
This contrasts with zero-sum recursive games, where stationary ε-optimal
strategies do exist (see [1]). In Section 3, we define the constrained games
(Γε)ε>0, and the modified best-reply map. Section 4 discusses the asymp-
totics as ε goes to zero, in a non-rigorous way. We limit ourselves to games
with two non-absorbing states, and we will add further assumptions. This
case contains already most of the features of the general proof, with the
benefit of a simple setup.

2. Example

We consider the recursive game Γ described in Figure 1. It is a variant of
the example in Flesch et al. [2].

z2 −2, 1∗

state z1

z1
4
5z3 + 1

5(−3, 3)∗

state z2

z2 −1, 2∗

state z3

Figure 1

The game has three non-absorbing states, labelled z1, z2, z3 and three
absorbing states with respective payoffs (−2, 1), (−3, 3) and (−1, 2). In each
non-absorbing state, one of the two players is a dummy, while the other
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player may choose between two actions. Since current payoffs are zero until
an absorbing state is hit, only the transitions are indicated.

In both states z1 and z3, player 2 chooses one of two columns. In state
z1 (resp. z3), the Left column leads to state z2 (resp. to z2), while the
Right column leads to the absorbing state with payoff (−2, 1) (resp. with
payoff (−1, 2)). In state z2, player 1 has to choose one of two rows. The Top
row leads to state z1, while the Bottom row results in a non-deterministic
transition: with probability 4

5 , the play moves to state z3; it otherwise moves
to the absorbing state with payoff vector (−3, 3). Plainly, the game satisfies
both the Absorbing and the Positive conditions.

Let ε ∈ (0, 1
5) be given. We claim that the game Γ has no stationary

ε-equilibrium, in the sense that there is no stationary profile (α, β) that
would be an ε−equilibrium of the game with payoff γ(z, ·, ·), for each z ∈ S.
Indeed, argue by contradiction and let (α, β) be such a stationary profile.
If α assigns positive probability to the Bottom row (in state z2), player 2
may obtain a payoff of 3, whatever the initial state. It must therefore be
the case that γ2(z2, α, β) ≥ 3 − ε, which implies γ1(z2, α, β) ≤ −3 + ε−a
contradiction, since player 1 can guarantee −2 by always choosing the Top
row.

Assume now that α assigns probability one to the Top row. Plainly,
it must be that β assigns a positive probability to the Right column in
state z1 (otherwise, γ2(z1, α, β) = 0). Therefore, γ1(z2, α, β) = −2 and
γ2(z2, α, β) = 1. Starting from z3, player 2 may obtain a payoff of 2, using
the Right column. Thus, it must be that β assigns a probability of at least
1−ε to the Right column in state z3. Given any such β, γ1(z2,Bottom, β) ≥
−3

2 , a contradiction.
In this example, the following is true. For each z ∈ S, the game with

payoff function γ(z, ·, ·) has a stationary 0-equilibrium. Whether this always
holds is an open problem.

3. Constrained Games

3.1. INTRODUCTION

Given ε > 0, we let

Ts(ε) = {β ∈ Ts such that βz(b) ≥ ε for every z ∈ S0, b ∈ B}

denote the set of stationary strategies that assign a probability of at least
ε to each action in each state. By the Absorbing property, the function
(α, β) 7→ γ(z, α, β) is continuous over Σs × Ts(ε), for each z ∈ S. We let
Γε be the game obtained from Γ in which the strategy spaces of the two
players are restricted to Σs and Ts(ε) respectively.
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It is natural to look for a stationary equilibrium (αε, βε) of the game
Γε. The existence of such an equilibrium follows by standard arguments.
One may then analyze the asymptotic properties of (αε, βε), as ε goes
to zero. Up to a subsequence, both limits (α, β) := limε→0 (αε, βε) and
γ := limε→0 γ(αε, βε) exist.

This approach was used by Vieille [7] and more generally by Flesch et al.
[2] in the analysis of recursive games with at most one non-absorbing state.
It was also used by Solan [4] for games that satisfy Recursive, Absorbing,
Positive, and with at most two non-absorbing states. Solan managed to
construct a (non-stationary) ε-equilibrium of Γ, by perturbing the limit
profile (α, β) in an appropriate, history-dependent way. However, the limit
payoff γ need not be an equilibrium payoff of Γ and this approach does not
extend to larger games.

In the proof sketched below, we adopt a slightly different approach. The
profile (αε, βε) is not defined to be an arbitrary stationary equilibrium of
Γε, but rather to be a fixed point of a suitably modified best-reply map for
Γε. The definition of this best-reply map permits a much refined asymptotic
analysis.

3.2. THE MODIFIED BEST REPLIES

Choose integers n0 = 0, n1, ..., n|B|×|S| such that np > |S|(np−1+1), for each
p ∈ {1, ..., |B| × |S|}. We abbreviate n|B|×|S| to N . For each ε > 0, we define
a set-valued map Φε = Φ1×Φε

2 on the convex compact set Σs×Ts(εN ). In a
first approximation, Φε may be interpreted as a selection of the best-reply
map for the game ΓεN . The map Φ1 depends only on the variable β, while
Φε

2 depends on both variables.
For later use, observe that for every stationary profile (α, β) and ev-

ery initial state z, the probability Pz,α,β(zθS0
= z∗) of hitting the absorb-

ing state z∗ ∈ S∗ is a rational function of the probabilities αz(a), βz(b),
((z, a, b) ∈ S0 × A × B) assigned to the different actions in the different
states. Therefore, γ(z, α, β) is also a rational function of the same vari-
ables.

3.2.1. Definition of Φ1

For β ∈ Ts(εN ) and z ∈ S, we let γ1
M (z, β) = supσ γ1(z, σ, β) be the best

possible payoff for player 1 against β, when starting from z. We define

Φ1(β) :=

{
α ∈ Σs : E

[
γ1

M (·, β)|z, αz, βz

]
= max

a∈A
E

[
γ1

M (β, ·)|z, a, βz

]∀s ∈ S0

}
.
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Note that Φ1(β) is a face of the polytope Σs of stationary strategies of player
1. It is clear that Φ1 is upper hemicontinuous, and has non-empty values.
Using the Absorbing property, it can be shown that Φ1(β) coincides with
the set

{α ∈ Σs : γ1(z, α, β) = γ1
M (z, β) for every z ∈ S}

of stationary best replies to β.

3.2.2. Definition of Φε
2

We now describe Φε
2. Unlike Φ1, it depends on ε. Let ε > 0 be given, and let

(α, β) be a stationary pair. The definition of Φε
2(α, β) hinges on a criterion

that measures how optimal it is to play once action b ∈ B in state z ∈ S,
if future payoffs are given by γ2(α, β). The most obvious such measure is
the expectation of future payoffs, given by

E
[
γ2(·, α, β)|z, αz, b

]
.

For reasons that will become evident later, we need to compare actions in
different states, which the above criterion fails to do, since it gets inter-
twined with the comparison of the two payoffs γ2(z, α, β) and γ2(z′, α, β).

To disentangle the two comparisons, we define the cost of action b in
state z against α as

c(b; z, α, β) := max
B

E
[
γ2(·, α, β)|z, αz, ·

]−E
[
γ2(·, α, β)|z, αz, b

]
.

Thus, the cost of b at z is the expected continuation payoff by playing b,
relative to the highest expected continuation payoff at state z. The following
properties clearly hold:

P.1 For every z ∈ S, b ∈ B, α ∈ Σs and β ∈ Ts(εN ), one has minB c(·; z, α, β)
= 0;

P.2 For fixed b ∈ B and z ∈ S, the function (α, β) 7→ c(b; z, α, β) is semi-
algebraic (see [3]).

Given (α, β), we denote by C0(α, β), ..., CL(α,β)(α, β) the level sets for
the function (b, z) 7→ c(b; z, α, β), ranked by increasing cost. Note that
C0(α, β) is the set of pairs (z, b) such that c(b; z, α, β) = 0.

Define p0 = 0, and pl =
∑l−1

i=0 |Ci(α, β)|, for 0 < l ≤ L(α, β). Thus,
for (z, b) ∈ Cl(α, β), pl is the number of state-action pairs (z′, b′) that are
strictly better than (z, b), i.e., such that c(b′; z′, α;β) < c(b; z, α, β).

We define Φε
2(α, β) as the set of stationary strategies β̃ ∈ Ts(εN ) such

that for every l ∈ {0, · · · , L(α, β)} and (z, b) ∈ Cl(α, β), one has

εnpl+1−1 ≤ β̃z(b) ≤ εnpl . (1)
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By P.1, for every z ∈ S, there is at least one b ∈ B, such that
(z, b) ∈ C0(α, β). It easily follows that Φε

2(α, β) is non-empty, provided
ε is small enough. For the asymptotic analysis below, the truly important
consequence of (1) is the following observation: for every z, z′ ∈ S, b, b′ ∈ B,
and β̃ ∈ Φε

2(α, β)

c(b′; z′, α, β) > c(b; z, α, β) ⇒ β̃z′(b′) ≤ ε
[
β̃z(b)

]|S|
. (2)

The specific form of Φε
2(α, β) is in other respects somewhat irrelevant.

3.2.3. Existence of a Fixed Point and First Properties
By Kakutani’s theorem, the map

Φε : (α, β) ∈ Σs × Ts(εN ) 7→ Φ1(α)× Φε
2(α, β)

has a fixed point in Σs×Ts(εN ), for ε small enough. Define the fixed point
correspondence F as

ε ∈ (0, 1) 7→ F (ε) := {(α, β) ∈ (0, 1)×Σs×Ts(εN ), α ∈ Φ1(β), β ∈ Φε
2(α, β)}.

By P.2, and the definitions of Φ1 and Φε
2, the graph of F is a semialgebraic

set. Therefore, the function F has a semialgebraic selection (see [3]): there
exists ε0 > 0 and a semialgebraic map ε ∈ (0, ε0) 7→ (αε, βε) such that
(αε, βε) ∈ F (ε) for each ε ∈ (0, ε0). It follows also that, for every (z, a, b) ∈
S × A × B, the maps ε ∈ (0, ε0) 7→ αε

z(a) and ε ∈ (0, ε0) 7→ βε
z(b) have

expansions in Puiseux series in ε that converge for ε small enough. We
may further assume that, for each z ∈ S, the supports of αε

z and of βε
z are

independent of ε ∈ (0, ε0).

4. Asymptotic Analysis

The purpose of this section is to sketch the asymptotic analysis. Through-
out, we let (αε, βε) be a semialgebraic profile such that (αε, βε) is a fixed
point of Φε for each ε > 0 small enough.

We first describe the general idea of the analysis. The complete analysis
is involved. Thus, for simplicity, we shall sketch it only in a specific case,
which contains most of the features of the general case.

4.1. GENERAL COMMENTS

We shall rely on the tools introduced in [5]. It is proven there that both
limits γ = limε γ(αε, βε) and (α0, β0) = limε(αε, βε) ∈ Σs × Ts do exist.
Our chief goal is to show that γ is a uniform equilibrium payoff of Γ.1

1I.e., for each z ∈ S, γ(z) is a uniform equilibrium payoff of the game, provided the
initial state is z.
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Recall also from [5] that the family of stationary profiles
(αε, βε)ε∈(0,ε0) induces a hierarchical decomposition of S0 into (a forest
of) communicating sets. This decomposition reflects how the behavior of
the Markov chain induced by (αε, βε) depends on ε.

A communicating set C is defined by the property that, given any z, z′ ∈
C, the probability Pz,αε,βε(θC\z′ < θC) that the play will hit z′ before
leaving C goes to one as ε goes to zero.2

The leaves of the forest, i.e., the smallest communicating sets, coincide
with the subsets of S0 which are recurrent for the Markov chain induced
by (α0, β0). The roots D1, ..., DH are the largest communicating sets.

We let T := S0\(D1... ∪ DH) be the set of states which belong to no
communicating set.

For 1 ≤ h ≤ H, we denote by Qh(·) := limε→0 Pz,αε,βε(zθ
Dh

= ·) the
(asymptotic) law of the exit state from Dh, as defined by (αε, βε)ε∈(0,ε0).
The distribution Qh is independent of z ∈ Dh. The limit payoff γ(·) is
constant on Dh and equal to EQh [γ(·)].
Lemma 2 Let Ω := {{D1}, ..., {DH}} ∪ T ∪ S∗. Let p̃ be the transition
function over Ω defined by: (i) states in S∗ are absorbing, (ii) p̃(·|z) :=
p(·|z, α0

z, β
0
z ) for z ∈ T,(iii) p̃(·|Dh) = Qh. Then the Markov chain defined

by p̃ is absorbing.

Proof. There would otherwise be a communicating set included in T ,
or a communicating set which strictly contains some Dh. In either case,
this would contradict the fact that D1, ..., DH are the roots of the forest.

The next proposition presents no difficulty. It uses the previous lemma.

Proposition 3 Let γ be a payoff vector. Assume that: (i) for each z ∈ T ,
the pair of mixed actions (α0

z, β
0
z ) is a Nash equilibrium of the matrix game

with payoff matrix (E [γ(·)|z, a, b])a∈A,b∈B; (ii) for each 1 ≤ h ≤ H, the
distribution Qh is a controllable exit distribution for γ. Then γ is a uniform
equilibrium payoff of Γ.

Proof. Let us briefly describe a corresponding ε-equilibrium profile
(σ, τ). Whenever the current state belongs to T , the profile (σ, τ) plays
(α0, β0), irrespective of past play. Whenever the game enters some set Dh,
the players switch to a profile (σh, τh) associated with the controllable exit
distribution Qh. Finally, the players switch to punishment strategies if the
game has not reached S∗ by stage N0, where N0 is large enough.

We shall prove that both assumptions of Proposition 3 are satisfied. We
start with the first one.

2Recall that a communicating set is a weak communicating set w.r.t. (α0, β0). The
converse need not hold.
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Lemma 4 For each z ∈ S0, the pair of mixed actions (α0
z, β

0
z ) is a Nash

equilibrium of the matrix game (E [γ(·)|z, a, b])a∈A,b∈B.

Proof. Let z ∈ S0 be given. We first prove that α0
z is a best reply to β0

z

in that matrix game. By assumption, for each ε > 0 close enough to zero,
αε

z maximizes E
[
γ1(·, αε, βε)|z, ·, βε

z

]
over ∆(A). Letting ε go to zero, this

implies that α0
z maximizes E

[
γ1(·)|z, ·, β0

z

]
over ∆(A).

We next prove that β0
z is a best reply to α0

z. Let b ∈ B. Since the map
ε 7→ c(b; z, αε, βε) is semialgebraic, it has a constant sign in a neighborhood
of zero. If c(b; z, αε, βε) > 0, for ε small enough, one has βε

z(b) ≤ ε, by
definition of Φε

2. Therefore, β0
z (b) > 0 implies c(b; z, αε, βε) = 0, hence b

maximizes E
[
γ2(·, αε, βε)|z, αε

z, ·
]
, for each ε > 0 small enough. Again, the

result follows by letting ε go to zero.
It is much more difficult to prove that assumption (ii) in Proposition 3 is

satisfied. We here describe the main ideas. We let h be given. We abbreviate
Dh and Qh to D and Q .

For expository purposes, we assume that:

A1 For every (z, a, b) ∈ D × A × B, one has p(D|z, a, b) = 0 whenever
p(D|z, a, b) < 1.

A2 For any two distinct triples (z1, a1, b1), (z2, a2, b2) ∈ D×A×B such that
p(D|z1, a1, b1) = p(D|z2, a2, b2) = 0, the distributions p(·|z1, a1, b1) and
p(·|z2, a2, b2) have disjoint support.

From [5], we know that Q is a convex combination of unilateral exits
and joint exits:

Q =
∑

l∈L1

µlQl +
∑

l∈L2

µlQl +
∑

l∈L3

µlQl (3)

where:

− for l ∈ L1: Ql = p(·|zl, al, β0
zl) for some (zl, al) ∈ D ×A;

− for l ∈ L2 : Ql = p(·|zl, α0
zl , b

l) for some (zl, bl) ∈ D ×B;
− for l ∈ L3 : Ql = p(·|zl, al, bl) for some (zl, al, bl) ∈ D × A × B such

that p(D|zl, α0
zl , b

l) = 1 = p(D|zl, al, β0
zl).

We refer to elements of L1, L2, L3 as unilateral exits of player 1, unilat-
eral exits of player 2, and joint exits respectively. W.l.o.g., we assume that
µl > 0, for every l ∈ L1∪L2∪L3. By Assumption A2, the decomposition (3)
is unique. For interpretation, one has µl = limε→0 Pz,αε,βε((zθD−1, aθD−1) =
(zl, al)) for each l ∈ L1. Similar equalities hold for l ∈ L2 ∪ L3.

Assumption (2) in Proposition 3 is satisfied if EQl

[
γ1(·)] = γ1(z) (z ∈

D) for every l ∈ L1, and if EQl

[
γ2(·)] = γ2(z) (z ∈ D) for every l ∈

L2. Indeed, each player is then indifferent between exiting on his own and
waiting for some other type of exit to occur.
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While it easily follows from the fixed-point property that EQl

[
γ1(·)] =

γ1(z) (z ∈ D) for each l ∈ L1, there is no reason why EQl

[
γ2(·)] should

be independent of l ∈ L2. If not, player 2 would favor the unilateral exits
l ∈ L2 for which EQl

[
γ2(·)] is highest. It is also clear that no statistical test

can be designed that would force player 2 to choose his various unilateral
exits according to the weights µl, l ∈ L2.

In the next section, we show in a simple setting how the definition of the
modified best reply Φεallows us to recover some properties of the quantities
EQl

[
γ1(·)], for l ∈ L2 (expected exit payoffs of player 1, associated to

unilateral exits of player 2). We later sketch how to deal with the general
case.

4.2. A SIMPLE SETTING

We will consider a game with two non-absorbing states, labeled z and z̃.
We will not define the game completely, but rather will assume that the
Puiseux profile (αε, βε) has the following properties:

1. The unique maximal communicating set is D = S0 = {z, z̃}. In partic-
ular, the limit payoff γ(z) = limε→0 γ(z, αε, βε) is independent of the
initial state z ∈ {z, z̃};

2. There exist m,m′ ∈ L2, such that EQm

[
γ2(·)] < EQm′

[
γ2(·)] < γ2(z).

4.2.1. First Remarks
We first state without proof a few facts, which either follow directly from
Lemma 4 or can be derived by a minor modification of the proof:

− For each l ∈ L1,EQl

[
γ1(·)] = γ1(z)(= γ1(z̃));

− For each l ∈ L2,EQl

[
γ2(·)] ≤ γ2(z);

− Since γ2(z) = maxB E
[
γ2(·)|z, α0

z, ·
]

for z ∈ {z, z̃}, and since γ2(z) =
γ2(z̃), comparing the (limit) costs of two actions b,b′ ∈ B in the two
states z, z′ ∈ {z, z̃} amounts to comparing expected continuation pay-
offs:

lim
ε→0

c(b; z, αε, βε) > lim
ε→0

c(b′; z′, αε, βε)

m (4)
E

[
γ2(·)|z, α0

z, b
]

< E
[
γ2(·)|z′, α0

z′ , b
′]

Since βε is a Puiseux strategy, there exist, for each (z, b) ∈ {z, z̃} × B,
numbers pz(b) > 0 and dz(b) ≥ 0 such that limε→0

βε
z(b)

pz(b)εdz(b) = 1. Similarly,
for each (z, a) ∈ {z, z̃}×A such that αε

z(a) > 0 for each ε > 0 small enough,
there exist pz(a) > 0, and dz(a) ≥ 0 such that limε→0

αε
z(a)

pz(a)εdz(a) = 1. By

definition of Φ1, pz(a) > 0 only if a maximizes E
[
γ1(·, αε, βε)|z, ·, βε

z

]
.
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We conclude this section with a crucial observation. From (2) and the
definition of Φε

2, it follows that, for any two pairs (z, b) and (z′, b′) in {z, z̃}×
B, one has

E
[
γ2(·)|z, α0

z, b
]

< E
[
γ2(·)|z′, α0

z′ , b
′] ⇒ dz(b) > 2dz′(b′). (5)

4.2.2. {z, z̃}-Graphs and Degrees of Transitions
The exit distribution Q from D can be expressed in terms of {z, z̃}-graphs
(see [5]). We shall here have a closer look. Since {z, z̃} is a communicating
set, there exists an action pair (a, b) ∈ A×B such that p({z, z̃} | z, a, b) = 1
and p(z̃| z, a, b) > 0. Define the degree deg(z → z̃) of the transition from z
to z̃ as the minimum of dz(a)+ dz(b) over such pairs (a, b) ∈ A×B. Define
the degree deg(z̃ → z) of the transition from z̃ to z similarly.

Given l ∈ L1 ∪L2 ∪L3, we define the degree deg(l) of the exit labeled l
as follows. If l ∈ L3 with Ql = p(·|z̃, al, bl), we set

deg(l) = d(z → z̃) + dez(al) + dez(bl).

If l ∈ L1 with Ql = p(·|z̃, al, βez), we set

deg(l) = d(z → z̃) + dez(al).

The degree of other types of exits is defined accordingly. The following
observation is an immediate consequence of Freidlin and Wentzell’s formula
(see [5], Lemma 1).

Lemma 5 deg(l) is independent of l ∈ L1 ∪ L2 ∪ L3.

4.2.3. Exits of Player 2 and Continuation Payoffs of Player 1
We derive some implications of (5) and of Lemma 5. Let m,m′ ∈ L2 be
such that E

[
γ2(·)|zm, αzm , bm

]
< E

[
γ2(·)|zm′

, αzm′ , bm′
]
. By definition of

Φε and using (5), one has

dzm(bm) > dzm′ (bm′). (6)

Since deg(m) = deg(m′), it must be that zm 6= zm′ . To fix the ideas, we
assume zm = z, and zm′ = z̃. For similar reasons, for each b ∈ B,

p({z, z̃} |z, α0
z, b) < 1 ⇒ E

[
γ2(·)|z, α0

z, b
] ≤ EQm

[
γ2(·)] , (7)

and a similar implication holds in state z̃.
We partition the set L2 of unilateral exits into L2 := {(z, b) ∈ L2}

and L̃2 := L2\L2 = {(z̃, b) ∈ L2}. By assumption, both sets L2 and L̃2
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are nonempty. Using (7), EQl

[
γ2(·)] = EQm

[
γ2(·)] for each l ∈ L2 and

EQl

[
γ2(·)] = EQm′

[
γ2(·)] for each l ∈ L̃2.

Let Q2 (resp. Q̃2) denote the renormalizations of Q over exits in L2

(resp. exits in L̃2):

Q2 =

∑
l∈L2

µlQl∑
l∈L2

µl
and Q̃2 =

∑
l∈eL2

µlQl∑
l∈eL2

µl
.

We prove in the next two lemmas that player 1 is indifferent between the
two classes L2 and L̃2 of unilateral exits.

Lemma 6 EQ2

[
γ1(·)] = γ1(D).

Proof. We first argue that player 1, using α0, prevents the transition
from z to z̃: it is impossible for player 2 to leave z with positive probability
without leaving {z, z̃} with positive probability. Indeed, let us proceed by
contradiction and assume that, for some b ∈ B, both p({z, z̃} |z, α0

z, b) = 1
and p(z̃|z, α0

z, b) > 0 hold. In particular,

E
[
γ2|z, α0

z, b
]

= γ2(z) > E
[
γ2(·)|z, α0

z, bm

]
.

Therefore,
dz(bm) > 2dz(b).

Since dz(bm) > 2dez(bm′) , since deg(z → z̃) ≤ dz(b), and deg(z̃ → z) ≥ 0,
this yields

deg(z̃ → z) + dz(bm) > deg(z → z̃) + dez(bm′),

a contradiction to deg(m) = deg(m′).
Next, observe that α0 is a best reply to βε, for each ε small enough. In

particular, limε→0 γ1(z, α0, βε) = γ1(z). On the other hand, by the optional
stopping theorem, one has γ1(z, α0, βε) = Ez,α0,βε

[
E

[
γ1(·)|z, α0

z, bν

]]
, where

ν := inf
{
n : p(z|z, α0

z, bn) < 1
}

is the first stage in which the probability of
leaving z is strictly positive. Using this remark, it is not difficult to verify
that limε→0 γ1(z, α0, βε) = EQ2

[
γ1(·)].

Lemma 7 E eQ2

[
γ1(·)] = γ1(D).

Proof. If player 1 prevents the transition from z̃ from z, in the sense
of (the proof of) Lemma 6, the result follows by the same proof, permuting
the roles of z and z̃. However, this need not hold. It may for instance be the
case that z̃ is transient under (α0, β0), in which case limε→0 γ1(z̃, α0, βε) =
EQ2

[
γ1(·)]. Therefore, in general, the present result cannot follow from a

mere adaptation of the proof of Lemma 6.
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We let b∗ ∈ B be any action such that both p({z, z̃}|z̃, α0
ez, b

∗) = 1 and
p(z|z̃, α0

ez, b
∗) > 0 hold. Such an action exists if player 1 does not prevent

the transition from z̃ to z.
We shall infer additional properties by modifying the degrees of the ac-

tions of player 1. For z ∈ {z, z̃}, let Az := {a ∈ A : αε
z(a) > 0 for ε ∈ (0, ε0)}

denote the support of αε
z. For each z ∈ {z, z̃} and a ∈ Az, we let dz(a) =

dz(a) unless (z, a) = (zl, al) for some l ∈ L1 ∪ L3. In the latter case, we
choose dz(a) > dz(a). Define the stationary strategy αε ∈ Σs by

αε
z(a) =

pz(a)εdz(a)

∑
Az

pz(a′)εdz(a′)
:

the strategy αε is obtained from αε by modifying the degrees of the different
actions. Plainly, αε ∈ Φ1(βε), hence

lim
ε→0

γ1(αε, βε) = γ1.

Plainly also, the limit payoff limε γ1(αε, βε) can be written
∑

l∈L1
µlQl +∑

l∈L2
µlQl +

∑
l∈L3

µlQl for some nonnegative weights (µl)l.3

We argue below that
C.1 µl = 0, for each l ∈ L1 ∪ L3.
C.2 µl = µlP

L2
µk

, for l ∈ L2.

For l ∈ L, we write deg(l) or deg(l) depending on whether it is computed
with (dz(a)) or with (dz(a)). We adopt the same convention for the degrees
of the transitions z → z̃ and z̃ → z.

Clearly, deg(l) > deg(l) for each l ∈ L1∪L3. We shall prove the following
claim.

Claim: Assume a ∈ A satisfies

p({z, z̃}|z, a, β0
z ) = 1, (8)

and

p(z̃|z, a, b) > 0 dz(a) + dz(b) = deg(z → z̃) for some b ∈ B. (9)

Then dz(a) = dz(a).
In a sense, this claim states that any action that is involved in the

transition from z to z̃ is unaffected by the change in the degrees. The same
result also holds when permuting the states z and z̃.

3It can be checked that the decomposition of the new exit distribution involves only
the exits listed in L.
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The above claim (and the symmetric one) implies in particular that

deg(z → z̃) = deg(z → z̃)

deg(z̃ → z) = deg(z̃ → z).

Since the strategy of player 2 has not been changed, this readily implies
that deg(l) = deg(l), for each l ∈ L2. This yields C.1.

The claim also shows that the relative weight of the different exits in
L2 is not changed. Assertion C2 can then be derived.

We now turn to the proof of the above claim. Let a ∈ A be an action for
which (8) and (9) hold, and let b ∈ B be the corresponding action of player
2. By way of contradiction, assume that dz(a) > dz(a). Therefore, a = al,
for some l ∈ L1 ∪L3. Since p({z, z̃}|z, a, β0

z ) = 1, l /∈ L1. Thus, l ∈ L3 : one
has Ql = p(·|z, a, bl), for some bl ∈ B such that p({z, z̃}|z, α0

z, b
l) = 1.

By Lemma 5, one has deg(m′) = deg(l), which reads

deg(z → z̃) + dez(bm′) = deg(z̃ → z) + dz(a) + dz(bl). (10)

Recall now that deg(z → z̃) = dz(a) + dz(b). On the other hand, deg(z̃ →
z) ≤ dez(b∗) by the choice of b∗. Substituting in (10) yields

dez(bm′
) ≤ dz(bl) + dez(b∗)− dz(b) ≤ dz(bl) + dez(b∗). (11)

Observe now that neither bl in state z, nor b∗ in state z̃, is a unilateral
exit of player 2: p({z, z̃}|z, α0

z, b
l) = 1 = p({z, z̃}|z̃, α0

ez, b
∗). Therefore, one

has E
[
γ2(·)|z, α0

z, b
l
]

= γ2(z) = E
[
γ2(·)|z̃, α0

ez, b
∗]. By (5), this implies

dez(bm′
) > 2dz(bl) and dez(bm′

) > 2dez(b∗),

a contradiction to (11).
Let us rephrase the above results in a form that is better suited to

generalization.

1. The expectation EQl

[
γ2(·)] may take only two possible values for l ∈

L2. Denote by Li
2, i = 1, 2 the two level sets of l ∈ L2 7→ EQl

[
γ2(·)]

and by QLi
2

:=
P

l∈Li
2

µlQlP
l∈Li

2
µl

the renormalization of Q over exits in Li
2.

2. For each i = 1, 2, there is a communicating set F i ⊆ {z, z̃} such that
the following conditions are met:

(a) exits in Li
2 are available in F i : for each l ∈ Li

2, zl ∈ F i;

(b) by playing α0, player 1 prevents transitions from F i to {z, z̃} \F i (if
F i = {z, z̃}, this condition is empty);
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(c) player 1 is indifferent between QL1
2

and QL2
2
:

EQ
L1

2

[
γ1(·)] = EQ

L2
2

[
γ1(·)] = γ1(D);

(d) the best unilateral exits that are available to player 2 in F i are
those in Li

2 :

E
[
γ2(·)|z, α0

z, b
] ≤ EQ

Li
2

[
γ2(·)] ,

for every (z, b) ∈ F i ×B such that p({z, z̃}|z, α0
z, b) < 1.

3. For every l ∈ L1, EQl

[
γ1(·)] = γ1(z).

4. Finally, E
[
γ1(·)|z, a, β0

z

] ≤ γ1(z) and E
[
γ2(·)|z, α0

z, b
] ≤ γ2(z), for

every (z, a, b) ∈ {z, z̃} ×A×B.

As shown in [5], this implies that Q is controllable w.r.t. γ.

4.3. THE GENERAL CASE

We briefly indicate how the analysis of the simple setting can be generalized.
We make no attempt at providing a proof. As above, we let D be a maximal
communicating subset, and write the decomposition of the corresponding
exit distribution as

Q =
∑

l∈L1

µlQl +
∑

l∈L2

µlQl +
∑

l∈L3

µlQl.

The main issue is to find a partition (L1
2, ..., L

H
2 ) of L2 and communicating

subsets (F 1, ..., FH) of D that satisfy properties 1-4 of the previous section.
For l ∈ L2, we let D1(l) ⊂ D2(l) ⊂ · · · ⊂ DM (l) be the communicating

subsets of D which contain zl. Denote by D(l) the first one in this sequence
that has the property that it is much more difficult to leave D(l) than to
reach zl starting anywhere in D(l) (set D(l) = D if no such set exists).
We will not define this property formally. It should be thought of as an
extension of property 2.b.

We now let
(
L1, ..., LP

)
be the partition of L2 into level sets of the map

l ∈ L2 7→ EQl

[
γ2(·)]. For each 1 ≤ p ≤ P , define the equivalence relation

Rp on Lp

lRpl
′ ⇔ D(l) = D(l′).

We finally define the sets L1
2, ..., L

H
2 to be the equivalence classes of the

relations Rp, 1 ≤ p ≤ P . For 1 ≤ h ≤ H, we set Dh = D(l), where l ∈ Lh.
It can be shown that properties 1-4 of the previous section are satisfied.
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