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Abstract. The basic question addressed in this chapter is: Does every
multi-player stochastic game (with finite state and action spaces) admit a
uniform equilibrium payoff? To this day, no counterexample has been found.
A positive answer has been given for several special classes, including zero-
sum stochastic games [9], two-player non-zero-sum absorbing games [28]
and two-player non-zero-sum stochastic games [26]. For multi-player games,
existence of stationary equilibrium profiles has been proven for irreducible
games [14],[3] and of “almost” stationary equilibrium profiles for games
with additive rewards and additive transitions as well as for games with
perfect information [25]. In this chapter I review recent results for games
with more than two players.

1. Definitions

Recall that a multi-player stochastic game is given by (a) a finite set S of
states, (b) a finite set I of players, (c) for every player i ∈ I, a finite set Ai

of actions, set A = ×i∈IA
i, (d) a payoff function r : S × A → RI , and (e)

a transition rule p : S × A → ∆(S), where ∆(S) is the set of probability
distributions over S.

We denote by zn and an the state at stage n and the vector of actions
chosen by the player at that stage.

A strategy for player i is a function σi : ∪n∈R(S × A)n−1 → ∆(Ai). A
profile σ = (σi)i∈I is a vector of strategies, one for each player.

Every profile σ and every initial state z define a probability distribution
over the space of plays (S × A)R. The corresponding expectation operator
is Ez,σ.
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For every discount factor λ ∈ (0, 1], every profile σ and every initial
state z, the expected λ-discounted payoff is

γλ(z, σ) = Ez,σ[λ
∑

n∈R
(1− λ)n−1r(zn, an)].

For every N ∈ R, the expected N -stage payoff is

γN (z, σ) = Ez,σ[
1
N

N∑

n=1

r(zn, an)].

Definition 1 A vector g ∈ RS×I is a uniform equilibrium payoff if for
every ε > 0 there exist λ0 ∈ (0, 1], n0 ∈ R and a profile σ that satisfy for
every player i ∈ I, every strategy σ′i of player i, every initial state z ∈ S,
every λ ∈ (0, λ0) and every n ≥ n0,

γi
λ(z, σ) + ε ≥ gi

z ≥ γi
λ(z, σ−i, σ′i)− ε, and (1)

γi
n(z, σ) + ε ≥ gi

z ≥ γi
n(z, σ−i, σ′i)− ε. (2)

A profile σ that satisfies (1) and (2) is a uniform ε-equilibrium.

In words, for every ε > 0 there is a profile σ which is an ε-equilibrium in
every discounted game, provided the discount factor is sufficiently small,
and in every finite-stage game, provided it is sufficiently long.

The main question we address here is the following.
Question: Does every multi-player stochastic game admit a uniform

equilibrium payoff?
Though in recent years existence of a uniform equilibrium payoff has

been established in several classes of multi-player stochastic games, this
question is still open.

2. An Example

Let us begin with an example of a three-player game, studied by Flesch et
al. [5].

Q

C

C Q C Q
C Q

1, 3, 0 ∗
0, 0, 0

1, 0, 1 ∗
0, 1, 3 ∗

0, 1, 1 ∗
3, 0, 1 ∗

0, 0, 0 ∗
1, 1, 0 ∗

In this game player 1 chooses a row, player 2 a column, and player
3 a matrix. An asterisked entry means that the entry is absorbing with
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probability 1. The non-asterisked entry is non-absorbing. The payoff in each
entry is either the non-absorbing payoff or the absorbing payoff, depending
on whether the entry is non-absorbing or absorbing.

Flesch et al. [5] proved that the game admits no stationary equilibrium
(or stationary ε-equilibrium), and that the following cyclic strategy profile
is an equilibrium:

1. At the first stage, the players play (1
2C + 1

2Q,C,C).
2. At the second stage, the players play (C, 1

2C + 1
2Q,C).

3. At the third stage, the players play (C,C, 1
2C + 1

2Q).
4. Afterwards, the players play cyclically those three mixed-action com-

binations, until absorption occurs.

If the players follow this profile then their expected payoff g satisfies: g =
1
2(1, 3, 0) + 1

4(0, 1, 3) + 1
8(3, 0, 1) + 1

8g, hence g = (1, 2, 1).
Let us verify that this profile is an equilibrium.Since both the payoffs

in this game and the profile we defined are cyclic, the conditional expected
payoff for the players is (1, 1, 2) if the realized action of player 1 at the first
stage is C. Since the payoff for the players is (1, 3, 0) if the realized action of
player 1 at the first stage is Q, player 1 is indifferent between his two actions
at the first stage. Moreover, the conditional expected payoff of player 2 is
1
2 ×1+ 1

2 ×0 = 1
2 if he plays Q at the first stage, and 1

2 ×1+ 1
2 ×3 = 2 if he

plays C, and the conditional expected payoff of player 3 is 1
2 ×1+ 1

2 ×1 = 1
if he plays Q at the first stage, and 1

2 × 2 + 1
2 × 0 = 1 if he plays C.

Thus, if everyone follows this profile from the second stage on, no one
can profit by deviating at the first stage. Since both the profile and the
payoff structure are cyclic, similar analysis holds for all stages. Therefore,
no player can profit by deviating in any finite number of stages. Since the
profile is absorbing given any unilateral deviation, it follows that no player
can profit by any type of deviation.

¢
¢
¢
¢
¢
¢
¢
¢

A
A

A
A

A
A

A
A

(1,3,0) (3,0,1)

(0,1,3)

Figure 1: The payoff space

We shall now see a geometric presentation of this result (which was
suggested by Nicolas Vieille). We are looking for an equilibrium payoff in the
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convex hull of {(1, 3, 0), (0, 1, 3), (3, 0, 1)}. In particular, this means that at
most one player plays Q at every stage. Indeed, the sum of the coordinates
of any vector in this convex hull is 4, while if at least two players play Q at
the same stage, the sum of the coordinates of the corresponding absorbing
payoff is at most 2. The convex hull is depicted in Figure 1.

Let us draw the indifference lines of the players; that is, line i includes
all payoffs where player i receives 1. Each indifference line divides the con-
vex hull into two halves: the payoffs that are “good” for the player, and the
payoffs that are “bad” for the player. The diagram looks as follows.

·
·
·
·
·
·
·
·
·
·

T
T

T
T

T
T

T
T

T
T

(1,3,0) (3,0,1)

(0,1,3)

(7
3 , 1, 2

3)

(2
3 , 7

3 , 1)

(1, 2
3 , 7

3)

Figure 2: The payoff space with indifference lines

Assume that an equilibrium profile is given and that player 1 plays at
the first stage the action Q with probability p ∈ (0, 1). This means that
both the equilibrium payoff and the continuation payoff are on the indiffer-
ence line of player 1. The probability of player 1 playing Q determines the
distance between those two points. Similarly, if player i plays at stage n the
action Q with probability strictly between 0 and 1, then both the payoff
conditional on nonabsorption before stage n and the payoff conditional on
nonabsorption before stage n + 1 are on the indifference line of player i.

Thus, the continuation payoff at stage n must be on the edges of the
dashed triangle in Figure 2, and any point on its three edges is an equi-
librium payoff (this was proven for this game by Flesch et al. [5]). It turns
out that the three extreme points of the dashed triangle in Figure 2 are
(1, 2, 1), (1, 1, 2) and (2, 1, 1).

For general payoff structure (with the same absorbing structure), as
long as the intersection of the three “good” halves (the dashed triangle in
Figure 2) is nonempty, there exists an equilibrium. Later we will see that
if this intersection is empty, there exists a stationary equilibrium.

One might wonder whether this argument holds for four-player games
as well. Unfortunately, the answer is negative. For four-player games we do
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not necessarily have such a cycle; an example is given in [21].

3. Three-Player Absorbing Games

In the present section we discuss the following generalization of the result
of Flesch et al. [5].
Theorem 1 (Solan [15]) Every three-player absorbing game admits a uni-
form equilibrium payoff.

Proof. The basic idea is to follow Vrieze and Thuijsman’s [28] proof
for two-player absorbing games (see also [24]). Two difficulties that require
special attention will arise.

Recall that ri(a) is the non-absorbing (daily) payoff to player i if the
action profile a is played, ri

?(a) is the absorbing payoff, and p(a) is the
probability that the game is absorbed if the action profile a is played. See
[24] for a formal definition of an absorbing game.

Let vi be the minmax value of player i. As proven in [12], vi exists and
is the limit of the λ-discounted minmax value of player i as λ goes to 0.
Step 1: Simple absorbing structure and low non-absorbing payoff.
We first deal with games that have the absorbing structure as in the above
example (that is, each player has two actions, and only one entry is non-
absorbing). Moreover, we assume that the non-absorbing payoffs are always
below the minmax value; that is, ri(a) ≤ vi for every action profile a.

Let xλ be a stationary λ-discounted equilibrium with a corresponding
payoff gλ = γλ(xλ). Using the algebraic approach [11], we assume that xλ

and gλ are Puiseux functions of λ. Let x0 and g0 be the corresponding limits
as λ → 0.
Step 1a: x0 is absorbing.
As in Vrieze and Thuijsman [28] (see also [24]), if x0 is absorbing, then it
induces an “almost” stationary equilibrium that yields a payoff g0.
Step 1b: x0 is non-absorbing (that is, x0 = (C, C,C)).
As in Vrieze and Thuijsman [28] (see also [24]), for every λ we have

gλ = p(xλ)r?(xλ) + (1− p(xλ)) (λr(xλ) + (1− λ)gλ) .

Solving this equation, we get that the λ-discounted payoff is a convex com-
bination

gλ = αλr(xλ) + (1− αλ)r?(xλ),

where
αλ =

λ(1− p(xλ))
p(xλ) + λ(1− p(xλ))

. (3)

Taking the limit as λ → 0 gives

g0 = α0r(x0) + (1− α0) lim
λ→0

r?(xλ), (4)
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where α0 = limλ→0 αλ.
If α0 = 1, then g0 = r(x0). In this case, x0 induces an “almost” sta-

tionary equilibrium. Indeed, if player i can profit by deviating, then by
continuity arguments this deviation is profitable also against x−i

λ in the
λ-discounted game, for λ sufficiently small. We assume now that α0 < 1.

Since ri(x0) ≤ vi = limλ→0 vi
λ ≤ limλ→0 gi

λ = gi
0 and α0 < 1, (4) implies

that
r(x0) ≤ g0 ≤ lim

λ→0
r?(xλ). (5)

Since x0 is non-absorbing, limλ→0 r?(xλ) is in the convex hull of the three
entries neighboring the non-absorbing entry. Equation (5) implies that if
player 1 plays Q with positive probability under xλ, for every λ sufficiently
small, then limλ→0 r1

?(xλ) ≥ g1
0 = limλ→0 g1

λ = r1
?(Q,C, C). Similar in-

equalities hold for the other two players. In particular, the dashed triangle
in Figure 2 is nonempty, as limλ→0 r?(xλ) is in this triangle, and we can
construct a cyclic equilibrium, as in the example.
Step 2: General non-absorbing payoffs (with the special absorbing struc-
ture).
Note that if the payoff in the non-absorbing entry is good, that is, if
r1(C,C, C) ≥ r1

?(Q, C,C), r2(C, C, C) ≥ r2
?(C,Q, C) and r3(C, C, C) ≥

r3
?(C,C, Q), then r(C, C, C) is an equilibrium payoff that corresponds to

the stationary strategy profile (C, C, C).
Define an auxiliary game G̃ where the daily payoff for player i is r̃i(x) =

min{ri(x), vi} if the mixed action profile x is played. Formally, for every
stationary profile x, the λ-discounted payoff in G̃ is given by

γ̃i
λ(x) = λEx

[ ∞∑

t=1

(1− λ)t−1
(
r̃i(x)1t<t? + ri

?(x)1t≥t?

)
]

,

where t? is the stage of absorption.
Since r̃i is continuous over the strategy space, the λ-discounted minmax

value of player i in G̃, denoted by ṽi
λ, exists. One can prove that the sequence

(ṽi
λ)λ converges to vi, the minmax value of player i in the original game.
The function r̃i is quasi-concave and continuous; hence G̃ has a λ-

discounted stationary equilibrium. The function r̃ is semialgebraic; hence
one can choose for every λ a λ-discounted stationary equilibria xλ in G̃
such that the mapping λ 7→ xλ is a Puiseux function.

We now repeat the same analysis as in Step 1. Denote gλ = γ̃i
λ(xλ), and

let x0 = limλ→0 xλ and g0 = limλ→0 gλ.
If x0 is absorbing, then it induces an “almost” stationary equilibrium,

as in Step 1a. Thus, we assume that x0 is non-absorbing. Then

g0 = α0r̃(x0) + (1− α0) lim r?(xλ), (6)
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where α0 = limλ→0 αλ and αλ is given in (3). If α0 = 1 then g0 = r̃(x0) ≤
r(x0), and, as in Step 1b, supplementing x0 with threat strategies yields that
r(x0) is a uniform equilibrium payoff. Otherwise, r̃(x0) ≤ v = limλ→0 vλ ≤
limλ→0 gλ = g0 and therefore by (6) g0 ≤ limλ→0 r?(xλ). Thus, the inter-
section in Figure 2 is nonempty, and there exists a cyclic equilibrium.
Step 3: General three-player absorbing game.
It is convenient here to view the absorbing game as a stochastic game with
initial state z0, such that all other states are absorbing.

We define the auxiliary game as in Step 2, and choose a Puiseux function
λ 7→ xλ, where xλ is a stationary equilibrium in the game G̃. We define
x0 = limλ→0 xλ and g0 = limλ→0 γ̃λ(xλ). Equation (6) holds in this more
general setup.

If x0 is absorbing, then as in Step 1a it induces an “almost” stationary
equilibrium that yields the players an expected payoff g0. Assume now that
x0 is non-absorbing. If α0 = 1, then as in Step 1b r(x0) is a uniform
equilibrium payoff.

Since x0 is non-absorbing, the non-absorbing state forms a weak com-
municating set under x0. In [20] we defined exit distributions from com-
municating sets. Let Q(x0) be the set of exit distributions. We denote by
Qi(x0) the set of unilateral exits of player i (in [20] we had only two players)
and by Q0(x0) the set of joint exits (exits that require perturbations of at
least two players). Any exit Q =

∑
l∈L ηlPl ∈ Q(x0) can be decomposed

(not necessarily uniquely) to a sum Q =
∑

i

∑
l∈Li

ηlPl +
∑

l∈L0
ηlPl, where

Pl ∈ Qi(x0) for l ∈ Li, i = 0, 1, 2, 3.
Since the setup is of absorbing games, an exit yields a terminal payoff.

Define the set of terminal payoffs w.r.t. x0 by

E(x0) = {P · r? | P ∈ Q(x0)}.
It is easy to see that

lim
λ→0

r?(xλ) ∈ E(x0).

Lemma 5.2 in [20] translates to
Lemma 1 Let Q =

∑
l ηlPl ∈ Q(x0) with a decomposition (Li), and let

g =
∑

l ηlPl · r?. Let γ : S → RN coincide with r? on S \ z0 and γ(z0) = g.
If the following conditions hold

1. for every l ∈ Li, Pl · γi
? = gi;

2. for every player i and action ai, p(· | x−i
0 , ai)γi ≤ gi;

then g is an equilibrium payoff.
The last step of the proof is a combinatorial lemma that shows that if

there is no cyclic equilibrium, then there exists Q ∈ Q(x0) that satisfies
Lemma 1.
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The same technique, without the need of the combinatorial lemma,
proves the following result. An absorbing game is a team game if the players
are divided into two teams, and the players in each team have the same
payoffs (both absorbing and non-absorbing).

Theorem 2 (Solan [16]) Every absorbing team game admits a uniform
equilibrium payoff.

Definition 2 A strategy profile σ is (x, ε)-perturbed if it has the following
structure:

1. Every player is checked by a statistical test.
2. As long as no player fails the statistical test, the mixed action profile

prescribed by σ is ε-close to x (in the supremum topology).
3. The first player who fails the statistical test is punished with an ε-

minmax profile forever.

An ε-equilibrium profile σ is perturbed if there exists a stationary profile
x such that σ is (x, ε)-perturbed.

In all classes of non-zero-sum stochastic games seen thus far where the
uniform equilibrium is known to exist, there are ε-equilibrium profiles that
are perturbed.

The importance of having a perturbed equilibrium is the relative sim-
plicity of the ε-equilibrium profiles, as well as the method of the approach
one should take to prove existence. Most of the proofs we have seen take
a sequence of stationary equilibria in ε-approximating games that converge
when ε goes to 0. Mertens and Neyman [9], Vrieze and Thuijsman [28]
and Vieille [27] consider the discounted game, Solan [15] considers the dis-
counted version of a variation of the game, and Flesch et al. [4], Vieille
[26] and Solan [17] consider approximating games where the players have
constrained strategy spaces. In the ε-equilibrium profile the players play
mainly the limit stationary strategy, and perturb to other actions with
small probability. In particular, the ε-equilibrium profile is perturbed.

Solan and Vieille [21] constructed a four-player game that has no per-
turbed equilibrium payoff. In particular, this example hints that the clas-
sical approach may not work in general.

4. Quitting Games

We look for a new approach to deal with multi-player games. Here we
consider a simple class of games, namely quitting games. A quitting game
is an absorbing game where each player has two actions: continue and quit.
If everyone continues the game continues to the next stage (terminating
with probability 0) and the daily payoff is 0. If at least one player quits,
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the game terminates with probability 1. The three-player game studied in
Section 1 is a quitting game.

Theorem 3 (Solan and Vieille [21]) Every quitting game that satisfies the
following two conditions

1. if a single player quits, he receives 1;
2. if player i quits with some other players, he receives at most 1;

admits a subgame-perfect ε-equilibrium payoff. Moreover, there is a cyclic
ε-equilibrium strategy profile, but the length of the cycle can depend on ε.

Proof. The approach taken in the proof of Theorem 3 is different from
the classical one. Instead of defining the best-reply correspondence, and
looking for a fixed point, we look for a sequence g1, g2, . . . of payoff vectors
such that gk is an equilibrium payoff in the one-shot game with continuation
payoff gk+1. Denote by xk the corresponding equilibrium strategy profile
in this one-shot game. One can verify that if such a sequence exists, and if
the sequence (x1, x2, . . .) is terminating with probability 1, then the profile
(x1, x2, . . .) is an equilibrium of the quitting game.

Unfortunately, such a sequence may fail to exist; see Solan [19].
For every payoff vector w ∈ RI , let G(w) be the one-shot game derived

from the quitting game with continuation payoff w; that is, we replace the
non-absorbing entry by an absorbing entry with absorbing payoff w. Let

W = {w ∈ [−ρ, ρ]I | wi ≤ 1 for at least one i}

where ρ is the maximal payoff in the game (in absolute values).
We denote by 〈G(w), x〉i the payoff of player i in the one-shot game

G(w) if the mixed action profile x is played.

Definition 3 The action ai is an ε-best reply against x−i if

〈G(w), x−i, ai〉 ≥ max
bi
〈G(w), x−i, bi〉 − ε.

The mixed action profile x is an ε-equilbirium of G(w) if for every i and
every ai ∈ supp(xi), ai is an ε-best reply against x−i.

Lemma 2 For every w ∈ W , the game G(w) possesses a ρε-equilibrium
that is absorbing with probability at least ε. Moreover, the corresponding
ρε-equilibrium payoff is in W .

Proof. Let x be an equilibrium payoff in G(w). If x prescribes all players
to continue, then the corresponding equilibrium payoff is w. In particular,
there exists a player i with wi ≤ 1, and since w is an equilibrium payoff
wi = 1. If x does not prescribe all players to continue, then by the second
condition there exists a player i who plays in x a fully mixed action, and
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therefore is indifferent between his two actions. Let yj = xj for all j 6= i,
and yi = min{xi + ε, 1} otherwise (increase the probability to quit by ε).
The profile y is a ρε-equilibrium that is absorbing with probability at least
ε. Moreover, the corresponding payoff is in W , since the expected payoff of
player i is at most 1.

Define the correspondence φ : W → W as follows.For every w ∈ W ,
φ(w) is the set of all payoff vectors 〈G(w), x〉, where x is a ρε-equilibrium
which is absorbing with probability of at least ε; that is, under x absorption
occurs at every stage with probability at least ε. φ is uppersemicontinuous,
and by Lemma 2 it has nonempty values.

Lemma 3 For every uppersemicontinuous correspondence φ with nonempty
values from a compact set W into itself there exists a sequence w1, w2, . . .
such that for each i, wi ∈ φ(wi+1).

It is straightforward to generate a sequence w1, w2, . . . such that wi+1 ∈
φ(wi), but for our purposes the sequence should satisfy wi ∈ φ(wi+1).

Proof. Define W0 = W and Wi+1 = φ(Wi). Since W is compact and φ
uppersemicontinuous with nonempty values, Wi is compact. By induction,
Wi+1 ⊆ Wi; hence W∞ = ∩Wi 6= ∅.

Let w1 ∈ W∞. For each i choose a sequence w1 = w1
i , w

2
i , . . . , w

i
i such

that wj
i ∈ φ(wj+1

i ). By taking a subsequence, assume that wj∞ = limi→∞wj
i

exists for all j. By uppersemicontinuity, the sequence (wj∞)j satisfies the
lemma.

We have generated a sequence of continuation payoffs (wi) such that wi

is a payoff that corresponds to a ρε-equilibrium in G(wi+1) in which the
per-stage probability of absorption is at least ε. Let xi be the corresponding
ρε-equilibrium. The profile x = (x1, x2, . . .) is a natural candidate for an
ε′-equilibrium in the quitting game. However, if players follow x then at
every stage each player may profit ρε by deviating. How do we know that
these small profits do not aggregate?

One can now prove that either (x1, x2, . . .) is an ε′-equilibrium, or there
exists a player i such that if i quits alone, all players get at least 1; hence
a stationary ε-equilibrium exists.

Problem. Can one bound the length of the cycle?
Problem. Does the result hold for general quitting games (without the

two assumptions)?

5. Correlated Equilibrium

Correlation devices were introduced by Aumann [1], [2] for games in normal
form. A correlation device chooses a private signal for every player before
the start of play, and sends to each player the signal chosen for him. Each
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player can base his choice of an action on the private signal that he has
received.

For multi-stage games, various generalizations of correlation devices
have been introduced. The most general device receives at every stage a
private message from each player and sends in return a private signal to
each player (called a “communication device” [6], [7], [10], [8].) The most
restrictive device, as in Aumann’s definition, sends one signal before the
start of play, and no signals are sent once play begins (called a “correlation
device”).

In between there are devices that base their choice on past signals that
were sent, but not on past play (called an “autonomous correlation device”
[6]), and devices that base their choice only on the current state (and not
even on past signals) (called a “weak correlation device” [13]).

Here we concentrate on two types of correlation devices: (i) stationary
devices, which choose at every stage a signal according to the same proba-
bility distribution, independently of any data, and (ii) autonomous devices,
which base their choice of new signal on previous signals, but not on any
other information.

Theorem 4 (Solan and Vieille [22]) Every multi-player stochastic game
admits a uniform correlated equilibrium payoff, using an autonomous cor-
relation device. The equilibrium path is sustained using threat strategies,
but punishment occurs only if a player disobeys the recommendation of the
device.

A stronger result is possible for positive recursive games (i.e., recursive
games where the payoff in absorbing states is non-negative for all players).
Theorem 5 (Solan and Vieille [22]) If the game is positive and recursive,
then the correlation device can be taken to be stationary.

The proofs utilize various methods that we have already seen, and one
new idea. They are divided into two steps. First we construct a “good”
strategy profile σ; meaning, a strategy profile that yields all players a high
payoff, and no player can profit by a unilateral deviation that is followed
by an indefinite punishment.

The construction of the “good” strategy profile uses the method of
Mertens and Neyman [9] for Theorem 4, and a variant of the method of
Vieille [26] for Theorem 5.

Second, we follow Solan [18] and define a correlation device that mimics
that strategy profile: the device chooses a pure action profile according to
the probability distribution given by the strategy profile, and recommends
each player to play “his” action in this action profile. More formally, at
each stage n, for every history h of length n and for every player i, the
device chooses an action ai(h) ∈ Ai according to σi(h). All choices are
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made independently of each other. The device then sends to each player
i the collection of signals (σi(h))h∈(S×A)n−1×S . The players, who observe
past play, know which history h has been realized, and each player i plays
the action ai(h) that was recommended for him. To deter deviations, the
device reveals to all players what its recommendations were in the previous
stage. This way, a deviation is detected immediately, and can be punished.
In particular, the device that we construct is not canonical (see [7]).

Problem. Does any stochastic game (or positive recursive game) admit
a correlated equilibrium payoff, i.e, where the device sends only one signal
before the start of play?

Solan and Vohra [23] answered this question affirmatively for absorbing
games.
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