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Abstract. The purpose of this chapter is to show how games with incom-
plete information in fact reduce to stochastic games, as long as the infor-
mation is symmetric among the players. The new state space corresponds
to the beliefs on the space of unknown parameters.

1. Introduction

Stochastic games and incomplete information games have long been con-
sidered two quite distinct fields. In the first case the state is known to the
players but evolves along the play, while in the second it remains the same
but is partially unknown to some of the players. On the other hand, at least
in the zero-sum case, it is quite clear (via the recursive formula) that the
beliefs of the uninformed player hold the role of a state variable adapted to
the play of the game. When the information is symmetric among the play-
ers, an exact reduction to a stochastic game on beliefs is available. Further
relations will be exhibited in [12], [13] and a general approach is provided
in [1].

The simple deterministic case is considered first, then the general ran-
dom case is presented and the analysis is finally extended to stochastic
games with symmetric incomplete information structure.

2. Deterministic Case

The following model was introduced by Kohlberg and Zamir [5].
K is a finite set of states of nature called parameters. For each k in K,

Gk is a finite strategic form game played by I players with action spaces
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Ai (i ∈ I). In addition, “signalling functions” `k defined on A =
∏

iA
i with

value in some signal space Ω are given.
To describe the associated repeated game we have to specify the initial

information of the players on the parameter and the additional information
gathered along the play on the parameter and on the previous moves. The
crucial feature of the present model is that both aspects are symmetric
among the players.

Given a probability p on K, the game Γ(p) is played as follows. The
parameter k is chosen once and for all according to p but is not transmitted
to the players. The game is played an infinite number of stages. At stage n,
player i chooses ai

n∈Ai and an is the profile {ai
n} in A. The vector payoff

in IRI at stage n is thus rn = Gk(an) but is not announced. Rather the
players are told the “public signal” ωn = `k(an). It is assumed that the
signal contains all the information of the players at that stage and that
perfect recall holds; hence symmetric information implies that the signal
contains the moves, i.e., a 6= a′ implies `k(a)6=`k′(a′).

For every profile a, the set of feasible signals is `(a) = {`k(a), k∈K} and
the signal observed induces a partition of K. For any signal ω, let K(ω)
denote the set of k’s compatible with it and let p(ω) be the corresponding
conditional probability on K. A profile of actions a is non-revealing (at
the probability p with support K) if ω = `k(a) is independent of k: then
K(ω) = K and p(ω) = p. Note that if K(ω)6=K, the cardinality of the
parameter space is strictly decreasing and this will allow for an induction
procedure on it.

The following example deals with a zero-sum game and is taken from
[6]. The state space is K = {L,M, R} and the initial probability p on K is
uniform. The payoffs are given by

0 0
0 4

L

0 −2
2 0

M

0 0
−4 −2

R

and the signals by

lm l

P Q

L

lm mr

P Q

M

r mr

P Q

R

The value of each matrix game is obviously 0. If a = (Top, Left) is played,
the signal ω will be lm with probability 2/3 and r with probability 1/3.
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In this second case (ω = r), the game R is revealed and one can assume
the payoff from then on to be 0. In the first case (ω = lm), the game
from this stage on belongs to the set of states {L,M} with initial prior
(1/2, 1/2). The moves (Top, Left), (Bottom,Left) and (Bottom, Right)
are non-revealing; hence they induce the expected payoffs 0, 1 and 2 re-
spectively. The move (Top, Right) is completely revealing and thus leads
to the payoff 0 = (1/2)val(L) + (1/2)val(M). Hence, the reduced game
(following the move a = (Top, Left) and signal ω = lm) can be analyzed
through the following absorbing game

0 0∗

1 2

(where as usual a star ∗ denotes an absorbing payoff). The value of this
absorbing game is 1.

A similar analysis applies if (Top, Right) is played.
Finally, if player 1 plays Bottom, there is no change in information on

K and the payoff is the expectation. The initial game is thus asymptotically
equivalent to the following:

((2/3)×1 + (1/3)×0)∗ ((2/3)×(−1) + (1/3)×0)∗

−2/3 2/3

which is again a stochastic game with absorbing states; hence it has a value
[4]; see also [14].

A similar reduction was proved to apply to any game in the zero-sum
deterministic case by Kohlberg and Zamir [5] and then extended by Neyman
and Sorin [9] to the non-zero-sum setup.
Property 1 The analysis of a game with symmetric and deterministic
information reduces to the analysis of a finite sequence of absorbing games.

Proof. The proof is by induction on the number of states |K|. Define
a game Γ′(p) as a repeated game with absorbing states and standard sig-
nalling as follows:
- if a is non-revealing at p, the state p does not change, the payoff is the
average

∑
kp

kGk(a) and a is announced;
- otherwise, with probability

∑
{k;`k(a)=ω}pk, the new state is p(ω) and is

absorbing. The induction hypothesis implies that the game Γ(p(ω)) reduces
to an absorbing game.

The state space is thus the (finite) set of posterior probabilities that can
be generated through the signals starting from p.
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In the zero-sum case this leads to the following:

Proposition 1 (Kohlberg and Zamir [5]) Any zero-sum repeated game with
symmetric and deterministic information has a value.

Proof. It follows from Property 1 and the existence of a value for zero-
sum absorbing games [4].

Explicitly, the payoff of the absorbing game Γ′(p) is given by

G′(p)(a) =

{ ∑
kp

kGk(a) if a is non-revealing,(∑
ω∈`(a)

∑
k∈K(ω)p

kv(p(ω))
)∗

otherwise,

where v(p(ω)) is defined by induction to be the value of the game starting
at p(ω). (Recall that if p(ω) differs from p, it belongs to the boundary of
∆(K).)

In the non-zero-sum case the corresponding result is

Proposition 2 (Neyman and Sorin [9]) The existence of equilibrium payoff
in I-person absorbing games implies the existence of equilibrium payoff in
I-person repeated games with symmetric and deterministic information. In
particular, existence of equilibrium payoff holds for two- and three-person
games.

Proof. The proof is again by induction on the size of the support of
p. If p(ω) 6=p, the support of p(ω) is a proper subset of the support of p.
Therefore, Γ(p(ω)) has an equilibrium payoff, say g(ω). Now let the payoff
of the I-person absorbing game Γ′(p) be defined by

G′(p)(a) =

{ ∑
kp

kGk(a) if a is non-revealing,(∑
ω∈`(a)

∑
k∈K(ω)p

kg(ω)
)∗

otherwise.

Assume that Γ′(p) has an equilibrium payoff. We claim that it is also an
equilibrium payoff of Γ(p): in fact it is clear that playing the equilibrium
strategies in Γ′(p) as long as an absorbing state is not reached and then,
if the revealing signal ω (p(ω) 6= p) is observed, playing the equilibrium
strategies inducing the equilibrium payoff g(ω) in Γ(p(ω)), will define equi-
librium strategies.

Explicitly, given such a profile of strategies as above, σ, and an alterna-
tive strategy τ i of player i, one has

Eσ−i,τ i(
∑n

m=1
ri
m) = Eσ−i,τ i(

∑θ

m=1
ri
m +

∑n

m=θ+1
ri
m),

where θ is the stopping time corresponding to the entrance in an absorbing
state in Γ′(p). Since σ induces an equilibrium after θ in the reduced game,
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there exists N such that if the number of remaining stages is large enough,
(n− θ) ≥ N , one has:

Eσ−i,τ i(
∑n

m=θ+1
ri
m|Hθ) ≤ (n− θ)(gi

θ + ε)

and
Eσ(

∑n

m=θ+1
ri
m|Hθ) ≥ (n− θ)(gi

θ − ε),

where gi
θ is the absorbing payoff of player i in Γ′(p) from stage θ on. So

that if C is a bound on the payoffs one obtains

Eσ−i,τ i(
∑n

m=1
ri
m) ≤ Eσ−i,τ i(

∑θ

m=1
ri
m + (n− θ)gi

θ) + nε + NC.

Now use the fact that σ is up to θ an equilibrium in Γ′(p). Hence, for n
large enough,

Eσ−i,τ i(
∑θ

m=1
ri
m + (n− θ)gi

θ) ≤ Eσ(
∑θ

m=1
ri
m + (n− θ)gi

θ) + nε.

Finally,

Eσ−i,τ i(
∑n

m=1
ri
m) ≤ Eσ(

∑θ

m=1
ri
m + (n− θ)gi

θ) + 2nε + NC

≤ Eσ(
∑n

m=1
ri
m) + 3nε + 2NC,

which is the equilibrium condition.
The second assertion of Proposition 2 then follows from the existence of

a uniform equilibrium payoff for two-person absorbing games [15] (see also
[7], pp. 406-408), and recently for the three-person case [11].

3. Random Case

We now consider the random case where for each (k, a), `k(a) is a distri-
bution on a finite set of signals Ω. The symmetric information hypothesis
requires that if a differs from a′, any `k(a) and `k′(a′) have disjoint supports.

The play of the game is similar to the deterministic case, but one cannot,
in case of a revealing profile, start an induction on the size of the support
of the beliefs. However, a similar notion of revelation will be useful.

Let q̃(p, a) be the distribution of the posterior probability on K, when
the prior is p and the vector of moves played by the players is a. Explicitly,
let `p =

∑
kp

k`k and define a function q : ∆(K)×A×Ω → ∆(K) satisfying

`p(a)(ω)qk(p, a, ω) = pk`k(a)(ω).
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For each (p, a) ∈ ∆(K)×A, q̃(p, a) has the following distribution:

Prob(q̃(p, a) = q(p, a, ω)) = `p(a)(ω) = Prob(ω|p, a).

In words, q(p, a, ω) is the posterior distribution on K given the signal ω
and `p(a)(ω) its probability.

The subset of A for which q̃(p, a) is the constant p consists of the non-
revealing entries at p: the signal ω is uninformative and the posterior does
not change.

We will now provide two approaches that use quite different tools. The
first one solves the zero-sum case while the second one also applies to the
non-zero-sum case.

3.1. ZERO-SUM CASE

This subsection follows [2]. As above, the proof relies on an auxiliary game.
Given any real function f defined on ∆(K), introduce the following absorb-
ing game with payoff

D(f, p)(a) =

{ ∑
kp

kGk(a) if a is non-revealing at p,(
E(f(q̃(p, a))

)∗
otherwise,

and denote by T (f, p) its value. The main result is then

Theorem 1 (Forges [2]) The mapping T : f 7→T (f, .) has a unique contin-
uous fixed point v. v(p) is the value of Γ(p).

The proof is by induction on the number of states |K|. The basic steps
of the proof are as follows. By the induction hypothesis the result is true on
the boundary ∂ of ∆(K). I.e., there exists a continuous function w defined
on the boundary ∂ such that T (w, .) = w(.).

Lemma 1 Let u be continuous on ∆(K) and be equal to w on the boundary.
Then T (u) is continuous on ∆(K) and equals w on the boundary.

The delicate point is the continuity at the boundary. It relies on the
fact that the value of an absorbing game does not change whenever a non-
absorbing entry is replaced by an absorbing one with payoff equal to the
value.

The next result is similar to the argument sketched in the previous
section.

Lemma 2 If player one can guarantee u(p) in Γ(p), ∀p∈∆(K), he can also
guarantee T (u, p).
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One now uses the zero-sum aspect to generate a monotonic sequence of
functions (un) defined on ∆(K). Player one can guarantee

u0(p) = maxr∈∂{w(r)− ‖G‖‖r − p‖1), with ‖G‖ = maxk,a|Gk(a)|.

Thus he can also guarantee

un+1 = max{un, T (un)}.

This defines an increasing sequence of continuous functions on ∆(K), equal
to w on the boundary ∂ and converging to some u. u is lowersemicontinuous,
u = w on ∂, u ≥ T (u) (since T is nonexpansive, hence continuous) and
player one can guarantee u.

Dual results obviously hold for player two with a function u; hence in
particular u ≤ u. It thus remains to show

Lemma 3
u ≥ u.

Proof. By contradiction let ρ in ∆(K) be an extreme point of the
convex hull of the compact set where u−u (which is u.s.c.) is maximal and
equal to δ > 0. Since ρ is the expectation of q̃(ρ, a) for any a revealing at
ρ, one obtains by the extremality condition

E((u− u)(q̃(ρ, a))) < δ.

However, for a non-revealing at ρ the payoffs are the same in D(u, ρ) and
D(u, ρ); hence, for all a,

D(u, ρ)(a)−D(u, ρ)(a) < δ,

so that T (u, ρ)− T (u, ρ) < δ and a fortiori (u− u)(ρ) < δ, a contradiction.

Note that this proof is reminiscent of a similar construction for the
proof of existence of lim vn in two-person zero-sum games with incomplete
information on both sides [8].

3.2. NON-ZERO-SUM CASE

In the current non-zero-sum framework the result will also be obtained by
induction; however, one cannot rely on the monotonicity of the iterative
functions since the correspondence from payoffs to equilibria is not mono-
tonic.

In the previous section, ε-equilibrium strategies at stage m were func-
tions only of the posterior at that stage. Here their computation will take
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into account the current value of the martingale of posterior probabilities
and the number of stages where this value has changed. In fact, the finite-
ness assumption on A implies that, for any positive ε and any strategy
pair, there is a finite number of jumps, say M , after which, with probabil-
ity greater than ε, the martingale will be within ε of the boundary, hence
the possibility of an induction analysis on the cardinality on K.

Figure 1. The stochastic process on the state space

Explicitly, the strategies will be constructed as follows. At the M -th
jump, choose in the boundary of ∆(K) a closest point p∗ to the current
value p of the martingale and play according to an equilibrium payoff in
Γ(p∗) from this stage on. This defines a vector payoff e(M,p). Inductively,
vector payoffs e(m, p) are defined on ∆(K) after m jumps (m ≤ M). After
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m− 1 jumps, the players play, at p, equilibrium strategies in the stochastic
game where the payoff is the expected stage payoff if the posterior does not
change and is, after a jump, absorbing and equal to e(m, p′) where p′ is the
current posterior.

Hence, the state space will be a product ∆(K)×{1, 2, . . ., M}, as in
Figure 1. If there is no splitting neither p nor the counter m changes.
Otherwise, p evolves in the simplex and the counter increases by one.

Theorem 2 (Neyman and Sorin [10]) Existence of equilibrium payoff in I-
person absorbing games implies existence of equilibrium payoff in I-person
games with symmetric incomplete information.

Proof. Formally, the construction works as follows. For a fixed ε > 0,
one looks for an element in Eε for the game Γ(p). Using the Lipschitz aspect
of the payoffs w.r.t. p and the induction hypothesis, it is enough to deal
with p at a distance greater than ε/2 from the boundary of ∆(K), say
p∈∆′.

From the finiteness of A we deduce the existence of η > 0 such that for
all p in ∆′ and for all revealing a at p,

E(
∑

k

(q̃k(p, a)− pk)2) > η, (1)

meaning that as long as p is not near the boundary, a revealing profile a
induces a variance of the posteriors uniformly bounded below by a positive
number. Call such a pair (p, a) a jump. Since the sum of the per-stage
variation of the martingale of posteriors {pn}, evaluated in L2 norm, is
bounded, namely for each k

∑∞
n=1

(pk
n+1 − pk

n)2 ≤ 1,

there exists an integer M such that the probability of the set of paths where
more than M jumps occur before reaching the (ε/2) boundary is less than
ε/2.

Now introduce a new state space as K̄ = ∆(K) × {0, 1, · · · ,M} and
define inductively a mapping α on K̄ as follows. σ(M, p) is an (ε/2)-uniform
equilibrium strategy profile with vector payoff α(M, p) in the game Γ(p)
for p ∈ ∆ \∆′ (which exists by the induction hypothesis on the number of
elements in the support of p and the above remark). σ(M, p) is arbitrarily
defined for p ∈ ∆′ and α(M, p) is the vector 0 there.

For ` = 0, 1, · · · , M − 1 and p near the boundary, namely p ∈ ∆ \ ∆′,
let α(`, p) = α(M, p). Now, for ` = 0, 1, · · · ,M − 1 and p ∈ ∆′, define by
backwards procedure a game with absorbing payoffs G′(`, p) played on A
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by

G′(`, p)(a) =





∑
k pkGk(a) if a is non-revealing at p,

{E(α(` + 1, q̃(p, a))}∗ otherwise.

G′(`, p) is an absorbing game with standard signalling and by hypothesis
these games have ε-uniform equilibria strategies σ(`, p) with payoffs α(`, p);
hence the induction is well defined.

The claim is that α(0, p) belongs to Eε(p). First, introduce on the space
of plays the stopping time W`, corresponding to the `-th time that a reveal-
ing entry is played (the `-th jump), ` = 1, · · · ,M , and θ, the stopping time
that corresponds to the entrance time in ∆(K) \∆′. Let T` = min (W`, θ).
The construction of a profile of strategies σ∗ in Γ(p) is as follows. σ∗ co-
incides with σ(0, p) until time T1. Inductively, given the past history, σ∗
follows σ(`, p(`)), from time T` + 1 until time T`+1, ` = 1, · · · ,M , where
p(`) is the posterior distribution on K given the past history hT`

. More
precisely, for every subsequent history h, σ∗(hT`

, h) = σ(`, p(`)) (h).
Consider now a profile of strategies and the corresponding random path

of the martingale of posterior distribution. If the number of jumps is less
than M or if the boundary is reached, the previous computations apply
and imply the equilibrium condition. Since the probability of the comple-
mentary event is less than ε/2, this ends the proof.

4. Stochastic Games with Symmetric Incomplete Information

In fact the previous construction applies to a more general setting and this
extension is due to [3].

Assume that, rather than dealing with repeated games Gk, each of them
is actually a stochastic game played on some state space Ξ. k will refer to the
uncertainty parameter while ξ in Ξ will be the stochastic state parameter.

The game evolves as follows. An initial public lottery p on K selects k
and then Gk is played starting from ξ1, which is publicly known. After each
stage m ≥ 1 a public random signal ωm is announced, which reveals the
profile of moves am and the new state parameter ξm+1. The distribution of
ωm depends upon k, ξm and am. As previously, the signals induce a (public)
martingale p̃ of posterior distribution on K and one defines non-revealing
profiles at (p, ξ) as those for which p̃ = p. If ξ̃ denotes the new random
state, the couple of parameters p̃, ξ̃ is a random variable on ∆(K)×Ξ.

The family of auxiliary games is now defined on {1, ...M}×∆(K)×Ξ by
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the payoff

G′(`, p, ξ)(a) =





∑
kp

kGk(a) if a is non-revealing at (p, ξ)
and the new state is ξ̃,

{E(α(` + 1, q̃, ξ̃)}∗ if a is revealing at (p, ξ),

where, as in Section 3.2, α is constructed inductively as an equilibrium
payoff. This defines a new stochastic game where absorbing states have
been added. Note that if the initial games Gk are absorbing, the auxiliary
game is also.

Thus one obtains

Theorem 3 (Geitner [3]) If any I-person absorbing (resp. stochastic) game
has an equilibrium payoff, any I-person absorbing (resp. stochastic) game
with symmetric information has an equilibrium payoff.

5. Comments

The main conclusion is that as long as the information is symmetric its
evolution is similar to the state process in a stochastic game. The typical
incomplete information features, how to use or reveal private information,
occur only with differential information (see, e.g., [7]).

Two more technical remarks follow. The new state space is uncountable
even in the case where the parameter space is finite; however, the state
process is much simpler than in a general stochastic game since it is a
martingale, and this enables us to reduce the analysis to the analysis of
absorbing games.

The analysis extends, under regularity hypotheses, to countable or mea-
surable signal spaces. However, the fact that A is finite is crucial to the proof
in getting the “minimal amount of splitting” η in case of a revealing profile.
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