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Abstract. The perfect monitoring assumption is replaced by a signalling
structure that models, for each player, the information about the opponent’s
previous action. The value of a stochastic game may not exist any more.
For the class of absorbing games, we are able to show the existence of the
maxmin and the minmax. The value does not exist if they are different.

1. Introduction

1.1. KOHLBERG’S EXAMPLE

Let us consider the Big Match game (BM) (introduced by [10]):

T
B

L R

1? 0?

0 1

where the absorbing payoffs are indicated by a star. Player 1 is the max-
imizer and player 2 is the minimizer. Suppose that player 1 is never in-
formed of the previous action of player 2. Kohlberg [11] observes that, for
any η > 0, against any strategy σ of player 1, player 2 has a response τ
such that lim supk→∞ γk(σ, τ) ≤ η. Remember that γk(σ, τ) is the expected
average of the first k payoffs.

The argument is as follows. Note that the probability IPσ(θ < k) of
absorption before stage k is independent of the actions of player 2. The
construction of an η-best response of player 2 is divided in two cases:

(i) IPσ(θ < ∞) = 1.
(ii) IPσ(θ < ∞) < 1.
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In case (i), player 2 always selects R. Absorption occurs with probability
1 and the absorbing payoff is 0?.

In case (ii), let K̄ > 0 be such that:

IPσ(∞ > θ > K̄) < η/2. (1)

Inequality (1) means that the probability of absorption after stage K̄ is
very small. Also, the payoff received during the first K̄ stages has a small
impact on the average payoff of the first k stages when k is large enough.

Player 2 selects R till stage K̄ and thereafter selects L. Thus, for k
sufficiently large so that K̄/k < η/2, we have

γk(σ, τ) ≤ K̄/k + IPσ(∞ > θ > K̄) < η.

1.2. ORGANIZATION OF THE CHAPTER

Section 2 presents the originality of the present chapter: a signalling struc-
ture (Definition 1). This is a rupture with the usual assumption of perfect
monitoring and requires the elaboration of a new approach. The main re-
sult is the existence of the maxmin of any absorbing game with a signalling
structure.1 It is formulated twice, though in a different way: Theorem 1 is
a general statement underlying the depth of the problem and Theorem 5.1
[8] says that the max min is expressed by (5). Surely, there are dual state-
ments for the min max. Chronologically, Theorem 2 was established first
[4]. It is the same statement but in the case where the players do not have
any information at all about their opponent’s past actions.

Theorems 3 and 4 [7] are used as a stepping stone for Theorem 5. Again,
these are particular cases of Theorem 5: the underlying absorbing game is
a Generalized Big Match (GBM) as defined by Definition 4.

Section 6 develops the functional approach of BM games [5]. It is an
innovation that became quite convenient when dealing with signalling struc-
tures.

The definition of the maxmin v involves two conditions (Section 3.1):
(i) player 1 guarantees v and (ii) player 2 defends v. On the one hand,
to prove (i), we will construct a strategy of player 1 that is effective (in
a precise sense) against all the strategies of player 2. On the other hand,
to prove (ii), we will construct a response of player 2 against any given
strategy of player 1. Notice that for (i) it is possible to establish a strong
property of uniformity with respect to the strategies of player 2. However,

1There is actually a highly non-trivial adaptation of Mertens and Neyman’s argument
[13] that generalizes this result to any finite stochastic game with a signalling structure
[9], [15].
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for (ii) such a thing is not exactly relevant since the construction of the
response of player 2 depends on the strategy of player 1.

The proof of Theorem 5 is planned as follows.

− In order to show that player 1 guarantees (5), one needs to prove first
that player 1 guarantees (3) in a GBM game. This is done in Sections
6 and 7.

− We demonstrate that player 2 defends (5) in Sections 5.2 and 5.3. For a
GBM game, an adaptation of these arguments would prove that player
2 defends (3). The key ideas are illustrated by examples (Sections 1.1
and 4.1).

2. Framework

2.1. NOTATIONS

Recall that an absorbing game Γ consists of:

− A finite set A (resp. B) of actions a (resp. b) for player 1 (resp. 2).
− A probability p : A × B → [0, 1] of absorption. Note that it can be

linearly extended to ∆(A)×∆(B).
− An absorbing payoff r? : A × B → IR and a non-absorbing payoff

r : A× B → IR. Both are extended to ∆(A)×∆(B) in the following
way: for (α, β) ∈ ∆(A)×∆(B)

p(α, β)r?(α, β) =
∑

(a,b)∈A×B

α(a)β(b)p(a, b)r?(a, b)

and

(1− p(α, β))r(α, β) =
∑

(a,b)∈A×B

α(a)β(b)(1− p(a, b))r(a, b).

Observe that these extensions are neither bilinear nor properly defined
for every pair (α, β) of mixed actions. This is not a problem, because if
p(α, β) = 0 for instance, then the conditional absorbing payoff r?(α, β)
does not play any role!

2.2. SIGNALLING STRUCTURE

In the standard information case (perfect monitoring), each player is in-
formed of his opponent’s previous action (and remembers it). The set of
signalling structures explores a wider range of information received by the
players about their opponent’s action. Formally, let L1 be a finite set of
signals for player 1.
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Definition 1 A signalling structure for player 1 is a mapping

ψ1 : A×B → ∆(L1).

A signalling structure is deterministic if ψ1(A × B) ⊂ L1 (L1 here stands
for a subspace of ∆(L1)).
After each stage, assuming that the pair (a, b) was chosen by the players,
a lottery of distribution ψ1(a, b) is performed and player 1 is informed of
its outcome instead of being informed of b. Observe that the players are
supposed to remember their own action. We find it convenient to include
his own previous action in player 1’s signal.
Definition 2 A strategy of player 1 is a sequence σ = (σk)k≥1 of mappings

σk : Lk−1
1 → ∆(A).

A set of dual definitions for player 2 would introduce L2, ψ2 and strategies
τ . A signalling structure for the game is a pair ψ = (ψ1, ψ2).

Example 1 The perfect monitoring corresponds to the (deterministic) sig-
nalling structure δ = (δ1, δ2) with δi : (a, b) 7→ (a, b) (i = 1, 2).

The case where no information is received (Kohlberg’s example) cor-
responds to the (deterministic) signalling structure π = (π1, π2) with π1 :
(a, b) 7→ a and π2 : (a, b) 7→ b.

Definition 3 An absorbing game with a signalling structure is a pair (Γ, ψ),
where Γ is an absorbing game and ψ is a signalling structure.

The difficulty created by a signalling structure is twofold:
(a) Even if the signalling structure is deterministic, player 1 ignores the

actual action of player 2. A signal says only that the action of player
2 is in a given set of possible actions.

(b) One signal is usually not sufficient because player 1 should assess av-
erage distributions of signals induced by the actions of player 2.

3. Results

3.1. EXISTENCE OF THE MAX MIN

Two different signalling structures create two different games. To make this
point clearer, consider (Γ, ψ) and let us denote by G1(ψ) the set of γ ∈ IR
having the following property: player 1 has a strategy σ and there exists
K > 0 such that for all k > K and any strategy τ of player 2:

γk(σ, τ) > γ,
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where, as in Section 1.1, γk(σ, τ) is the expected average payoff of the first
k stages, provided that the players use (σ, τ). Similarly, there is a set G2(ψ)
for player 2.

Obviously, the closure of G1(ψ) is an interval Ḡ1(ψ) =] − ∞, v(ψ)].
By duality, the closure of G2(ψ) is an interval Ḡ2(ψ) = [v(ψ),−∞[. By
definition, player 1 (resp. 2) guarantees γ if γ ∈ Ḡ1(ψ) (resp. γ ∈ Ḡ2(ψ)).

The example of Section 1.1 shows that for (BM, δ) and (BM, π), the
sets Ḡ1(δ) =]−∞, 1/2] (by [3]) and Ḡ1(π) =]−∞, 0] are different.

In order to show that (Γ, δ) (with perfect monitoring) has a value [11],
one finds a quantity v such that: (i) player 1 guarantees v and (ii) player 2
guarantees v. Observe that v(δ) = v(δ) = v and that (i) and (ii) are dual
properties.

Considering (Γ, ψ) (without perfect monitoring), a question is: what is
v(ψ) (resp. v(ψ))? To answer this question we shall proceed as follows.
First, one finds a quantity v such that (i′) player 1 guarantees v.

Second, one would like to show that if γ > v then γ /∈ Ḡ1(ψ), that is,
for any strategy σ of player 1, for any k > 0 large enough, there exists a
strategy τ = τ(σ, k) such that

γk(σ, τ) ≤ γ.

This implies that v = v(ψ).
Actually, we are going to show a stronger property: (ii′) player 2 defends

v. This means that for any strategy σ of player 1, there exists a strategy
τ = τ(σ) such that

lim sup
k→∞

γk(σ, τ) ≤ γ.

If (i′) and (ii′) are satisfied, then v is called the max min of (Γ, ψ). Note
that it is unique.

To show that the max min exists is a difficult task in the sense that we
have to characterize v and explicitly construct strategies of player 1 and 2.
Theorem 1 1. (Γ, ψ) has a maxmin denoted by v.

2. It depends only on ψ1 (the signalling structure of player 1).
By inversion of the role played by the players, Theorem 1 would imply that
any game with a signalling structure has a minmax denoted by v = v(ψ)
which depends only on the signalling structure of player 2. Observe that:

v ≤ v ≤ v.

3.2. NO INFORMATION CASE

The characterization of the max min is not simple in general. However,
when the signalling structure is π (no information case), the max min has
a straightforward expression.
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Let us define Φ : ∆(A)×∆(B) → IR by

Φ(α, β) =
{

r?(α, β) if p(α, β) > 0
r(α, β) otherwise.

Theorem 2 The maxmin of (Γ, π) is

v = sup
α

min
b

Φ(α, b).

Note that there is a dual formula for v.

4. Generalized Big Match (GBM) Games

4.1. AN EXAMPLE

Let Γ be the following absorbing game:

T
B

L C R

100 1? 0?

100 0 1

In the game (Γ, δ) (perfect monitoring), player 2 has no interest in playing
L. This is because player 1 guarantees 1/2 by ignoring stages at which
player 2 plays L. It is as if player 1 played the BM game with a very high
payoff (100) from time to time. Player 1 can ignore those stages because he
knows when player 2 has selected L.

The situation is radically different when player 1 ignores the action
chosen by player 2. Let us modify δ by assuming that instead of δ1, the
(deterministic) signalling structure of player 1 is

ψ1 : {T, B} × {L,C, R} → {`1, `2},
defined by ψ(T,L) = ψ(B,L) = ψ(B, C) = `1 and ψ(B, R) = `2. The signal
we assign to (T,C) and (T,R) does not matter since there is absorption.
The maxmin of (Γ, ψ) is zero because it turns out that L enlarges the set of
strategies available to player 2. Since all payoffs are positive, it is enough to
show that player 2 defends 0. Let us construct an η-best response against
a given strategy σ of player 1.

First, observe that if player 1 selects B and receives the signal `1 then
it is not possible for him to say whether player 2 has played L or C. In
particular, β1 = (1− η/2, 0, η/2) and β2 = (0, 1− η/2, η/2) induce exactly
the same distribution of signals on row B. Somehow β1 and β2 are “equiv-
alent.” A general definition is given in Section 4.3 (Definition 5). Note that
β1 insures the absorbing payoff 0? and that β2 insures the non-absorbing
payoff η/2.
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The argument of Section 1.1 is repeated but in a more sophisticated
manner since the probability IPσ,τ (θ < k) of absorption before stage k
depends on σ and τ and not only on σ (strategy of player 1).

Assume that τ consists of playing identically and independently dis-
tributed (i.i.d.) the mixed action β1. Distinguish between (i) and (ii) as in
Section 1.1. If (i) holds then τ is a best response. If (ii) holds then a large
stage K̄ is fixed as in (1). Observe that the probability of player 1 select-
ing T after stage K̄ is negligible. Suppose that instead of playing (i.i.d.)
β1, player 2 plays (i.i.d.) β2 after stage K̄, thus characterizing a modified
strategy τ ′ that is an ε-best response.

4.2. DEFINITION

Definition 4 A Generalized BM game (GBM) is made of two rows. Up to
some permutation of the columns, there is no loss of generality in assuming
that it has the following form:

T
B

B1︷ ︸︸ ︷
. . . . .
. . . . .

B2︷ ︸︸ ︷
? . . . ?
. . . . .

B0︷ ︸︸ ︷
? . . . ?
? . . . ?

where a ? indicates that the probability of absorption is strictly positive.
B1 = [1, n] is the set of non-absorbing columns, B2 = [n + 1,m] is the set
of absorbing columns and B0 = [m + 1, s] is the set of completely absorbing
columns.

Further restrictions are made:
Assumption 1 For any b ∈ B1 ∪B2 ∪B0

r?(T, b) = r?(B, b) = r?(b)

and
r(T, b) = r(B, b) = r(b).

In the sequel, r(.) and r?(.) are extended to ∆(B1 ∪B2) as follows: r(β) =
r(B, β) and r?(β) = r?(T, β).

GBM games are considered in [11] as an intermediate step when solving
absorbing games (with perfect monitoring). Considering [13], this can be
avoided.

4.3. CHARACTERIZATION OF THE MAX MIN

Let (GBM, ψ) be such that B0 = ∅, i.e., there is no completely absorbing
column available to player 2.
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Let us denote by φ : B1 ∪ B2 → ∆(L) (which is linearly extended to
∆(B1 ∪B2)) the signalling structure ψ1(B, .) of player 1 that is induced by
ψ1 on B.

Definition 5 Two mixed actions β ∈ ∆(B1∪B2) and β′ ∈ ∆(B1∪B2) are
equivalent if φ(β) = φ(β′). In such a case let us write β ∼ β′.
Two mixed actions are equivalent if they induce the same distribution of
signals for player 1 on B. Let r? : ∆(B1 ∪B2) → IR be the mapping:

r?(β) =
{

r?(β) if p(T, β) > 0
r(β) otherwise.

The signalling structure plays a role in the characterization of the maxmin
only through the equivalence ∼.

Theorem 3
v = inf

β∼β′
max [r?(β), r(β′)]. (2)

Let us denote by GBM ′ the game obtained by adding a set B0 of completely
absorbing columns. Using v, the max min v′ of (GBM ′, ψ) has a simple
expression.

Theorem 4
v′ = min [ min

b∈B0

r?(b), v]. (3)

Note that if T and B of GBM ′ are the same, then B2 = ∅ and the maxmin
is given by

min [ min
b∈B0

r?(b), min
b∈B1

r(b)] (4)

5. Absorbing Games

5.1. CHARACTERIZATION OF THE MAX MIN

In order to express the maxmin v of any (Γ, ψ):

1. We construct a set of auxiliary GBM games and we obtain a set M of
maxmin.

2. v is the supremum of M .

Let us denote by R(α) the (virtual) row induced by playing i.i.d. the mixed
action α ∈ ∆(A). For a column b ∈ B, the absorbing (resp. non-absorbing)
payoff is r?(α, b) (resp. r(α, b)) and the probability of absorption is p(α, b).
Note that ψ1 can be linearly extended on R(α):

ψ1(α) = ψ1(α, .) : B → ∆(L).
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Let us slightly perturb α with a pair (η, α′) ∈]0, 1[×∆(A), thus obtaining
α = α(η) defined by

α(η) = (1− η)α + ηα′.

By looking at the non-absorbing and completely absorbing columns, observe
that the game obtained by playing either R(α) or R(α) is close (up to η)
to a GBM game (satisfying Assumption 1), denoted by Γ(α, α′), satisfying
the conditions of Assumption 1. Let us denote by v(α, α′) the max min of
(Γ(α, α′), ψ(α)). We have the following result:
Theorem 5 The maxmin of (Γ, ψ) is given by:

v = sup
α,α′

v(α, α′). (5)

Proof. Here we prove only the first part: player 1 guarantees v in Γ.
The second part is dealt with in Sections 5.2 and 5.3.

In (Γ(α, α′), ψ(α)), an η/2-optimal strategy σ of player 1 specifies a
probability of playing T (resp. B) for any given history.

With α = α(η/2), σ induces an η-optimal strategy σ̃ in Γ: if T (resp.
B) of (Γ(α, α′), ψ(α)) is selected then player 1 chooses his action according
to α (resp. α).

5.2. RESPONSE AGAINST A MIXED ACTION

What we do in this section and the next one is to make explicit a general
formulation of the idea of Section 1.1 or Section 4.1. In both cases, the
underlying game is a GBM. It is easy to find a pair of equivalent mixed
actions of player 2 by looking at rows T and B. In particular, the equivalence
between two mixed actions is clearly defined by row B. When considering an
absorbing game, we construct a pair of mixed actions (β, β̄) ∈ ∆(B)×∆(B)
of player 2 as a response against a given mixed action α of player 1. The
mixed actions β and β̄ are equivalent on a subset of α’s support.

Formally, fix η > 0 and let us define two mappings µ : ∆(A) → ∆(B)
(resp. µ̄ : ∆(A) → ∆(B)) as follows.

If there exists b ∈ B such that p(α, b) = 0 and r(α, b) ≤ v + η/2 then
µ(α) = µ̄(α) = b. Otherwise, B?(α) = {b ∈ B|p(α, b) > 0, r?(α, b) ≤
v + η/2} is a non-empty set because (notations of 5.1) the max min v(α, α)
of Γ(α, α) is given by (4) and satisfies v(α, α) ≤ v. There exists κ > 0 such
that, if we choose η̄ ∈ (0, η/2) small enough, then the following proposition
holds:
Proposition 1 Any α ∈ ∆(A) can be decomposed in such a way that

max
b∈B?(α)

p(α, b) < η̄ (6)
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into two mixed actions of disjoint support α(1) and α(2), i.e.,

α = λα(1) + (1− λ)α(2)

so that there exists (β, β̄) ∈ ∆(B)×∆(B) satisfying:

1. p(α(1), β) ≥ κ.
2. r?(α(1), β) ≤ v + η/2.
3. p(α(2), β) = p(α(2), β̄) = 0.
4. ψ(α(2), β) = ψ(α(2), β̄).
5. r(α(2), β̄) ≤ v + η/2.

− If (6) holds, then let us define µ(α) = β and µ̄(α) = β̄.
− If (6) does not hold, then let us choose b ∈ B?(α) such that:

p(α, b) ≥ η̄ (7)

and define µ(α) = µ̄(α) = b.

Observe that if the signalling structure is π (no information case) then the
conclusion of Proposition 1 translates as follows: the pair (β, β̄) of mixed
actions satisfying items 1 - 5 can be chosen as a pair of actions (b, b̄) ∈ B×B
and note that item 4 is always true.

Sketch of Proposition 1’s proof. We rely on “Q-saturation” where
Q > 0 is a sufficiently large constant depending on η > 0. This means that
starting from B(0) = B?(α), we construct a (finite) family of increasing
subsets of B

B(0) ⊂ B(1) ⊂ . . .

that remain unchanged and equal to a subset B̄ after a while. More pre-
cisely, suppose that B(k) is constructed. Define the following subset of A:

A(k) = {a ∈ A|∃b ∈ Bk, p(a, b) > 0}.

The subset B(k+1) is defined as:

B(k) ∪ {b ∈ B|
∑

a∈A\Ak

α(a)p(a, b) ≤ Q
∑

a∈Ak

α(a)}.

The subset
Ā = {a ∈ A|∃b ∈ B̄, p(a, b) > 0}

characterizes α(2) = α(Ā) (α reduced to Ā and renormalized) and α(1) =
α(A \ Ā). The existence of a pair of mixed actions (β, β̄) is deduced from
the study of the GBM game induced by α(1) and α(2).
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5.3. CONSTRUCTION OF AN η-BEST RESPONSE

Given a strategy σ = (σk)k≥1 of player 1, let us describe an η-best response
τ of player 2. As we shall point out, τ is a sequence of mixed actions,
indicative of the fact that player 2 does not need any information about
player 1’s actions to construct an η-best response. The pair of mappings
(µ, µ̄) is the basic building block of the strategy τ . We proceed as follows.

1. A sequence of mixed actions α̃ = α1, α2, . . . (resp. β̃ = β1, β2, . . .) of
player 1 (resp. of player 2) is constructed recursively with α1 = σ1.
Suppose that α1, . . . , αk and β1, . . . , βk−1 are determined. Define

βk = µ(αk)

and then, introduce:

αk+1 = IE[σk+1|θ > k]

assuming that player 1 (resp. player 2) uses σ (resp. β1, . . . , βk).
2. If IPσ,β̃(θ < ∞) = 1 then τ consists of playing β̃.
3. Otherwise, i.e., IPσ,β̃(θ < ∞) < 1, let K̄ > 0 be an integer such that

IPσ,β̃(∞ > θ > K̄)

1− IPσ,β̃(θ < ∞)
< η̄/2. (8)

If we denote by β̄k the mixed action µ̄(αk), then τ consists of playing

β1, . . . , βK̄ , β̄K̄+1, β̄K̄+2, . . . .

By construction, when player 2 uses β̃, playing α̃ or σ is the same. Note
that, by (8) for any k > K̄, either B?(αk) = ∅ or (6) holds. In the latter
case, the mixed action αk = λkα

(1)
k + (1− λk)α

(2)
k amounts to the choice of

the (1) (resp. the (2)) row with probability λk (resp. 1− λk) and then the
mixed action α

(1)
k (resp. α

(2)
k ).

By 1) of Proposition 1, the total probability of choosing the (1) row after
stage K̄ is negligible. By 3) and 4) βk and β̄k do not absorb against α

(2)
k

and induce the same distribution of signals. Therefore, playing β̄k instead
of βk cannot be detected by player 1 with a probability close to one. It
implies that against τ , σ and α̃ induce a close expected payoff. Observe
that τ generates an absorbing payoff under v + η/2 by 2) when it matters
and a non-absorbing payoff under v + η/2 after stage K̄ by 5).

6. The Functional Approach of BM Games

In the present section, we make the assumption of perfect monitoring in
order to study a technique which takes care of difficulty (b) of Section 2.2
when employed in the framework of signalling structures.
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6.1. PRINCIPLE OF THE STRATEGY

Let us consider the following BM game:

T
B

L R

r?(1) r?(2)

r(1) r(2)

with the perfect monitoring assumption (the signalling structure is δ). Note
that its value v is

v = min
β1+β2=1

max [β1r
?(1) + β2r

?(2), β1r(1) + β2r(2)] (9)

and that it is a particular case of (2). Without loss of generality, let us
assume that v = 0 and that the absolute value of the payoffs is less than
1/8.
Lemma 1 (9) leads to three different cases:
(i) r?(b) ≥ 0 for b = L,R.
(ii) r(b) ≥ 0 for b = L,R.
(iii) There exists ζ > 0 such that r?(β) ≥ −ζr(β) for any β ∈ ∆(B). As

we will later on show, there is no loss of generality in assuming that
ζ < 1 (see Section 6.4).

Cases (i) or (ii) are easy because player 1 should play either T or B all the
time. In case (iii), real difficulties appear. If player 1 selects T then he takes
a risk since he may have a strictly negative payoff forever. On the contrary,
playing B all the time is not a good idea since player 2 may choose the
column with a strictly negative payoff.

The idea consists of playing T with a small probability that depends
on the history. If the actual choice of player 1 is T then the play is over.
Otherwise (player 1 selects B), the probability of playing T and the action
chosen by player 2 measure the risk that player 1 has taken. Player 1 should
monitor the overall risk during a play. How shall we quantify it in order
to obtain some “robustness” with respect to signal processing when the
assumption of perfect monitoring is removed? We propose to introduce the
functions f(.) and ε(.) defined as follows (M > 0 is a constant chosen large
enough):

f(%) =

{
1

1+(M+%)2
if M + % ≥ 4

1/17 otherwise.

ε(%) =

{
− 1

M+% if M + % ≥ 4
−1/4 otherwise.
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The function f(.) helps to calculate the probability of playing T at a given
stage and ε(.) counts the overall risk that is allowed from some stage on.
There is some similarity with [3] but the choice of the functions f(.) and
ε(.) is justified by a deep relationship between the two functions:
Lemma 2 For any |η| ≤ 1/4:

ηf(%) + (1− f(%))ε(%− η) ≥ ε(%). (10)

6.2. DEFINITION OF THE STRATEGY

As long as player 1 does not play T, he needs to evaluate a parameter %k

updated as follows (%1 = 0):

%k = %k−1 − (r?(bk−1) + max [ε(%k−1),−1/16])

where bk−1 is the action chosen by player 2 at stage k − 1.
The strategy σ of player 1 consists of selecting T with probability f(%k)

at stage k. By playing in such a way, the parameter %, on average, will not
become “too negative,” i.e, for instance lower than −3η for any η > 0 pro-
vided that sufficiently many stages are taken into account. More precisely,
let K > 0 be an integer such that

(
1
17

)[ηK] + (
1
17

)[η(K+1)] + . . . ≤ η. (11)

where [x] is the largest integer p ≤ x. We have the following lemma.
Lemma 3 If k > (K + 2)/η then for any strategy τ of player 2

1
k
IEσ,τ [%min(θ,k+1)] ≥ −3η. (12)

Proof. Note that the set of histories with no absorption before stage
k > K such that for all k′ ∈ [k(1− η), k]

%k′ + M < 4

is of probability smaller than

(
1
17

)[ηk]

because player 1 has to select T with a probability 1/17 for at least [ηk]
stages.

Otherwise, there exists k′ ∈ [k(1− η), k] such that:

%k′ + M ≥ 4
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that implies
%k + M ≥ 4− ηk.

The time θ of absorption is either < K + 2 or ≥ K + 2. In the former case,
since we average by k > (K +2)/η, the contribution to (12) is smaller than
η. In the latter case, the previous observations apply to k = θ − 1 > K.
Therefore, for k > K/η (12 ) holds.

6.3. SUBMARTINGALE INEQUALITY

Let us define the (discrete) process Y = (Yk)k≥1 by:

Yk =
{

ε(%k) if k ≤ θ
r?(bθ) + max [ε(%θ),−1/16] otherwise

(remember that θ is the stage at which absorption occurs).
Proposition 2 Assuming that player 1 uses the strategy σ defined in Sec-
tion 6.2, Y is a submartingale for any strategy of player 2.

Proof. Use (10) with η = r?(bk−1) + ε(%k−1) or η = r?(bn−1)− 1/16.
We are able to prove the next proposition (K is the same as in Lemma

3):
Proposition 3 For any k > K/η and for any strategy τ of player 2

γk(σ, τ) ≥ −3η/ζ − 1/M. (13)

Proof. Recall that by assumption ζ ≤ 1 (and is independent of η).
− If k ≤ θ then

ζ(r(bk)− ε(%k)) ≥ −(r?(bk) + ε(%k))
≥ −(r?(bk) + max [ε(%k),−1/16]).

− If k > θ then
ζ[r?(bθ)− (r?(bθ) + ε(%θ))] ≥ 0.

By summing the previous inequalities, it turns out that the average payoff
γk satisfies:

ζ[kγk − (Y1 + . . . + Yk)] ≥ %min(θ,k+1).

By Proposition 2, observe that IE[Yk] ≥ Y1 = −1/M. The proof of (13) is
terminated by application of Lemma 3.

6.4. CASE OF A GBM GAME WITH PERFECT MONITORING

Note that if we consider a GBM game (satisfying Assumption 1), then
almost the same strategy is applicable. The differences, by increasing order
of complexity, are as follows.
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1. The probability of absorption on T is anything between 0 and 1 (de-
pending on the action chosen by player 2).

2. There are non-absorbing columns (B1 6= ∅).
3. There are completely absorbing columns (B0 6= ∅).

Let us sketch briefly how we should proceed. First, suppose that only item
1 applies. Case (iii) of Lemma 1 would take the following form: there exists
ζ > 0 such that for any β ∈ ∆(B)

p(T, β)r?(T, β) ≥ −ζr(B, β).

We are now able to justify why we can assume ζ < 1. Because, if it is not
the case, then replace T by T’ defined as the following mixed action:

T ′ =
1
ζ
T + (1− 1

ζ
)B.

The game made of B and T’ has exactly the same value as the original
game.

We have to modify the functions f(·) and ε(·) to accommodate the
fact that item 1 holds. In Section 7, we show (in the case of a signalling
structure) how it looks. The parameter is updated in a slightly different
manner:

%k = %k−1 − p(T, bk−1)(r?(bk−1) + max [ε(%k−1),−1/16])

where bk−1 is the action chosen by player 2 at stage k − 1.
Second, suppose that items 1 and 2 apply. Any non-absorbing action of

player 2 is ignored by player 1, that is, he does not update his parameter.
This is possible because, unlike the example of Section 4.1, player 1 knows
when player 2 chooses one of these non-absorbing columns. If the corre-
sponding non-absorbing payoff is strictly higher than the value of the BM
game (it is always higher or equal), the non-absorbing column should not
be played by player 2.

Third, suppose that items 1, 2 and 3 apply. Each time player 2 selects
a completely absorbing column, there is a large probability of absorption.
However, the absorbing payoff does not constitute a risk for player 1 in the
sense that the submartingale inequality is preserved.

7. Extension of the Proof to GBM Games with a Signalling
Structure

7.1. METHODOLOGY

We assume that there is no completely absorbing column. The ε-optimal
strategy described in Section 6.2 will be modified so that player 1 guarantees
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v given by (2). Observe that if there are completely absorbing columns, we
would have to prove that player 1 guarantees v′ given by (3). The argument
we are about to develop should be adapted in the same spirit as for item 3
of Section 6.4.

Without loss of generality, we assume that v = 0. We suppose that the
cases corresponding to (i) and (ii) of Lemma 1 are excluded (player 1 would
either always play T or B). Let us define

ν = min
b∈B2

[p(T, b)r?(b)] < 0 (14)

and let b̄ ∈ B2 be one of the actions that achieve the minimum.
The case corresponding to (iii) of Lemma 1 leads to:

Lemma 4 There exists ζ > 0 (without limiting our generality ζ < 1) such
that for any pair of equivalent mixed actions β1 ∼ β2 we have:

p(T, β1)r?(T, β1) ≥ −ζr(B, β2). (15)

7.2. DESCRIPTION OF THE STRATEGY

A random signal received by player 1 after any stage is not enough infor-
mation to update the probability of choosing T at the next stage. This is
due to the fact that the ∼ relation between mixed actions induces a piece-
wise linearity of the worst absorbing payoff associated with a theoretical
distribution of signals.

Therefore, the sequence of stages is decomposed into blocks B1,B2, . . .
of length N > 0 where N is a large integer. More precisely, Bk is the set of
stages (k− 1)N + 1, . . . , kN. The parameter % is updated at the beginning
of each block, thus obtaining a sequence %1, %2, . . . used to play on the
corresponding block.

The minimal non-zero probability of absorption minb∈{n+1,m} p(T, b) on
row T is denoted by ω. The new forms of the functions f(.) and ε(.) are as
follows.

f(%) =

{ 1

ω(1+(M+%)2) if M + % ≥ 4N/ω

ω
ω2+4N2 otherwise

and

ε(%) =

{ − N

ω(M+%) if M + % ≥ 4N/ω

−1/4 otherwise.

The original functions of Section 6.1 can be recovered if one takes ω = 1
and N = 1.

At the end of block B, player 1 updates the parameter using a stream
of signals l̃ = l1, . . . , lN ∈ LN received on B; let us denote by l̄ ∈ ∆(L) its



ABSORBING GAMES WITH A SIGNALLING STRUCTURE 351

empirical distribution. A fundamental observation is that player 1 updates a
parameter using l̃ because he does not know the previous actions b1, . . . , bN

of player 2. Let us denote by l̄ ∈ ∆(L) the empirical distribution of l̃.
Definition 6 Given η > 0, a block B is reliable if the empirical distribution
l̄ of signals and the theoretical distribution of signals ψ(β) induced by β
(empirical distribution of b1, . . . , bN ) on B are such that

||ψ(β)− l̄|| ≤ η2.

The integer N > 0 (length of the blocks) is chosen so that a block is reliable
with probability larger than 1− η2 and thus uniformly with respect to the
actions of player 2 (law of large numbers).

Given β ∈ ∆(B) and a value % of the parameter, let us define

`(β, %, η) = p(T, β)[r?(T, β) + max[ε(%),−1/16]− 2η] (16)

and
`(l̃, %, η) = min{`(β, %, η) | ||ψ(β)− l̄|| ≤ η}. (17)

Starting from %1 = 0, let σ be the following strategy of player 1:
− Play i.i.d. on block Bk with probability f(%k) on T.
− Provided that no absorption occurred and that the stream of signals

received on the block Bk is l̃k, the new value %k+1 of the parameter is:

%k+1 = %k − `(l̃k, %, η).

7.3. SUBMARTINGALE INEQUALITY

In order to show that this strategy σ indeed provides the desirable result let
us extend (10) to the new functions f(.) and ε(.). Let us denote by ∆N (B)
the set of β ∈ ∆(B) that can be obtained as the empirical distribution of
N actions b1, . . . , bN .

Lemma 5 For any β ∈ ∆N (B)

Nf(%)`(β, %, 2η) + (1−Np(T, β))ε(%− `(β, %, η)) ≥ ε(%). (18)

Observe that (18) is not an exact formula but an approximation to the first
order of the risks of absorption that have been taken. It is easy to see that
the error on the left-hand side is at most 4Nω2f2(%). Remember that in
(16) we have introduced a small correcting factor 2η > 0 that is designed, in
part, to play the role of a “shock absorber.” Remember that when perfect
monitoring holds, this small correction is useless. Up to taking N large, we
can assume that:

4Nω2f2(%)− ηωNf(%) ≤ 0,
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which allows us to keep the inequality without adding error terms.
Recall that player 1 updates the parameter using a stream of signals

l̃. He may have no knowledge of the actions b1, . . . , bN of player 2 and
therefore of its empirical distribution β. Therefore, (18) is not sufficient
except when ε(% − `(β, %, 2η)) = −1/4 since -1/4 is the lowest value that
ε(.) may take. The “theoretical” ε(%− `(β, %, 2η)) should be related to the
“empirical” ε(%−`(l̃, %, 2η)). If a block is reliable then this is straightforward
by construction (17). But we have to take into account the possibility that
a block is unreliable. One should describe the effect of dispersion around
the theoretical distribution. The property (19) satisfied by the functions
f(.) and ε(.) allows us to overcome the problem.

Lemma 6 Let two values of the parameter %′′ ≥ %′ be such that M + %′ ≥
4N/ω. We have:

ε(%′)− ε(%′′) ≥ −2Nf(%′)(%′′ − %′). (19)

From now on, we separate in two cases:

1. If p(T, β) ≤ ω/2 then let us prove that:

IEl̃[ε(%− `(l̃, %, 2η))] ≥ ε(%− `(β, %, 2η)).

To do so, observe that our condition on p(T, β) implies

p(T, β)r?(T, β) ≥ ν/2.

Moreover, observe that since p(T, β) ≤ p(T, b̄) holds:

`(β, %, 2η) ≥ `(b̄, %, 2η)

where b̄ is defined after (14).
Note that β′ = (1− η/2 + η2)β + (η/2− η2)b̄ satisfies

||β − β′|| ≤ 3η/4

(provided that η > 0 is chosen small enough) and

`(β′, %, 2η) ≤ `(β, %, 2η) +
η

8
`(b̄, %, 2η). (20)

Therefore, with a probability larger than 1− η2, making sure that

||l̄ − β′|| ≤ ||l̄ − β||+ ||β − β′||
≤ η,
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by (20) we have

`(l̃, %, 2η) ≤ `(β, %, 2η) +
η

8
`(b̄, %, 2η). (21)

By (19), comparing ε(%− `(l̃, %, 2η)) and ε(%− `(β, %, 2η)), one obtains
an excess which is at least:

−2Nf(%)× η

8
`(b̄, %, 2η).

On the other side, with a probability lower than η2, by (19) there is a
drop of at most 2Nf(%− 1) and therefore of at most 3Nf(%).

2. Suppose that p(T, β) > ω/2. Note that by similar arguments we have:

IEl̃[ε(%− `(l̃, %, 2η))] ≥ ε(%− `(β, %, 2η))− 3Nη2f(%).

Let us use the last part of the small error margin 2η in (16) by observing
that the drop of at most 3Nη2f(%) is less than the excess Nf(%)ωη/2.

7.4. END OF THE PROOF

Since a block is unreliable with a probability smaller than η2, it can be
shown that if K1 > 0 is large enough, the proportion of unreliable blocks
among B1,B2, . . . ,Bk, k > K1, is smaller than 2η2 (law of large numbers)
with a probability (conditional to the fact that no absorption occurs before
block Bk+1) larger than 1 − η2. Such a history (with no absorption be-
fore block Bk+1) is called k-reliable. From this observation, we derive two
consequences.

The first one consists of the extension of (12) of Lemma 3. Let K > K1

be a large integer such that:

(
ω2

ω2 + 4N2
)[Kη

√
η] + (

ω2

ω2 + 4N2
)[(K+1)η

√
η] + . . . ≤ η.

Keep in mind that each exponent is defined up to a constant factor depend-
ing on b̄, as we will see later on.

Since we want to prove a result involving the expectation, we reduce
our focus to reliable histories. Let us consider k-reliable histories (k > K)
such that the largest integer k′ ≤ k satisfying:

%k′ + M ≥ 4N/ω

satisfies also
k − k′ < k

√
η.
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This implies that %k +M ≥ 4N/ω−k
√

η. Otherwise, and this is the difficult
case, we have:

k − k′ ≥ k
√

η. (22)

The set of k-reliable histories such that (22) holds is of probability smaller
than

(
ω2

ω2 + 4N2
)[kη

√
η].

To prove it, note that there should exist at least [kη
√

η] blocks (up to a
multiplicative constant) in [k′+ 1, k] such that at least one action is an ab-
sorbing column (on T). Otherwise, there would be at least k(1−η−2η2)

√
η

reliable blocks such that there is no action corresponding to an absorbing
column. Each one of these blocks induces an increase of parameter % that
is of the order of η (by (21) with `(β, %, 2η) = 0) and therefore from k′ to
k the parameter should increase. Clearly this would be a contradiction to
the construction of k′.

Let us now turn to the equivalent of Proposition 3. This is done by
considering reliable histories and the application of Lemma 4 in a way very
similar to the proof of Proposition 3.

8. Conclusion

We hope that we have been able to convey the message that when dealing
with a signalling structure, additional techniques must be employed. We
believe that the functions ε() and f() are the right tools for that. This is
because Lemma 2 and Lemma 6 hold at the same time.

Nevertheless, the construction of a submartingale is still the core of our
argument. There is nothing surprising about that since it appears from the
outset in [3].
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