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1. Introduction

Consider a two-person zero-sum stochastic game with countable state space
S, finite action sets A and B for players 1 and 2, respectively, and law of
motion p. Let u be a bounded real-valued function defined on the state
space S and assume that the payoff from 2 to 1 along a play (or infinite
history)

h = (x1, x2, . . .) = ((a1, b1, z1), (a2, b2, z2), . . .)

is
u∗(h) = lim sup

n
u(zn).

Suppose that the stochastic game begins at state z ∈ S, player 1 chooses
the strategy σ, player 2 chooses the strategy τ , and Ez,σ,τ is the induced
expectation on the space H∞ of all plays h. Then the expected payoff from
2 to 1 is

Ez,σ,τu
∗.

The main objective of this chapter is to sketch the proof that this lim
sup game has a value and that there is an algorithm, albeit transfinite,
for calculating the value. The chapter is based on our paper (Maitra and
Sudderth [7]). A more detailed and more leisurely proof is in our book
(Maitra and Sudderth [10]).

2. A Remark on the Lim Sup Payoff

The payoff function u∗ is more general than it may first appear. To see this,
make a change of coordinates

z̃n = (z0, a1, b1, z1, . . . , an, bn, zn),
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and take

ũ(z̃n) =
n∑

k=1

βk−1r(zk−1, ak, bk)

or

ũ(z̃n) =
1
n

n∑

k=1

r(zk−1, ak, bk),

where z0 = z and r is a bounded daily payoff function. Thus lim sup games
include discounted games and average reward games.

3. A Little History

Our work on lim sup games stems from two sources: the gambling theory
of Dubins and Savage [4] and Blackwell’s papers on Gδ games [1], [2]. If
player 2 is a dummy with only one action, then the lim sup game becomes
a nonleavable gambling problem in the sense of Dubins and Savage (cf. also
[10]). The algorithm for the value first appeared in the context of gambling
theory in Dubins, Maitra, Purves, and Sudderth [3]. If the function u is the
indicator function of a set W ⊂ S, then the function u∗ is the indicator of
the set of plays

[W i.o.] =
⋂
n

⋃

k≥n

{h : zn ∈ W}.

This set is a Gδ, that is, a countable intersection of open sets, when S,A,
and B are given the discrete topology and H∞ has the product topology.
Furthermore, every Gδ subset of H∞ can be written this way if we make
the change of coordinates as in Section 2 above. When u is an indicator
function, the algorithm for the value of the lim sup game is essentially that
of Blackwell for Gδ games.

4. The Algorithm

The algorithm for the value of the lim sup game uses a number of auxiliary
games. Here is the first and most basic of them.

The one-day game A(u)(z): 1 chooses a ∈ A, 2 chooses b ∈ B, the
next state z1 has distribution p(·|z, a, b), and 2 pays 1 the expected value of
u(z1). Let (Gu)(z) be the value of A(u)(z), which exists by von Neumann’s
minmax theorem.

Here is the second type of auxiliary game.
The leavable game L(u)(z): 1 chooses a strategy σ in the stochastic

game and a stop rule t with values in {0, 1, 2, . . .}, 2 chooses a strategy τ
in the stochastic game, and 2 pays 1 the quantity Ez,σ,τu(zt), the expected
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value of u evaluated at the state where the process is stopped. (Note: The
stop rule t selected by player 1 is required to be finite on every history.
It would not make sense to require that t be almost surely finite because
player 1 does not know player 2’s strategy and, therefore, does not know
the probability measure on the space of histories.) This game also has a
value and the value can be calculated by backward induction as follows.
Define

U0 = u, Un+1 = u ∨GUn, n = 0, 1, . . .

where x ∨ y denotes the maximum of x and y. Finally, set

U = supUn.

Theorem 1 For each z ∈ S, the leavable game L(u)(z) has value U(x).
Furthermore, U = u ∨GU .

The proof of Theorem 1 uses standard techniques and is omitted here.
In the leavable game player 1 is allowed to stop the game at any time.

In order to approach the lim sup game, we will force player 1 to stop later
and later. As a first step, we alter the leavable game so that 1 cannot stop
immediately.

The modified leavable game L∗(u)(z): This is the same as L(u)(z)
except that player 1 must choose a stop rule t ≥ 1.

After their first moves in this modified game, the players are faced with
a leavable game as previously defined. Thus the modified game amounts to
a one-day game with payoff U , and the following corollary to Theorem 1 is
easy to prove.

Corollary 1 For each z ∈ S, L∗(u)(z) has value (GU)(z).

Now define the operator T by the rule that (Tu)(z) is the value of
L∗(u)(z), or equivalently

(Tu)(z) = (GU)(z).

By iterating the operator T , we can, in effect, force player 1 to stop
later and later. This is one of the key ideas for finding an algorithm for the
lim sup game, to which we now turn.

The nonleavable (lim sup) game N (u)(z): Player 1 chooses a strat-
egy σ, player 2 chooses a strategy τ , and 2 pays 1 Ez,σ,τu

∗.
To obtain the value of this game, we iterate the operator T to force

player 1 to stop later and later, but, in addition, we take the minimum
with the function u at every step so that player 1 will also try to reach
states where u is large.
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Define
V0 = Tu, Vn = T (u ∧ Vn−1), n = 1, 2, . . .

where x ∧ y denotes the minimum of x and y. Next, set

Vω = inf Vn.

If S is finite, then Vω(z) is the value of N (u)(z). However, in general, we
must continue and define, for countable ordinal numbers α,

Vα =

{
T (u ∧ Vα−1), if α is a successor ordinal
infβ<α Vβ, if α is a limit ordinal.

Finally, let
V = Vω1 = inf

α<ω1

Vα,

where ω1 is the first uncountable ordinal.

Theorem 2 For each z ∈ Z, the nonleavable game N (u)(z) has value
V (z). Also, V = T (u ∧ V ).

Before sketching the proof of Theorem 2, we will make a few digressions.
We begin with a simple example to illustrate the algorithm for V .
Example 1 A simple recursive game. Recursive games are stochastic games
in which payoff occurs only in absorbing states. They can be viewed as lim
sup games such that, for every z ∈ Z, either u(z) = 0 or z is absorbing.
Recursive games were introduced by Everett [5], and are treated in this
volume in [12], [13]. Here is one of Everett’s examples in suggestive notation.

Γ =
(

0 2∗
1∗ 0∗

)
.

This means that there are four states 0, 0∗, 1∗, and 2∗. The states with
*’s are absorbing and u(z∗) = z for z = 0, 1, and 2. The state 0 is not
absorbing and u(0) = 0. Beginning at 0, the players face a matrix game
with A = {a1, a2} and B = {b1, b2}. If they play a = a1 and b = b1, then
the game continues. If not, they move to one of the absorbing states and
the game is over. Obviously, V = u at any absorbing state, and we need
only consider the state 0, as we go through the steps of the algorithm for
V .

To calculate V0(0) = Tu(0) = GU(0), we need the values of Un(0). Now
U0(0) = u(0) = 0, and

Un+1(0) = (GUn)(0) = value
(

Un(0) 2
1 0

)
=

2
3− Un(0)

.
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Passing to the limit, we see that U(0) = limUn(0) = 1, and

V0(0) = GU(0) = value
(

1 2
1 0

)
= 1.

To calculate V1(0) = T (u ∧ V0)(0), we need the value Ũ of the leavable
game L(ũ)(0), where ũ = u ∧ V0. But u ∧ V0 = u. So Ũ = U , and V1 =
GŨ = GU = V0. Thus the algorithm ends at V0 and V (0) = V0(0) = 1.

For general recursive games with S countable, the algorithm can con-
tinue without terminating all the way up to an arbitrary countable ordinal.

5. The Special Case u = 1W

The algorithm for the value of the lim sup game is somewhat simpler in the
special case when u = 1W , the indicator function of a set W ⊂ S. If z 6∈ W ,
then it is not difficult to show that Un(z) is the value of a stochastic game
in which the payoff function is the indicator of the set

[reach W by time n] =
n⋃

k=1

{h : zk ∈ W} ,

and U(z), the value of the leavable game, is also the value of a stochastic
game with payoff function the indicator of the set

[reach W ] =
∞⋃

k=1

{h : zk ∈ W}.

(This is intuitively plausible because player 1 has no incentive to stop until
a state in W is reached and then it is obviously optimal for player 1 to
stop.) The set [reach W ] is an open subset of H and, conversely, every
open subset can be written in this form after a change of coordinates as in
Section 2.

It can also be shown that, for n = 0, 1, . . ., Vn(z) is the value of a
stochastic game with payoff function the indicator function of the set

[reach W n + 1 times] = {h : zk ∈ W for at least n + 1 indices k}

and, as was mentioned in Section 3, the nonleavable game has a payoff
function equal to the indicator of [W i.o.]. So it is natural to hope that its
value V (z) will be equal to Vω(z) = inf Vn(z). This is true when S is finite,
but not in general.
Example 2 Let S be the set of integers, A = {0, 1}, B = {0}, and W =
{1, 2, . . .}. At any negative integer z, player 1 can move to either z − 1 or
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−z by taking a = 0 or a = 1; at any strictly positive z, the motion is to
z − 1 regardless of the action chosen; state 0 is absorbing. It is easy to see
that Vω(−1) = Vn(−1) = 1 for n = 0, 1, . . ., but V (−1) = 0.

6. Sketch of the Proof of Theorem 2

The proof will be given in four lemmas.

Lemma 1 T (u ∧ V ) = V .

Proof. It is not difficult to show that the bounded function Vα(z) is
nonincreasing in α for each fixed z ∈ S. By a property of the ordinals,
there exists α(z) < ω1 such that Vα(z) = Vα(z)(z) for all α ≥ α(z). Define
α∗ = supα(z). Then, by another property of the ordinals, α∗ < ω1. Also, we
have Vα = Vα∗ for all α ≥ α∗. Hence, V = Vα∗ = Vα∗+1 and, in particular,
V = T (u ∧ Vα∗) = T (u ∧ V ).

Lemma 1 says that the value of the modified leavable game L∗(u∧V )(z)
has value V (z) for each z ∈ Z. The corollary below thus follows immediately
from the definition of this game.

Corollary 2 For every z ∈ Z and δ > 0 there is a strategy σ = σ(z, δ) and
a stop rule t = t(z, δ) ≥ 1 for player 1 such that

Ez,σ,τ (u ∧ V )(zt) ≥ V (z)− δ

for all strategies τ of player 2.

Let V(z) be the lower value of the game N (u)(z).

Lemma 2 V ≥ V .

Proof. Fix z ∈ Z and ε > 0. It suffices to construct a strategy σ′ for
player 1 such that for all strategies τ for 2,

Ez,σ′,τu
∗ ≥ V (z)− ε.

Referring to Corollary 2, let σ′ be the strategy that follows

σ(z, ε/2) up to time s1 = t(z, ε/2)

and then follows

σ(zs1 , ε/4) up to time s2 = s1 + t(zs1 , ε/4)

and then
σ(zs2 , ε/8) up to time s3 = s2 + t(zs2 , ε/8)

and so on.
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Fix a strategy τ for player 2 and write E for the expectation operator
Ez,σ′,τ . Define random variables

Yn = (u ∧ V )(zsn), n = 1, 2, . . . .

It follows from our construction of σ′ that

EY1 ≥ V (z)− ε/2

and
E[Yn+1|z1, . . . , zsn ] ≥ V (zsn)− ε/2n+1 ≥ Yn − ε/2n+1.

Hence,
EYn ≥ V (z)− ε

for all n, and

Eu∗ = E[lim supu(zn)] ≥ E[lim supu(zsn)] ≥ E[lim supYn] ≥ lim supEYn

≥ V (z)− ε.

The next lemma states a general property of the expectation of a lim
sup.

Lemma 3 Eu∗ = infs supt≥s Eu(zt).

For a proof, see Maitra and Sudderth [10], Theorem 4.2.2.
Now let V̄ (z) be the upper value of the game N (u)(z). The next lemma,

together with Lemma 2, will complete our sketch of the proof of Theorem
2.

Lemma 4 V̄ ≤ V .

Proof. Since V = infα<ω1 Vα, it suffices to show that V̄ ≤ Vα for each
α < ω1. This we do by induction on α.

First V̄ ≤ V0 because

V̄ (z) = inf
τ

sup
σ

Ez,σ,τu
∗ ≤ inf

τ
sup

σ
sup
t≥1

Ez,σ,τu(zt) = (Tu)(z) = V0(z),

where the inequality is by Lemma 3.
For the inductive step, suppose that V̄ ≤ Vβ for all β < α. If α is a limit

ordinal, then
Vα = inf

β<α
Vβ ≥ V̄ .
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So suppose that α is a successor. Then Vα = T (u∧ Vα−1). Fix z and ε > 0.
It suffices to show that there is a strategy τ for player 2 such that, for all
strategies σ of player 1,

Ez,σ,τu
∗ ≤ Vα(z) + ε.

Define τ to be a strategy that follows a strategy τ1, which is ε/2-optimal
in L∗(u ∧ Vα−1)(z) up to time

θ = inf{n : u(zn) > Vα−1(zn) }.

If the stopping time θ is finite, the strategy τ then switches to τ2(zθ), a
strategy that is ε/2-optimal in N (u)(zθ). It can be shown, with some effort
and again with the aid of Lemma 3, that this strategy τ does the job. For
the details of this argument, see Maitra and Sudderth [7]. A somewhat
different proof is given in Maitra and Sudderth [10].

7. Approximation Theorems

Consider a stochastic game in which the payoff is the indicator function of
an arbitrary Borel subset E of H. Let V̄ (E)(z) be the upper value starting
from the initial state z.

Theorem 3 (Maitra, Purves, and Sudderth [6])

V̄ (E)(z) = inf{V (O)(z) : O is open, E ⊆ O}.

As was remarked in Section 5, a stochastic game with payoff the indica-
tor function of an open set corresponds to a leavable game after a change of
coordinates. Thus Theorem 3 says that games with Borel set payoffs can,
in a sense, be approximated by leavable games.

Next consider a stochastic game with payoff a bounded Borel mea-
surable function f on H. Let V̄ (f)(z) be the upper value. As in Sec-
tion 2, let ũ denote a bounded function defined on finite sequences z̃n =
(z, a1, b1, z1, . . . , an, bn, zn) and set ũ∗(h) = lim sup ũ(z̃n), for h = (z, a1, b1,
z1, . . .).

Theorem 4 (Maitra and Sudderth [10])

V̄ (f)(z) = inf{V (ũ∗)(z) : ũ∗ ≥ f}.

Thus we can approximate games with bounded Borel functions as pay-
offs by lim sup games. (It will be shown in the next chapter that all these
Borel games do in fact have values - so the bars can be removed in Theorems
3 and 4. Also, a proof will be given for Theorem 4.)
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It follows from the form of the algorithm in Section 4 together with
Theorems 3 and 4 that the value of any game with a Borel payoff is com-
pletely determined by the one-day operator G. To see this, observe that
each step in the algorithm for a leavable game L(u)(z) is determined by
G, and that each step in the algorithm for a nonleavable game N (u)(z)
amounts to another leavable game, which is also determined by G.

8. Generalizations

Theorems 1 and 2 can be extended to arbitrary sets S, A,and B in the frame-
work of finitely additive probability theory. There is a drawback, however.
Fubini’s theorem fails for finitely additive measures and the value of the
game may depend on the order of integration [8].

There is also a countably additive generalization in which, as in [11],
S, A, and B are Borel subsets of Polish spaces with some additional re-
quirements of compactness and continuity [9].
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