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1. Introduction

Consider a two-person zero-sum stochastic game with countable state space
S, finite action sets A and B for players 1 and 2, respectively, and law of
motion p. The history space H∞ consists of all plays

h = (x1, x2, . . .) = ((a1, b1, z1), (a2, b2, z2), . . .).

Thus
H∞ = (A×B × S)× (A×B × S)× . . . .

Let f be a bounded Borel-measurable function defined on H∞, where the
sets A,B, and S are given the discrete topology and H∞ is given the product
topology. The stochastic game S(f)(z) begins at state z ∈ S, player 1
chooses a strategy σ, player 2 chooses a strategy τ , and then 2 pays 1 the
expected value of f , namely Ez,σ,τf .

Theorem 1 (Martin [5]) The game S(f)(z) has a value.

Our object in this chapter is to sketch Martin’s proof of this remarkable
theorem.

Martin entitled his paper “The determinacy of Blackwell games” and
explained how Blackwell [1], [2] formulated the general question and solved
the special case of Gδ games. Blackwell also conjectured that all Borel
games would have a value, as Martin has now confirmed.

Theorem 1 is a vast generalization of the theorem on lim sup games
in the previous chapter. However, the proof that lim sup games have a
value also provided an algorithm for calculating it. The proof of Theorem
1 below does not reveal how the value of S(f)(z) can be found. Also, it will
be shown in Section 6 that the more general Borel games can, in a sense,
be approximated by lim sup games.



368 A. MAITRA AND W. SUDDERTH

2. Games of Perfect Information

The proof of Theorem 1 depends on another celebrated theorem of Martin
[4] on games of perfect information. We first recall how these games are
played.

Let the action sets A and B for players 1 and 2, respectively, be com-
pletely arbitrary nonempty sets. The players alternate turns and do not
randomize. Thus player 1 chooses a1; then, knowing a1, player 2 chooses
b1. For n ≥ 2, player 1, knowing a1, b1, . . . , bn−1, chooses an, and then
player 2, knowing a1, b1, . . . , bn−1, an, chooses bn. The choices of the players
at each stage may be restricted to nonempty subsets of their respective
action sets that depend on the actions played up to that point. There is a
distinguished subset W of the product space of possible plays (A×B)N =
A×B×A×B×. . . and player 1 wins the game if (a1, b1, a2, b2, . . .) ∈ W and
loses otherwise. Assume that the action sets A and B are given their dis-
crete topologies and that the product space (A×B)N is given the product
topology.

Theorem 2 (Martin [4]) If W is a Borel subset of (A× B)N , then either
player 1 has a winning strategy or player 2 does.

We omit the proof of Theorem 2. A very special example may provide
some insight.

Example. Suppose that A = B = {0, 1}. Then each infinite play
(a1, b1, a2, b2, . . .) can be identified with a binary decimal .a1b1a2b2 . . . in
the unit interval [0,1]. Thus in every game of perfect information defined
by a Borel set W ⊆ [0, 1], either player 1 has a winning strategy or player
2 does.

3. The Games G(v, z)

We will now define a family of perfect information games G(v, z) for 0 ≤
v ≤ 1, z ∈ S that are associated with the stochastic game S(f)(z). An
analysis of these games will allow us to deduce Theorem 1 from Theorem
2.

As a first step, define X = A×B × S and let φ be a bounded function
defined on X. Here is a slight variant of the one-day game of the previous
chapter.

The one-day game A(φ)(z): 1 chooses a1 ∈ A, 2 chooses b1 ∈ B, the
next state z1 has distribution p(·|z, a1, b1), and 2 pays 1 the expected value
of φ(a1, b1, z1). Let (Gφ)(z) be the value of A(φ)(z).

Assume from now on, without loss of generality, that the payoff function
f takes values in the unit interval [0,1].

The perfect information game G(v, z), 0 ≤ v ≤ 1, z ∈ S:
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Player 1 chooses φ0 : X → [0, 1] such that (Gφ0)(z) ≥ v;
player 2 chooses x1 = (a1, b1, z1) ∈ X;
player 1 chooses φ1 : X → [0, 1] such that (Gφ1)(z1) ≥ φ0(x1);
player 2 chooses x2 = (a2, b2, z2) ∈ X;
player 1 chooses φ2 : X → [0, 1] such that (Gφ2)(z2) ≥ φ1(x2);
and so forth.
Player 1 wins the game if f(x1, x2, . . .) ≥ lim infn φn−1(xn).

Several remarks are in order:

1. It is straightforward to check that the winning set for player 1 is Borel.
Thus Theorem 2 applies to show that one of the players has a winning
strategy.
2. Player 1 has a legal move at each stage of play, e.g., φn ≡ 1.
3. In order to win the game, player 1 would like to choose the functions φn

“small,” but the rules require player 1 to choose them sufficiently “large.”
This creates tension in the game.
4. If player 1 has a winning play in the game G(v, z) and 0 ≤ v′ ≤ v, then
the same play will win the game G(v′, z).

Define ṽ to be the supremum of the set of all v ∈ [0, 1] such that player 1
has a winning strategy in G(v, z). It follows from the last remark that player
1 has a win for all v ∈ [0, ṽ) and, by Theorem 2, player 2 has a winning
strategy for all v ∈ (ṽ, 1]. It turns out that the value of the stochastic game
S(f)(z) is ṽ, as will follow from two lemmas.

Let V (z) and V(z) be the upper and lower values of the game S(f)(z),
respectively.

Lemma 1 If player 1 has a winning strategy for G(v, z), then V(z) ≥ v.
Hence, V(z) ≥ ṽ.

Lemma 2 If player 2 has a winning strategy for G(v, z), then V (z) ≤ v.
Hence, V (z) ≤ ṽ.

Theorem 1 is immediate from the two lemmas. The next two sections
are devoted to their proofs.

4. The Proof of Lemma 1

Let φ0, φ1, . . . be a winning strategy for player 1 in G(v, z). (Note: Player 1’s
nth move φn will, in general, depend on the first n moves x1, x2, . . . , xn of
player 2, but we will usually suppress this dependence to simplify notation.)
We will define a strategy σ = (σ0, σ1, . . .) for player 1 in the stochastic game
S(f)(z) such that Ez,σ,τf ≥ v for all strategies τ for player 2 in S(f)(z).
This is sufficient.
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Let σ0 be optimal for player 1 in the one-day game A(φ0)(z); thus

Ez,σ0,νφ0 ≥ (Gφ0)(z) ≥ v,

for all probability measures ν on B. For n ≥ 1, let σn = σn(x1, x2, . . . , xn)
be optimal for 1 in A(φn)(zn); thus

Ezn,σn,νφn ≥ (Gφn)(zn) ≥ φn−1(xn),

for all ν.
Now fix a strategy τ for player 2 in S(f)(z) and write E for the expec-

tation operator Ez,σ,τ . Define random variables

Y0 = v, Yn = φn−1(xn) , n ≥ 1.

Then, for n ≥ 0,

E[Yn+1|x1, . . . , xn] = Ezn,σn,τnφn ≥ φn−1(xn) = Yn,

and we see that {Yn} is a bounded submartingale. Hence,

E[lim
n

Yn] = lim
n

EYn ≥ v.

But
f ≥ lim inf

n
φn−1(xn) = lim inf

n
Yn

because {φn} is a winning strategy for 1 in G(v, z). Thus Ef ≥ v, and the
proof of Lemma 1 is complete.

5. The Proof of Lemma 2

Let τ∗ be a winning play for player 2 in G(v, z) and let δ > 0. We will
construct a strategy τ for player 2 in the stochastic game S(f)(z) such
that Ez,σ,τf ≤ v + δ for all strategies σ for player 1 in S(f)(z). This will
be sufficient.

Our definition of τ uses a kind of “best response” ψn to τ∗ in G(v, z). The
ψn will be chosen to be as small as possible at each stage, but every response
is ultimately futile against the winning play τ∗. Also, the ψn can fail to be
legal, and we will also need to approximate ψn by a legal strategy φ∗n. Fi-
nally, the proof will use the notion of a partial history pn = (x1, x2, . . . , xn)
that is “consistent” with τ∗. The ψn, φ∗n, and the notion of “consistency”
will all be defined inductively on n.

Call p1 = (x1) consistent (with τ∗) if there exists a legal first move φ0

for player 1 in G(v, z) such that player 2 (using τ∗) plays x1 in response.
For (x1) consistent, let

ψ0(x1) = inf φ0(x1),
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where the infimum is taken over all such φ0, and choose one of them φ∗0 =
φ∗0(x1) such that

φ∗0(x1)(x1) ≤ ψ0(x1) + δ/2.

Thus φ∗0(x1) is an approximate best (i.e., smallest) legal response when
x1 is consistent. For x1 inconsistent, the choice is less critical and we set
ψ0(x1) = φ∗0(x1) = 1.

Claim 1 (Gψ0)(z) ≤ v.
Proof. Suppose not and let ε = (Gψ0)(z)− v. Set φ(x) = max{ψ0(x)−

ε, 0}, x ∈ X. Then

(Gφ)(z) ≥ (Gψ0)(z)− ε = v.

So φ is a legal first move for player 1 in G(v, z). Let x∗ be the response of
player 2 using τ∗. If φ(x∗) = 0, then 1 can play φn = 0, for all n and win
G(v, z) - contradicting the assumption that τ∗ is a winning play for 2. The
other possibility is that φ(x∗) = ψ0(x∗)− ε < ψ0(x∗), which contradicts the
definition of ψ0. This proves the claim.

Now assume that pn = (x1, . . . , xn) is consistent and that

α = φ∗0, x1, φ
∗
1, . . . , φ

∗
n−1, xn

is a legal “partial run” in G(v, z). Call pn+1 = (x1, . . . , xn, xn+1) consistent
if there exists a move φn for player 1 in G(v, z) such that player 2 (using
τ∗) plays xn+1 in response to

α, φn = φ∗0, x1, φ
∗
1, . . . , φ

∗
n−1, xn, φn.

For pn+1 consistent, define

ψn(xn+1) = ψn(pn)(xn+1) = inf φn(xn+1),

where the infimum is over all such φn, and choose one of them φ∗n =
φ∗n(pn+1) such that

φ∗n(pn+1)(xn+1) ≤ ψn(xn+1) + δ/2n+1.

For pn+1 inconsistent, let ψn(xn+1) = φ∗n(pn+1)(xn+1) = 1.

Claim 2 For pn = (x1, . . . , xn) consistent, (Gψn)(zn) ≤ φ∗n−1(pn)(xn).
Proof. Similar to that of Claim 1.
We are finally ready to define the strategy τ for player 2 in the stochastic

game S(f)(z). Let τ0 be optimal for player 2 in the one-day game A(ψ0)(z)
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and, for every partial history pn = (x1, . . . , xn), let τn(pn) be optimal for 2
in A(ψn(pn))(zn), where xn = (an, bn, zn). Now fix a strategy σ for player
1 in S(f)(z) and write E for Ez,σ,τ .

Define random variables

W0 = v, Wn = φ∗n−1(x1, . . . , xn)(xn) , n ≥ 1.

Then

E[Wn+1|x1, . . . , xn] ≤ E[ψn(xn+1)|x1, . . . , xn] + δ/2n+1.

Also,
E[ψn(xn+1)|x1, . . . , xn] = Ezn,σn,τnψn ≤ (Gψn)(zn) ≤

≤ φ∗n−1(x1, . . . , xn)(xn) = Wn,

where the first inequality is by definition of τn and the second is a con-
sequence of the claims and the definition of φ∗n−1 on inconsistent partial
histories pn = (x1, . . . , xn). Hence,

EWn+1 ≤ EWn + δ/2n+1, n ≥ 0,

and so
EWn ≤ EW0 + δ = v + δ, n ≥ 0.

By the Fatou inequality,

E[lim inf Wn] ≤ lim inf EWn ≤ v + δ.

But the strategy τ∗ is a winning strategy for 2 in G(v, z); so

f ≤ lim inf φ∗n−1(x1, . . . , xn)(xn) = lim inf Wn.

Thus Ef ≤ v + δ and the proof is complete.

6. An Approximation Theorem

For a function u with domain the set of all finite sequences (x1, . . . , xn) of el-
ements of X, define functions u∗ and u∗ on each history h = (x1, . . . , xn, . . .)
by

u∗(h) = lim sup
n

u(x1, . . . , xn), u∗(h) = lim inf
n

u(x1, . . . , xn).

Let V (f)(z) be the value of the stochastic game S(f)(z) for f a bounded
Borel-measurable function as in Theorem 1.
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Theorem 3

V (f)(z) = sup{V (u∗)(z) : u∗ ≤ f} = inf{V (u∗)(z) ; u∗ ≥ f}.

Proof. For the first equality, let v < V (f)(z) and define

u(x1, . . . , xn) = φn−1(xn) = Yn,

where φn−1 and Yn are as in the proof of Lemma 1. Then u∗ ≤ f and
V (u∗) ≥ v.

The second equality follows from the first by considering −f .

7. A Generalization and a Question

Theorem 1 can be extended to arbitrary sets S, A, and B in the frame-
work of finitely additive probability theory [3]. Indeed, the same proof goes
through with only minor changes. It is an open question whether the theo-
rem can be generalized to a Borel-measurable setting like that of Nowak [6]
in which S, A, B are Borel subsets of Polish spaces with some additional
requirements of compactness and continuity. A serious technical difficulty
arises in the proof because now the strategies in the stochastic game must
be measurable. But since good strategies in the stochastic game are con-
structed from winning strategies in the game of perfect information, their
measurability depends on the existence of measurable winning strategies in
the game of perfect information. We do not know whether or not measur-
able winning strategies always exist for the game of perfect information in
a Borel setting.
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