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Abstract. This chapter deals with stochastic games where the state is not
publicly known.

1. Introduction

In this chapter we consider situations described as stochastic games but
where the state is not known to all the players. This is in fact a special
case of a much more general class of games where both informational and
stochastic features are present; see [3]. We will introduce here a collection
of partial results: most of the models deal with two-person zero-sum games
with lack of information on one side and standard signalling. First, struc-
tural properties related to the recursive structure will be studied, and then
asymptotic aspects will be considered.

The main purpose of this chapter is to show that on the one hand some
tools extend easily from stochastic games or incomplete information games
to games having both aspects (see also [17], [3]). On the other hand we aim
at presenting some fundamental differences with classical stochastic games:
nonexistence of the value, and non-algebraicity of the minmax, maxmin or
lim vn.

2. Classification

We introduce in this section several models of two-player stochastic games
(in decreasing order of generality) where player 1 knows the state and has
more information than player 2. It follows (see the entry laws in [3]) that
the natural state parameter will be the beliefs of player 2 on the state space.
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2.1. LEVEL 1

The game is specified by a state space S and a map q from S×A×B to
probabilities on S×Ω where Ω is a set of public signals. We assume that
each signal includes the move of player 2; hence ω determines b = b(ω). Let
p be a probability on S according to which the initial state is chosen. It is
then announced to player 1, while player 2 knows only p. At stage n, the
state zn and the moves an and bn determine the payoff rn = r(zn, an, bn).
q(zn, an, bn) is the law of (zn+1, ωn+1) where zn+1 is the new state and ωn+1

is the public signal to both players. Write as usual Gn(p) (resp. Gλ(p)) for
the n-stage (resp. λ-discounted) version of the game. Stage after stage, the
strategy of player 1 and the public signal determine a posterior distribution
on S; hence a recursive formula for vn and vλ holds and properties of
optimal strategies of player 1 obtain. The natural state space is thus ∆(S).
This covers the usual stochastic game when Ω = S×A×B and q satisfies∑

z′∈Sq(z′, (z′, a, b)|z, a, b) = 1, for all (z, a, b): the state is public.
The standard stochastic game with incomplete information is obtained

when Ω = A×B: the signal is the pair of moves and gives no information
on the state; see [7], [6].

2.2. LEVEL 2: A FAMILY OF STOCHASTIC GAMES

The framework here corresponds to a finite family Gk, k∈K, of stochastic
games on the same state space Ξ and with the same action spaces A and
B. Hence, formally one has S = K×Ξ. ξ1 in Ξ is given and known to the
players. k is chosen according to some initial probability p and player 1 is
informed of k but not player 2. Then the game Gk is played with at each
stage a new state and a public signal determined by qk(ξ, a, b) in ∆(Ξ×Ω).
We also assume that the signal contains the new state in Ξ and the move
of player 2. Note that since the transition depends on k the signal may
be revealing on K even if player 1 plays without using his information
(xk,ξ = xk′,ξ).

The main difference with the previous case is that the beliefs at each
stage are of the form (p̃, ξ̃) where p̃ is a martingale on K. The natural state
space is ∆(K)×Ξ.

Note. If player 1 is not informed and the signal is symmetric, one
obtains the framework of [18].

2.3. LEVEL 3: STOCHASTIC GAMES WITH VECTOR PAYOFFS

In this subcase the law of (ξ, ω) is independent of k. Basically, the game is
then a (standard) stochastic game with state space Ξ but vector payoffs in
RK . Player 1 knows the true component while player 2 has only an initial
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probability on it. If Ξ is reduced to one state, one has a game with lack of
information on one side.

2.4. LEVEL 4: ABSORBING GAMES WITH VECTOR PAYOFFS

This is a specific case of Level 3 where the state can change at most once
and then we are in a situation of a game with incomplete information on
one side.

2.5. LEVEL 5: ABSORBING PAYOFF GAMES WITH VECTOR PAYOFFS

While in a standard two-person zero-sum stochastic game one can replace
the payoffs, once an absorbing state is reached, by a constant (the value
of the game at that state), this is no longer true with vector payoffs. This
particular subclass of Level 4 assumes that the vector payoff is a constant
once an absorbing state is reached; hence the name absorbing payoff.

3. Recursive Formula

We consider Level 1 and provide a formal construction of the recursive
formula. The analysis is now standard [10], [6], [11].

Given an initial probability p, a stationary Markov strategy {xz}, with
xz∈∆(A), and a signal ω, define the conditional probability on S given ω
by

p̃z(ω) = Prob(z|ω) =
Prob(z, ω)
Prob(ω)

with Prob(z, ω) =
∑

z′,ap
z′xz′(a)q(z, ω|z′, a, b(ω)), Prob(ω) =

∑
zProb(z, ω).

Then one has

Proposition 1

nvn(p) = max
XS

min
B
{
∑

z,a
pzxz(a)r(z, a, b) + (n− 1)Ep,x,b[vn−1(p̃(ω))]}

vλ(p) = max
XS

min
B
{λ

∑
z,a

pzxz(a)r(z, a, b) + (1− λ)Ep,x,b[vλ(p̃(ω))]}
Proof. The proof is the same in both cases and relies on the minmax

theorem, namely that vn (for example) exists. It is clear that player 1 can
obtain the amount corresponding to the right-hand side: he plays at stage
1 some x realizing the maximum and, from stage 2 on, optimally in the
game Gn−1(p̃(ω)). On the other hand, given any strategy σ of player 1,
we describe a strategy τ of player 2 achieving the same amount. In fact, σ
determines x used by player 1 at stage one, then player 2 chooses a one-
stage best reply according to the above formula and afterwards, given the
signal ω, plays optimally in the remaining game Gn−1(p̃(ω)).
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We deduce from these recursive formula properties of player 1’s optimal
strategies analogous to those available in stochastic or incomplete informa-
tion games.

Corollary 1 Player 1 has an optimal Markov strategy in Gn(p) and an
optimal Markov stationary strategy in Gλ(p), where the state space is ∆(S).

Recall that, on the contrary, the recursive formula does not allow one
to construct recursively optimal strategies of player 2 since it involves the
computation of the posterior distribution, unknown to player 2 who ignores
x.

Remarks. It is actually enough for player 1 to be able to compute the
beliefs of player 2; he doesn’t have to know player 2’s move. For example, in
the standard case where the signal of player 2 is (a, b), the new information
of player 2, namely a, is independent of his own move; hence player 1 does
not need to know b to compute player 2’s posterior distribution. However,
if player 1 does not know the beliefs of player 2, the recursive structure (see
[3]) does not allow one to write a recursive formula on ∆(S).

A similar construction holds in the case of lack of information on both
sides: S = S1×S2, player 1 knows the first component, player 2 the second
and the public signal contains both moves.

Melolidakis [8] deals with standard stochastic games with lack of infor-
mation on one side and positive stop probabilities: the payoff is the sum of
the stage payoffs but every day there is a positive probability ρ(z, a, b) to
stop the game. Then the same kind of properties as above are established.

4. Concavity and Duality

We still consider Level 1 but the result extends to the general case of incom-
plete information and follows from the original (1966) proof by Aumann
and Maschler [1].

Proposition 2 vn(p) and vλ(p) are concave on ∆(S).

Proof. Again, the proof is similar in both cases and we will consider
Gn(p). Denote by σ = {σz} and τ the mixed strategies of players 1 and 2
respectively, and by γz(σz, τ) the (bilinear) normalized payoff in Gn starting
from state z. The payoff in Gn(p) is then

∑
z∈Spzγz(σz, τ).

Let p =
∑

`∈Lα`p` with L = {1, 2}, p, p` in ∆(S) and {α`} in ∆(L).
Choose σ` optimal for player 1 in the game Gn(p`). Define σ as: if the
initial state is z, use σ` with probability α`

pz
`

pz . The corresponding payoff is

∑
z
pzγz(σz, τ) =

∑
z
pz

∑
`
α`

pz
`

pz
γz(σz

` , τ)
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=
∑

`
α`

∑
z
pz

`γ
z(σz

` , τ);

hence by the choice of σ`

∑
z
pzγz(σz, τ) ≥

∑
`
α`vn(p`), ∀τ

which achieves the proof.

We now follow [4] (see also [9], [11]) in introducing the dual game of the
incomplete information game G(p) (that stands for Gn(p) or Gλ(p)) with
payoff on ΣS×T defined by

∑
z∈Spzγz(σz, τ).

For any ζ in RS , the dual game G∗(ζ) is played on ∆(S)×ΣS for player
1 and on T for player 2 with payoff

γ∗(p, σ; τ) =
∑

z
pz(γz(σz, τ)− ζz).

In other words, player 1 chooses the initial state z, then the game evolves
as in G and there is an additional payoff of −ζz. Denoting by v∗(ζ) the
value of G∗(ζ) one has

Proposition 3
v∗(ζ) = max

p∈∆(S)
{v(p)− 〈p, ζ〉} (1)

v(p) = inf
ζ∈RS

{v∗(ζ) + 〈p, ζ〉}. (2)

Proof. By definition,

v∗(ζ) = sup
p,σ

inf
τ

∑
z
pz(γz(σz, τ)− ζz)

= sup
p

(sup
σ

inf
τ

∑
z
pzγz(σz, τ)− 〈p, ζ〉)

= sup
p

(v(p)− 〈p, ζ〉)

and v is continuous (even Lipschitz); hence the sup is reached.
Since v is in addition concave, equation (2) follows from Fenchel’s du-

ality.

Corollary 2 Given p, let ζ be ε-optimal in (2) and τ be ε-optimal in G∗(ζ).
Then τ is 2ε-optimal in G(p).

Proof. By the choice of τ ,

γz(σz, τ)− ζz ≤ v∗(ζ) + ε, ∀σ.
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Hence
∑

z
pzγz(σz, τ) ≤ v∗(ζ) + 〈p, ζ〉+ ε

≤ v(p) + 2ε, ∀σ

by the choice of ζ.

The interest of this result is to deduce properties of optimal strategies
of player 2 in G(p) from similar properties in G∗(ζ).

5. Markov Strategies for the Uninformed Player

The recursive formula obtained in the primal game G(p) (Proposition 1)
is used here to get a similar representation for the value of the dual game
G∗(ζ) and eventually to deduce properties of optimal strategies of player 2
in G∗. This approach follows [4], [11].

One starts with the duality equation (1)

v∗n(ζ) = max
p
{vn(p)− 〈p, ζ〉}

and the recursive formula

nvn(p) = max
XS

min
B
{
∑

z,a
pzxz(a)r(z, a, b) + (n− 1)Ep,x,b[vn−1(p̃(ω))]}.

Recall that X = ∆(A) and Y = ∆(B); hence, by introducing π∈Π =
∆(S×A), where the marginal πS on S plays the role of p and the conditional
on A given z the role of xz, one obtains

nv∗n(ζ) = max
π∈Π

min
y∈Y

{
∑

z,a,b
π(z, a)y(b)r(z, a, b)

+(n− 1)Eπ,y[vn−1(π̃S(ω))]− n〈ζ, πS〉}, (3)

where π̃S(ω) is the conditional distribution on S, given ω.
Denote by (C) the following condition:

(C) π 7→Eπ,y[vn−1(π̃S(ω))] is concave.

Proposition 4 Under (C) one has

nv∗n(ζ) = min
y∈Y

inf
ρ:Ω→RS

max
π∈Π

{
∑

z,a,b
π(z, a)y(b)r(z, a, b)

+(n− 1)Eπ,y[v∗n−1(ρ(ω)) + 〈π̃S(ω), ρ(ω)〉]− n〈ζ, πS〉}. (4)
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Proof. The payoff in (3) is concave in Π and linear in Y , both sets
being convex compact; hence Sion’s minmax theorem applies, so that

nv∗n(ζ) = min
y∈Y

max
π∈Π

{
∑

z,a,b
π(z, a)y(b)r(z, a, b)

+(n− 1)Eπ,y[vn−1(π̃S(ω))]− n〈ζ, πS〉}.

We now use the other duality equation (2) to obtain

nv∗n(ζ) = min
y∈Y

max
π∈Π

{
∑

z,a,b
π(z, a)y(b)r(z, a, b)

+(n− 1)Eπ,y[ inf
ζ′
{v∗n−1(ζ

′) + 〈π̃S(ω), ζ ′〉}]− n〈ζ, πS〉}.

Finally, from (1) v∗ is convex; hence one has, again using the minmax
theorem,

max π∈Π{
∑

z,a,b
π(z, a)y(b)r(z, a, b)

+(n− 1)Eπ,y[ inf
ζ′
{v∗n−1(ζ

′) + 〈π̃S(ω), ζ ′〉}]− n〈ζ, πS〉}

= max
π∈Π

inf
ρ:Ω→RS

{
∑

z,a,b
π(z, a)y(b)r(z, a, b)

+(n− 1)Eπ,y[v∗n−1(ρ(ω)) + 〈π̃S(ω)), ρ(ω)〉]− n〈ζ, πS〉}
= inf

ρ:Ω→RS
max
π∈Π

{
∑

z,a,b
π(z, a)y(b)r(z, a, b)

+(n− 1)Eπ,y[v∗n−1(ρ(ω)) + 〈π̃S(ω), ρ(ω)〉]− n〈ζ, πS〉},

which gives (4).

Proposition 5 Condition (C) holds for games at Level 3.

Proof. Recall that the state space S is decomposed as Ξ×K. The com-
ponent ξ is known to both and is varying, and the component k is fixed
and known to player 1 only. The signal ω contains the new state ξ(ω) so
that one has, at ξ with π∈∆(K×A),

Prob(ω) = Prob(ω, ξ(ω)) =
∑

k,a
π(k, a)q(w, ξ(ω)|ξ, a, b(ω)).

Since the transition on Ξ is independent of k, the law of π̃K(., ξ′) for a given
ξ′ will be a martingale. Explicitly in our framework, ξ and b being given,
Eπ,y[vn−1(π̃S(ω))] is of the form

∑
ω,ξ′

Probπ(ω, ξ′)vn−1(π̃K(ω), ξ′).
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Let π = απ1 + (1− α)π2, then for each ξ′ fixed one has

π̃k
K(ω) =

Probπ(ω, k)
Probπ(ω)

= α
Probπ1(ω, k)

Probπ(ω)
+ (1− α)

Probπ2(ω, k)
Probπ(ω)

= απ̃k
K,1(ω)

Probπ1(ω)
Probπ(ω)

+ (1− α)π̃k
K,2(ω)

Probπ2(ω, k)
Probπ(ω)

and the result follows from vn−1 being concave (Proposition 3).
It follows that (at Level 3) an optimal strategy of player 2 in the dual

game consists in choosing y and ρ optimally in the above equation (4), to
play y at stage one and then, given the signal ω, optimally in the remaining
game at state ζ = ρ(ω).

By Corollary 2 an analog property holds in the primal game.
Remarks. A similar result is true even if the law of the signals depends

upon k (but not the transition on the states ξ). The crucial point is the
martingale property of π̃(ω, ξ′); see [11].

In the framework of stochastic games with lack of information on both
sides, there are two dual games corresponding to the information of each
player. Explicitly, let the state space be of the form Ξ×K1×K2. k1 and
k2 are fixed and correspond to the private information of the players. In
addition, the transition on Ξ is independent of (k1, k2) and (ξ, a, b) are
announced to both players. Then an optimal strategy of player 1 will be
based on a triple (ξ̃, p̃1, ζ̃1) corresponding to the stochastic state, the beliefs
of player 2 and player 1’s vector parameter ζ1 representing his uncertainty
on K2. Player 1’s “state space” is thus Ξ×∆(K1)×RK2 ; see [11].

At level 1, for Gn(p), Krausz and Rieder [6] use the finite aspect to
describe the value as the solution of a linear program. Optimal strategies
of player 1 are obtained as optimal variables. Using the fact that vn(p) is
piecewise linear they also obtain inductively optimal strategies of player 2
as the solution to the dual program.

We now turn to the study of large games: first, asymptotic analysis of vn

or vλ in the compact case and then properties of the maxmin and minmax
in the uniform approach.

6. Recursive Games with Incomplete Information

We follow here the work of Rosenberg and Vieille [13].
Consider a finite two-person zero-sum recursive game with absorbing

payoffs: the payoff is either 0 or absorbing. We denote by S the set of
non-absorbing states, by A the set of absorbing states and by p the initial
probability on S according to which the state is chosen and announced to
player 1. At each stage n, given the strategy of player 1, player 2 computes
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the posterior probability ρn, conditional to the fact that the payoff is not
absorbing. (If only the state were absorbing, player 2 should know it in
order to play optimally after absorption; here, on the contrary, in case an
absorbing state is reached the future payoff is constant; hence player 2 can
concentrate on the complementary event to select his strategy.)

The recursive formula is given on ∆(S) by

Φ(α, f)(p) = valXS×Y {(1− α)(π(p, x, y)E(f(ρ)) + (1− π(p, x, y))E(a))}
where π(p, x, y) is the probability of remaining in S and ρ the correspond-
ing posterior probability. a stands for the absorbing payoff with ‖a‖≤1.
Obviously, vn = vλ = v∞ on A and we are interested in their behavior on
∆(S).

Theorem 1
maxmin = lim

n→∞ vn = lim
λ→0

vλ.

Proof. Let w be an accumulation point of the family {vλ} (which is
uniformly Lipschitz on ∆(S)). One has

Φ(0, w) = w.

As long as w is negative, if player 1 uses an optimal strategy in the “projec-
tive game” corresponding to Φ(0, w), this will guarantee w since the current
payoff is 0 ≥ w. However, the argument fails if w(p) > 0 and the idea is
then to play optimally in a discounted game with ‖vλ − w‖ small.

The main lines of the proof are sketched below. Given ε > 0, let λ such
that

‖vλ − w‖ ≤ ε2.

Write xλ(p) (resp. x(p)) for an optimal strategy of player 1 in Φ(λ, vλ)(p)
(resp. Φ(0, w)(p)). Inductively, a strategy σ of player 1 and stopping times
θ` are defined as follows. Let θ1 = min{m : w(ρm) > ε} and play x(ρn) at
each stage n until θ1 (excluded). Let then θ2 = min{m≥θ1; vλ(ρm) < 0}
and play xλ(ρn) at each stage n from θ1 until θ2 (excluded).

More generally, play x(ρn) from stage θ2` to θ2`+1 = min{m : w(ρm) >
ε}(excluded) and play xλ(ρn) from θ2`+1 until θ2`+2 = min{m; vλ(ρm) <
0}(excluded).

Define un to be w(ρn) at nodes where player 1 is using x (i.e., playing op-
timally for Φ(0, w)), namely for θ2`≤n < θ2`+1. Let un be vλ(ρn) otherwise.
We call the first set of nodes “increasing” and the other set “decreasing.”

The first property is that un is essentially a submartingale. This is clear
if one starts at an increasing node and stays in this set since by the choice
of σ:

Eσ,τ (un+1|Hn) = Eσ,τ (w|Hn)≥Φ(0, w) = w = un.
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Similarly, if the initial node is decreasing and one remains in this set, one
obtains using the fact that vλ(pn)≥0 (by the choice of the stopping time):

Eσ,τ ((1− λ)un+1|Hn) = Eσ,τ ((1− λ)vλ|Hn)≥Φ(λ, vλ) = vλ = un≥0,

so that
Eσ,τ (un+1|Hn)≥un.

Now if one of the new nodes changes from decreasing to increasing or vice
versa, the error is at most ε2; hence in all cases

Eσ,τ (un+1|Hn)≥un − ε2P (n + 1∈Θ|Hn),

where Θ is the set of all stopping times {θ`}.
The second property is a bound on the error term using the fact that

the stopping times count the upcrossing of the band [0, ε] by the sequence
un. If ηN denotes the number of stopping times θ` before stage N and
η = lim ηN one has

E(η) ≤ 2
ε− ε2

and one uses
∑

n
P (n + 1∈Θ) =

∑
`

∑
n+1

P (θ` = n + 1)≤E(η) + 1

to get finally
E(un) ≥ u1 − 5ε.

The last point is to compare un to the current payoff in the game. Until
absorption the current payoff is 0, hence near w (or vλ) as long as w≤ε.
DefineAn to be the set of non-absorbing nodes with w(ρn) > ε. One obtains

E(gn) ≥ u1 − 7ε− 2P (An).

Denoting by ξ the absorbing time, the crucial property is that ∀ε, λ,∃N
such that

P (ξ ≤ n + N |An) ≥ ε/2.

This result follows from the fact that given a node in An, player 1 is using
xλ as long as vλ(ρm)≥0. Now, before absorption, E((1− λ)vλ) ≥ vλ. Since
vλ is bounded, positive and increasing geometrically there is a positive
probability of absorption in finite time.

One then deduces that
∑

nP (An) is uniformly bounded; hence

E(gn) ≥ w − 8ε



STOCHASTIC GAMES WITH INCOMPLETE INFORMATION 385

for n large enough. Since the strategy of player 1 is independent of the
length of the game, this implies that player 1 can guarantee w.

Given any strategy σ of player 1, player 2 can compute the posterior
distribution ρn as well and use the “dual” of the previous strategy. The same
bound (independent of σ) thus implies that max min = w and moreover
lim vn = lim vλ = w.

An example is given in [13] showing that max min and min max may
differ.

On the other hand the previous proof shows that the crucial point is
the knowledge of the beliefs parameter. Hence one obtains

Proposition 6 Consider a recursive game with absorbing payoffs and lack
of information on both sides. Then

lim
n→∞ vn = lim

λ→0
vλ.

7. Absorbing Games with Incomplete Information: Level 4

We will just mention here a recent result by Rosenberg [12].

Theorem 2 For absorbing games with vector payoffs and incomplete in-
formation on one side, both lim vn and lim vλ exist and coincide.

The proof is very involved and uses the operator approach (see [17])
to obtain variational properties satisfied by any accumulation point of the
family {vλ} and then to deduce uniqueness.

8. Absorbing Games with Incomplete Information: Level 5

This is a collection of partial results introducing new tools and ideas that
may be useful in more general cases. The games under consideration have
a structure similar to the Big Match of Blackwell and Ferguson [2] (see also
[21]), namely, these are absorbing games where one of the players controls
the absorption. However, there is some incomplete information on the state;
hence the name for this class.

8.1. “BIG MATCH” WITH INCOMPLETE INFORMATION: TYPE I

We consider a family of games of the following form

Gk =
(

ak∗
1 ak∗

2 ... ak∗
m

bk
1 bk

2 ... bk
m

)
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where the first line is absorbing. k belongs to a finite set K and is selected
according to p in ∆(K). Player 1 knows k while player 2 knows only p. The
analysis follows [14].

8.1.1. Asymptotic Analysis
The use of the recursive formula allows us to deduce properties of optimal
strategies. In particular, in our case the value of the game is the same
if both players are restricted to strategies independent of the past: first,
the information transmitted to player 2 is independent of his own moves,
so one can ignore them; second, there is only one past history of moves
of player 1 to take into consideration, namely Bottom up to the current
stage (excluded). This suggests the construction of an asymptotic game G
played between time 0 and 1 and described as follows. ρk is the law of the
stopping time θ corresponding to the first stage where player 1 plays Top,
if k is announced: ρk(t) = Probσk(θ≤t).

f is a map from [0, 1] to ∆(Y ), f(t) being the mixed strategy used by
player 2 at time t.

The payoff is given by L({ρ}, f) =
∑

kp
kLk(ρk, f) where Lk is the payoff

in game k, expressed as the integral between 0 and 1 of the “payoff at time
t”:

Lk(ρk, f) =
∫ 1

0
Lk

t (ρ
k, f)dt

with, letting Akf =
∑

ak
j fj and similarly for Bkf , the following expression

for Lk
t :

Lk
t (ρ

k, f) =
∫ t

0
Akf(s)ρk(ds) + (1− ρk(t))Bkf(t).

The first term corresponds to the absorbing component and the second
term to the non-absorbing one.

Theorem 3 1) The game G has a value w.
2) limn→∞ vn = limλ→0 vλ = w.

Proof. The existence of a value follows from Sion’s minmax theorem.
Consider now (ε)-optimal strategies (ρ = {ρk}, f) in G. They induce natural
discretizations (ρ(n), f(n)) or (ρ(λ), f(λ)) in Gn or Gλ corresponding to
piecewise constant approximations on the intervals of the form [mn , m+1

n ] or
[
∑m−1

t=0 λ (1 − λ)t−1,
∑m

t=0λ(1 − λ)t−1]. It is then easy to see by continuity
of the payoffs that ρ(n) will guarantee w up to some constant ×[(1/n) + ε]
in Gn and a dual result holds for f(n). A similar property is obtained for
Gλ.
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8.1.2. Maxmin
The construction relies on properties of the previous auxiliary game G and
the result is the following:

Theorem 4
maxmin = w.

Proof. We first prove that player 2 can defend w. Let f be an ε-optimal
strategy of player 2 in G. Player 2 will mimic f in order to generate through
the strategy σ of player 1 a family of distributions {µk} such that by playing
“up to level t” the payoff will be near Lt({µ}, f) =

∑
kL

k
t (µ

k, f). Since by
the choice of f , L({µ}, f) =

∫ 1
0Lt({µ}, f) is less than ω + ε, there exists

t∗ with Lt∗({µ}, f) ≤ w + ε. This will define the strategy τ of player 2 as:
follow f up to level t∗.

Formally, we consider a discrete-valued approximation f̃ of f , f̃ being
equal to fi on [ti, ti+1], with i∈I, finite.

Given σ, the positive measures µk are defined inductively as follows.
µk(t1) = Probσk,τ1(θ < +∞) where τ1 is f1 i.i.d.
Let N1 be such that the above probabilities are almost achieved by that

stage for all k; this defines µk(t1) = Probσ,τ1(θ≤N1).
µk(t2) = Probσk,τ2(θ < +∞), where τ2 is τ1 up to stage N1 and then f2

i.i.d. One introduces N2, τ2 as above and so on.
µk(ti) = Probσk,τi

(θ < +∞) where τi is τi−1 up to Ni−1 and then f1

i.i.d.
It is then clear that the payoff induced in Gn, for n large enough, by σ

and τi, will be of the form
∑

k
pk{

∑
j≤i

(µk(tj)− µk(tj−1))Akfj + (1− µk(ti))Bkfi},

hence near Lti({µ}, f̃). Since
∫ 1

0Lt(µ, f̃)dt is at most w (up to some approx-
imation), there exists an index i∗ with Lti({µ}, f̃) below w +O(ε). Finally,
the strategy τi∗ defends w.

The proof that player 1 can guarantee w is more intricate. One first
shows the existence of a couple of optimal strategies (ρ = {ρk}, f) in G
that are essentially equalizing, namely such that Lt({ρ}, f) is near w for
all t. In fact, consider {ρ} optimal for player 1 in G and the game ℘ where
player 1 chooses t, player 2 chooses f and the payoff is Lt({ρ}, f).

Proposition 7 The game ℘ has a value, w.

Proof. The existence of a value follows again from Sion’s minmax the-
orem. Since player 1 can choose the uniform distribution on [0, 1] and so
generate L({ρ}, f), the value w′ is at least w. If w′ > w, an optimal strategy
of player 1, hence a cumulative distribution function on [0, 1], α, could be
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used to “renormalize” the time and induce in G through the image of ρ by
α a payoff always at least w′.

The idea of the proof is now to follow the “path defined by f and ρ.”
Basically, given k, player 1 will choose t according to the distribution ρk

and play the strategy δt where δt is defined inductively as follows. Consider
the non-absorbing payoff at time t

∑
k
pk(1− µk(t))Bkf(t) = bt(f).

Player 1 then uses a “Big Match” strategy blocking whenever the non-
absorbing payoff evaluated through bt(.) is less than bt(f). The equalizing
property of f then implies that the absorbing payoff will be at least the
one corresponding to f . It follows that the total payoff is minorized by an
expectation of terms of the form Lt({ρ}, f), hence the result.

8.1.3. Minmax

Theorem 5 minmax = v1, value of the one-shot game.

Proof. It is clear that by playing i.i.d. an optimal strategy y in the
one-shot game player 2 will induce an expected payoff at any stage n of the
form

g1(p; α, y) =
∑

k
pk(αkAky + (1− αk)Bky),

where αk = Probσk,τ (θ≤n), hence less than v1.
To prove that player 1 can defend v1, let α = {αk} be an optimal

strategy for him in G1(p). Knowing τ , player 1 evaluates the non-absorbing
component of the payoff at stage n given α, namely:

cn =
∑

k
pk(1− αk)Bkyn,

where yn = E(τ(hn)|θ≥n) is the expected mixed move of player 2 at stage n,
conditional to Bottom up to that stage. Let N be such that cN > supn cn−ε;
then player 1 plays Bottom up to stage N excluded, then once α at stage
N and always Bottom thereafter. For n larger than N , the expected payoff
will be of the form ∑

k
pk(αkAkyN ) + cn,

hence greater than g1(p; α, yN )− ε, which gives the result.

Example. Consider the following game with p = p1 = Prob(G1):

G1 =
(

1∗ 0∗
0 0

)
G2 =

(
0∗ 0∗
0 1

)
.
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Then one has
v(p) = v1(p) = min(p, 1− p)

v(p) = lim
n→∞ vn(p) = lim

λ→0
vλ(p) = (1− p)(1− exp(− p

1− p
)).

In particular, the uniform value does not exist, and the asymptotic value
and the maxmin are transcendental functions: at p = 1

2 one obtains v(1
2) =

1
2(1− 1

e ) while all the data are rational numbers.

8.1.4. Extensions
We study here the extension to Level 4. The games are of the form

(
Ak∗

1 Ak∗
2 ... Ak∗

m ...
bk
1 bk

2 ... bk
m ...

)

where A1 = {Ak
1} , ... Am = {Ak

m}, ... are games with incomplete infor-
mation corresponding to absorbing states. It follows that when player 1
plays Top the payoff is not absorbing and the strategic behavior thereafter
(hence also the payoff) will be a function of the past. Let vm(p) be the
uniform value of the game Am with initial distribution p [1]. The recursive
formula implies that the absorbing payoff is approximately

∑
mvm(pT )ym

(where pT is the conditional distribution given Top and ym the probability
of playing column m) if the number of stages that remains to be played is
large enough.

Consider now the continuous time game G. Given a profile ρ = {ρk},
denote by pT (t) (resp. pB(t)) the conditional probability on K given θ = t
(resp. θ > t). The payoff is defined as

M({ρ}, f) =
∫ 1

0
Mt({ρ}, f)dt

where the payoff at time t is given by

Mt({ρ}, f) =
∫ t

0
(
∑

m
vm(pT (s))fm(s))dρ(s)+ (1− ρ(t))(

∑
k
pB

k (t)bkf(t)),

ρ(t) =
∑

kp
kρk(t) being the average probability of the event {θ≤t}.

M is still a concave function of ρ (due to the concavity of each vm)
and Sion’s theorem still applies. The analog of Theorem 3 then holds. One
shows that player 1 can obtain w in large games, and using the minmax
theorem, that he cannot get better. Similarly, the analysis of the maxmin
follows the same lines.



390 SYLVAIN SORIN

Concerning the minmax one is led to introduce a family of games as
follows. For each game Am consider the set Ξm of vector payoffs (in RK)
that player 2 can approach (see [1]), namely such that

〈p, ξm〉 ≥ vm(p) ∀p∈∆(K).

Given a profile {ξm} of vectors in
∏

mΞm we consider the game A(ξ, p),
where each component is given by

Ak(ξ) =
(

ξk∗
1 ξk∗

2 ... ξk∗
m ...

bk
1 bk

2 ... bk
m ...

)
.

By construction for each such ξ player 2 can guarantee (in the original
game) the minmax of A(ξ, p) which is the value of the one-shot version, say
ν1(ξ, p). One then has

minmax = min
ξ∈Ξ

ν1(ξ, p).

In fact, by playing optimally for the minmax in A(ξ, p), player 1 is an-
ticipating the behavior of player 2, after absorption (namely, approach ξm

if absorption occurred when playing m). The best player 2 could do then
would be to choose a supporting hyperplane to vm at the current posterior
pT . This defines a correspondence C from

∏
mΞm to itself. One shows that

C is u.s.c. with convex values; hence it has a fixed point ξ∗. Playing opti-
mally for the minmax against τ in A(ξ∗, p) will then guarantee an absorbing
payoff above ξ∗, hence a total payoff above ν1(ξ∗, p).

Note that this construction is reminiscent of the approach in [16].

8.2. “BIG MATCH” WITH INCOMPLETE INFORMATION: TYPE II

We here consider games of the form

Gk =




a∗1 b1

a∗2 b2

... ...
a∗m bm

... ...




where the first column is absorbing: Player 2 controls the transition. As
usual the game Gk is chosen with probability pk and announced to player
1. We follow the approach in [15].

8.2.1. Asymptotic Analysis and Maxmin
The analysis is roughly similar in both cases and based on the tools de-
veloped for incomplete information games [1]. Let u be the value of the
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non-revealing game (where player 1 is not transmitting any information on
k). A crucial property is that this value does not depend upon the length
of the game and then one shows immediately that player 1 can guarantee
Cavu (p), where Cav denotes the concavification operator on the simplex
∆(K). Since player 2 has a “non-absorbing” move he can (in the compact
case or for the maxmin), knowing σ, observe the variation of the martingale
of posterior probabilities on K. Except for a vanishing fraction of stages this
variation is small; hence player 1 is almost playing non-revealing so that a
best reply of player 2 gives a payoff near u at the current posterior. The
result follows by averaging in time and taking expectation, using Jensen’s
inequality. We thus obtain

Theorem 6
maxmin = lim

n→∞ vn = lim
λ→0

vλ.

8.2.2. Minmax
The analysis in this case requires quite specific tools and is related to the
question of approachability in stochastic games with vector payoffs. Rather
than providing complete proofs which are quite long and painful, we will
only give hints concerning the tools used on two examples.
Example 1

G1 =
(

1∗ 0
0∗ 0

)
G2 =

(
0∗ 0
0∗ 1

)

One easily has, with p = Prob(k = 1), that: u(p) = p(1− p); hence

v(p) = lim
n→∞ vn(p) = lim

λ→0
vλ(p) = Cav u(p) = p(1− p).

However,

v(p) = p(1− exp(1− (1− p)
p

)),

which is obtained as follows. Denote by βt, 0≤t≤1, an ε-optimal strategy
of player 2 in the game:

(
t∗ −t

−(1− t)∗ (1− t)

)

(hence absorbing with probability near 1 if the frequency of Bottom exceeds
t). Player 2 will choose t according to some distribution ρ and then play
βt. A best reply of player 1 is then to start by playing Top and to decrease
slowly his frequency of Top, in order to get an absorbing payoff as high as
possible. This leads to the following quantity that player 2 can guarantee:

ṽ(p) = inf
ρ

sup
t
{p

∫ 1

0
(1− s)ρ(ds) + (1− p)t(1− ρ([0, t])}.
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To prove that player 1 can defend ṽ let him construct such a measure ρ
starting from the strategy τ of player 2. A discretization will be obtained by
playing Bottom with frequency `

N , ` = 0, ..., N, for N large. R̃(0) is thus the
probability of absorption given “always Top.” It is almost achieved at stage
N0; this defines the quantity R(0). Inductively, R̃(`) is the probability of
absorption given the previous strategy until stage N`−1 and then (1− `

N , `
N )

i.i.d. By choosing ` and using the associated strategy player 1 can thus
achieve ṽ.
Example 2

G1 =
(

1∗ 0
0∗ 1

)
G2 =

(
0∗ 3/4
1∗ 0

)

Given a point C in R2, we say that player 2 can approach C if for any ε
there exists τ and N such that for any σ: γk

n(σ, τ) ≤ Ck + ε for n≥N .
Clearly, player 2 can approach X = (1, 3/7) by playing optimally in G2.

He can also approach Y = (1/2, 3/4) by playing a sophisticated optimal
strategy in G1: start as in an optimal strategy in G1 but control both the
absorption probability (q) and the expected absorbing payoff (a) to satisfy
qa + (1 − q) ≥ 1/2: as soon as the opposite equality holds player 2 can
play anything in G1 and get a payoff less than 1/2, in particular playing
optimally in G2. This allows him to approach Y .

•

•

•

•B
(0,1)

T
(1,0)

X
(1,3/7)

Y
(1/2,3/4)

•U • X’

Figure 1. The approachable set

Let T = (1, 0) and B = (0, 1). We will show that player 2 can also
approach U , which is the intersection of the segments [BX] and [TY ]. Note
that U = (1/13)T + (12/13)Y = (6/13)B + (7/13)X. Player 2 then plays
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Left with probability 1/13. If Top is played the absorbing event is (q, a) =
(1/13, T ); hence it remains to approach Y . Otherwise, the absorbing event
is (q, a) = (1/13, B); hence it remains to approach X ′ with U = (1/13)B +
(12/13)X ′. Now choose a point U ′ on TY Pareto-dominated by X ′ and
start again. An example of such a procedure is given by:

• ••

••• •

•• •

••
L

R

(1/13)
(12/13)

T

B

approach
      Y

approac h
     Y

•

L L

T T
(1/6)

(5/6)
(3/10)

(7/10)

approac h
     Y

approach
     X

R RB B

Figure 2. The approachable strategy

As for player 1, by playing Top until exhausting the probability of ab-
sorption and then eventually optimally in G1 he forces a vector payoff
minorized by a point Z of the form: αT + (1− α)Y , hence on [TY ]. Simi-
larly, by playing Bottom and then eventually optimally in G2, player 1 can
“defend” the payoffs above the segment [XB].

Finally, it is easy to see that the set of points that player 2 can approach
is convex and that similarly player 1 can defend any convex combination
of half-spaces that he can defend.

It follows that the “approachable set” is the set C of points C with
Ck≥Zk for some Z in the convex hull of (X, Y, U). Finally, the maxmin v
is simply the support function of C:

v(p) = min
C∈C

〈C, p〉.

9. Comments

Let us first mention several results related to the current framework:
- Melolidakis [7] gives conditions for v∞ to exist in games at Level 1

where the transition is independent of the moves of the players.
- Ferguson, Shapley and Weber [5] studied a game with two states where

player 2 is informed of the transition on the states only in one direction
(from 2 to 1). The natural state space is then the number of stages since
the last announcement and the existence of a uniform value is obtained.

- More properties related to games studied in Section 8 can be found in
[15], [19], [10].
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Absorbing games with incomplete information were introduced as auxil-
iary tools to study games with incomplete information and state-dependent
signalling matrices: this is the case when even by playing independently of
his information a player may reveal it. An example is given by the following
case, in [16]. The state is (k, `). Player 1 knows k and player 2 knows `.
Each game Ak` is 2×2 and the signalling matrices are as follows.

H11 =
(

T L
P Q

)
H12 =

(
T R
P Q

)

H21 =
(

B L
P Q

)
H22 =

(
B R
P Q

)

As soon as player 1 plays Top some game is revealed and one can assume
the state absorbing.

Finally, in all the cases studied up to now where player 1 is more in-
formed than player 2, the maxmin is equal to the asymptotic value (lim vn

and lim vλ), and it is conjectured that this is a general property for this
class. More intuition for this to hold can be obtained using the general
recursive approach (see [3]).
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