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Abstract. This chapter studies asymptotic properties of the orbits of non-
expansive maps defined on a normed space, and relates these properties to
properties of the value of two-person zero-sum games and to properties of
the minmax of n-person stochastic games.

1. Introduction

Let (X, ‖ ‖) be a Banach space. A map T : X → X is nonexpansive if
‖Tx− Ty‖ ≤ ‖x− y‖.

We encountered nonexpansive maps in earlier chapters. In [14] we had
commented on the iterates of a Markov matrix P . Given a Markov matrix
P , or more generally a linear operator P of norm 1 defined on a normed
space X, the map T : y 7→ x + Py is nonexpansive (for every x). The
iterates of T are given by

Tny = (I + P + . . . + Pn−1)x + Pny.

Since ‖P ny
n ‖ ≤ ‖y‖

n →n→∞ 0, the limit of I+P+...+P n−1

n exists if and only if
the limit of T ny

n exists, and then both limits coincide.
The Shapley operator Ψ,

Ψf [z] = sup
x

inf
y

(
r(z, x, y) +

∑

z′
p (z′ | z, x, y)f(z′)

)

(where the sum is replaced with an integral in the case of an uncountable
state space), appears, either explicitly or implicitly, in several other chapters
of this volume, e.g., [19], [14], [15],[20], [21], [16], [23]. It maps a bounded
real-valued function f defined on the state space S to a real-valued function
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Ψf defined on the state space S. The map f 7→ Ψf is nonexpansive with
respect to the supremum norm, i.e., ‖Ψf −Ψg‖∞ ≤ ‖f − g‖∞.

The minmax value of the (unnormalized) n-stage stochastic game, Vn,
is the n-th Ψ-iterate of the vector 0, Ψn0. The minmax value of the (un-
normalized) λ-discounted game, i.e., the game with discount factor 1−λ, is
the unique solution Vλ of the Ψ-λ-discounted equation: Ψ((1− λ)V ) = V .

Similarly, the value of the n-stage (respectively, the λ-discounted) game
of many other models of multi-stage games corresponds to the n-th iterate
Ψn0 (respectively, the solution of the Ψ-λ-discounted equation) where Ψ is
a nonexpansive map.

In fact, an auxiliary stochastic game Γ′ corresponds to every model of
a repeated game Γ so that the value of the n-stage game Γn (respectively,
the λ-discounted game Γλ) coincides with the value of the n-stage game Γ′n
(respectively, the λ-discounted game Γ′λ) ([12], Chapter IV, Section 3).

Several results have established the existence of the limit of the normal-
ized values of the n-stage games (respectively, of the λ-discounted games,
and the equality of both limits). For example, these limiting results have
been proved by Aumann and Maschler [1] for repeated games with incom-
plete information on one side, by Mertens and Zamir [13] for repeated games
with incomplete information on both sides, and by Bewley and Kohlberg
[2] for stochastic game with finitely many states and actions.

A natural question arises as to whether the limits of 1
nΨn0 as n →∞ and

of λVλ as λ → 0+, where Ψ is a nonexpansive operator defined on a normed
space and Vλ is the unique solution of the equation Ψ((1−λ)V ) = V , exist
(and are equal). This question was the initiator of the investigations leading
to [7], [8], [17] and [9], which are summarized in this chapter.

Let us point out right now that the nonexpansiveness of Ψ by itself is
not sufficient to guarantee the convergence of 1

nΨn0 as n →∞. Additional
properties of either the normed space or the nonexpansive operator are
needed.

In Section 2 we state the characterization of the normed spaces (X, ‖ ‖)
for which the strong (respectively, weak) limit of 1

nΨn0 as n →∞ exists for
every nonexpansive map Ψ : X → X (Theorems 2 and 3 respectively). The
characterization is based on Theorem 1 which states an important property
of nonexpansive maps. In addition, the norm convergence of 1

nTn0 is proved
whenever in addition to T being nonexpansive the function λ → λVλ is of
bounded variation (Theorem 4), and thus also whenever T : Rn → Rn is
nonexpansive and semialgebraic (Theorem 5).

Section 3 is based on [17]. It introduces the generalized orbits of a nonex-
pansive map. Informally, a generalized iterate is obtained by compositions
of weighted averages and classical iterates.
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Section 4 presents applications of the results of Section 3 to stochastic
games with an uncertain number of stages.

Section 5 is based on [9]. It introduces the stochastic analog of the
nonexpansive map: the nonexpansive stochastic process. It is also a gener-
alization of Banach space-valued martingales.

The above-mentioned results of [2] also follow from the existence of a
(uniform) value of stochastic games [11], [16]. The present chapter will in-
clude a proof of these results using the fact that in the case of finitely
many states and actions the Shapley operator Ψ is nonexpansive and semi-
algebraic. It follows therefore that the same conclusion holds also for the
λ-discounted minmax (of player i) vi

λ and the n-stage minmax (of player i)
vi
n of n-person stochastic games with finitely many states and actions.

2. Nonexpansive Maps

This section provides conditions on a Banach space (X, ‖ ‖) and a nonex-
pansive map T : X → X that imply the convergence of the the sequence
1
nTn0.

Obviously, if T is nonexpansive, so is each iterate Tn of T . Therefore,
‖Tnx−Tn0‖ ≤ ‖x‖ for every x ∈ X, and thus 1

nTnx (respectively, ‖ 1
nTnx‖)

converges if and only if 1
nTn0 (respectively, ‖ 1

nTn0‖) converges. In addition,
for every k, ` ≥ 0 we have

‖T kn+`x− x‖ ≤ k‖Tnx− x‖+ `‖Tx− x‖.

Therefore, lim supm→∞ ‖T mx
m ‖ ≤ infn≥1 ‖Tnx−x‖/n ≤ lim infm→∞ ‖T mx

m ‖,
which proves that the limit of ‖T mx

m ‖ as m → ∞ exists and that the limit
equals infn≥1 ‖Tnx − x‖/n (and is independent of x). Moreover, Theorem
1 implies in particular that the limit of ‖ 1

nTnx‖ equals infx∈X ‖Tx− x‖.
The sequence 1

nTnx need not converge, even if X is finite dimensional.
Indeed, for every norm ‖ ‖ on Rn such that the unit ball is not strictly
convex there is a map T : Rn → Rn which is nonexpansive with respect
to the norm ‖ ‖ and such that the limit of T ny

n as n → ∞ does not exist
[7]. However, if the unit ball of (Rn, ‖ ‖) is strictly convex then the limit
does exist for every nonexpansive map T . More generally, if (X, ‖ ‖) is
a uniformly convex normed space, i.e., for every ε > 0 there exists δ > 0
such that for all x, y ∈ X with ‖x‖ = ‖y‖ = 1 and ‖x − y‖ > ε we have
‖(x+y)/2‖ < 1− δ, then for every nonexpansive map T : X → X the limit
of T n0

n exists [8].
If P : Rn → Rn is a linear operator of norm 1 w.r.t. a norm ‖ ‖, then,

as can be seen from the Jordan decomposition of P , P is also of norm
one with respect to a Hilbertian norm. The unit ball of a Hilbert space
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is uniformly convex. Therefore, the result on the convergence of T n

n in a
uniformly convex space implies the convergence of I+P+...+P n−1

n as n →∞.
The Shapley operator Ψ is nonexpansive w.r.t. the supremum norm

which is not uniformly convex, and therefore additional information con-
cerning the Shapley operator is used in deriving the convergence of 1

nΨn0.
The next result is essential for several results that follow. In particular,

it enables us to characterize all the Banach spaces for which the limit of
1
nTnx exists for every nonexpansive map T .

Given a Banach (or normed) space X we denote by S(X) the set of all
vectors x ∈ X with ‖x‖ = 1, and X∗ denotes the dual of X.

Theorem 1 (Kohlberg and Neyman [7]) Let (X, ‖ ‖) be a normed space.
Assume that T : X → X is nonexpansive and that ρ := infx ‖Tx− x‖ > 0.
Then for every x ∈ X there is fx ∈ S(X∗) such that

fx(Tnx) ≥ fx(x) + nρ.

Moreover,1 we could find such a continuous linear functional fy in the w∗
closure of the extreme points of the unit ball of X∗.

The reader is referred to [7] for the proof. An immediate corollary of
Theorem 1 is that for all x ∈ X we have ‖Tmx−x‖ ≥ m infy ‖Ty− y‖ and
therefore limm→∞ ‖T mx

m ‖ = ρ.
The value of the (unnormalized) n-stage repeated game with incomplete

information on one side is the n-iterate of a nonexpansive map Φ defined
on the space of continuous functions over the simplex ∆(K) where K is the
state space. An additional property that follows is that Φ is covariant with
respect to the addition of linear functions. Exercise 5, p. 298 of [12] derives
the convergence of the normalized values 1

nΦn0 (= vn(p)) as n → ∞ and
the formula of the limit using Theorem 1.

We now turn to the characterization of all Banach spaces for which the
limit of 1

nTn(0) as n →∞ exists for every nonexpansive map T : X → X.
The norm of a Banach space X is Fréchet differentiable (away from zero)

whenever for every x ∈ X with x 6= 0, limλ→0
‖x+λy‖−‖x‖

λ exists uniformly
in y ∈ S(X) ≡ {x ∈ X : ‖x‖ = 1}. A Banach space X is strictly convex if
‖x + y‖ < 2 ∀x, y ∈ S(X) with x 6= y.

Theorem 2 (Kohlberg and Neyman [7]) The following two conditions on
a Banach space X are equivalent.

For every nonexpansive map T : X → X, Tn(0)/n converges. (2)

The norm of X∗ is differentialble. (3)

1This conclusion is not mentioned in [7] but is easily derived from the proof there.
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Theorem 3 (Kohlberg and Neyman [7]) The following two conditions on
a Banach space X are equivalent.

For every nonexpansive map T : X → X, Tn(0)/n converges weakly. (4)

X is reflexive and the norm of X is strictly convex. (5)

Given a nonexpansive map T : X → X, we will denote (in what follows)
by x(r), r > 0, the unique solution of the equation 1

1+rT (x(r)) = x(r). The
equality rx(r) = Tx(r)−x(r) implies that ‖rx(r)‖ ≥ inf{‖Tz−z‖ : z ∈ X}.
For every z ∈ X and r > 0 we have ‖x(r) − z‖ ≥ ‖(1 + r)x(r) − Tz‖ ≥
(1 + r)‖x(r) − z‖ − r‖z‖ − ‖Tz − z‖; hence r‖x(r) − z‖ ≤ r‖z‖ + ‖Tz −
z‖, so that ‖rx(r)‖ ≤ 2r‖z‖ + ‖Tz − z‖ →r→0+ ‖Tz − z‖ (in particular
‖r(x(r))‖ ≤ ‖T (0)‖). Therefore, lim supr→0+ ‖rx(r)‖ ≤ infz∈X ‖Tz − z‖.
Therefore, limr→0+ ‖rx(r)‖ = infz∈X ‖Tz − z‖ [8].

If T is the Shapley operator associated with a two-person zero-sum
stochastic game then (1 + r)x(r) corresponds to the unnormalized value of
the discounted stochastic game with discount factor 1

1+r .
Condition (3) (respectively, (5)) is equivalent to the strong (respectively,

weak) convergence of rx(r) as r → 0+ for every nonexpansive map T :
X → X, and under these conditions the strong (repectively, weak) limits
limr→0+ rx(r) and limn→∞ 1

nTn0 coincide [7].

Theorem 4 Let X be a Banach space and T : X → X a nonexpansive
map for which rx(r), 0 < r ≤ 1, is of bounded variation. Then the limit
limn→∞ 1

nTn(0) exists and equals limr→0+ rx(r).

Proof. As rx(r), 0 < r ≤ 1, is of bounded variation, the limit of
rx(r) as r → 0+ exists. Letting xn = 1

nx( 1
n) we deduce in particular that

limn→∞ xn = limr→0+ rx(r).
By the triangle inequality and the nonexpansiveness of T ,

‖Tn+1(0)− x(
1

n + 1
)‖ ≤ ‖Tn+1(0)− Tx(

1
n

)‖+ ‖T (x(
1
n

))− x(
1

n + 1
)‖

≤ ‖Tn(0)− x(
1
n

)‖+ ‖T (x(
1
n

))− x(
1

n + 1
)‖

= ‖Tn(0)− x(
1
n

)‖+ (n + 1)‖xn − xn+1‖.

Summing the above inequalities over n = 1, . . . ,m, we deduce that

‖Tm+1(0)− x(
1

m + 1
)‖ ≤ ‖T (0)− x(1)‖+

m∑

i=1

(i + 1)‖xi − xi+1‖.
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As the sequence xi, i = 1, 2, . . ., is of bounded variation, 1
m

∑m
i=1(i+1)‖xi−

xi+1‖ → 0 as m → ∞, and therefore limn→∞ 1
nTn(0) exists and equals

limn→∞ xn = limr→0+ rx(r).

Theorem 5 Let T : Rn → Rn be a semialgebraic map which is non-
expansive with respect to some norm. Then the limits limr→0+ rx(r) and
limn→∞ 1

nTn(0) exist and are equal.

Proof. The set V = {(r, x) ∈ R × Rn | r > 0 and 1
1+rTx = x} is

semialgebraic. For every r > 0 there is a unique point x ∈ Rn with (r, x) ∈ V
and ‖rx(r)‖ ≤ ‖T0‖. Thus the function x : (0, 1] → Rn with (r, x(r)) ∈ V
is semialgebraic and bounded, and thus of bounded variation.

3. Generalized Orbits of Nonexpansive Maps

A classical iterate of a map T from a set X to itself is the composition
of T with itself several times. The present section introduces a generalized
iterate of a nonexpansive map T : X → X when X is a Banach space.

Informally, a generalized iteration is obtained by compositions of weighted
averages and classical iterates. An example of a generalized iterate is

Φ =
1
3
T 5 +

2
3
T (

2
5
T 3 +

3
5
T 2(

∞∑

n=0

anTn))

where an ≥ 0 with
∑

n ann < ∞ and T 0 is the identity. The map Φ : X → X
can be derived from the following sequence of maps.

Φ1 = T 3 Φ2 =
∑∞

n=0 anTn

Φ3 = T 2 ◦ Φ2 Φ4 = 2
5Φ1 + 3

5Φ3

Φ5 = T ◦ Φ4 Φ6 = T 5

Φ7 = 1
3Φ6 + 2

3Φ5 Φ7 = Φ.

Note that Φ1 is a classical iterate. Φ2 is a weighted average of classical
iterates. Φ3 is a composition of Φ2 with a classical iterate T 2. Φ4 is a
weighted average of the previously defined Φ1 and Φ3. Φ5 is the composition
of T and Φ4. Φ6 is a classical iterate and Φ7 is a weighted average of Φ4

and Φ5.
The nonexpansiveness of T and the triangle inequality imply that ‖Φi0‖ ≤

t(Φi)‖T0‖ and more generally

‖Φiy − y‖ ≤ t(Φi)‖Ty − y‖ ∀y ∈ X

where t(Φ1) = 3, t(Φ2) =
∑∞

n=0 nan, t(Φ3) = 2 + t(Φ2), t(Φ4) = 2
5 t(Φ1) +

3
5 t(Φ3), t(Φ5) = 2 + t(Φ4), t(Φ6) = 5 and t(Φ7) = 1

3 t(Φ6) + 2
3 t(Φ5).



STOCHASTIC GAMES AND NONEXPANSIVE MAPS 403

The main result of the present section (Proposition 2 or Theorem 6)
will show in particular that for every y ∈ X there is a linear functional
fy ∈ S(X∗) such that

f(Φiy − y) ≥ t(Φi)ρ

where ρ := infx∈X ‖Tx− x‖.
We now turn to the formal definition of a generalized iteration. A gen-

eralized iteration Θ consists of

− a probability space 〈Ω,F , P 〉
− an increasing sequence of σ-algebras F0 ⊂ F1 ⊂ . . . ⊂ F
− a vector-valued random variable N : Ω → N0 with finite expectation

where the σ-algebra generated by ∪iFi and the events N = k, k ≥ 0, span
F .

The generalized iterate TΘ of the nonexpansive map T : X → X is a
map defined on a space of bounded X-valued F-measurable functions. It
is defined in particular on X (where x ∈ X is identified with the constant-
valued function) with values in X. TΘ is defined as follows.

Let Gk be the σ-algebra spanned by Fk and the event N > k. Define
the maps ϕk from the space of X-valued integrable functions f for which
the conditional expectation E(f | Gk−1) are well defined to the space of
X-valued Gk−1-measurable functions by

ϕkf = T I(N≥k)E(f | Gk−1)
:= I(N < k)E(f | Gk−1) + I(N ≥ k)T (E(f | Gk−1)).

Note that for every two X-valued integrable functions f and g we have
∫
‖ϕkf − ϕkg‖ dP ≤

∫
‖f − g‖ dP. (6)

It follows by induction on m that
∫
‖ϕk ◦ . . . ◦ ϕk+mg − E(g | Gk−1)‖ dP

≤ E((N − k + 1)+)(‖T0‖+ ‖g‖∞) →k→∞ 0 (7)

where x+ stands for max(x, 0) and ‖g‖∞ := supω ‖g(ω)‖. Indeed, on N ≥ k
‖ϕkh − E(h | Gk−1))‖ ≤ ‖T0‖ + ‖E(h | Gk−1))‖, and on N < k the two
functions ϕkh and E(h | Gk−1) coincide. Therefore,

∫
‖ϕkh− E(h | Gk−1)‖ dP ≤ P (N ≥ k)(‖T0‖‖h‖) (8)
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which proves inequality (7) for m = 0. For m > 0, set f = ϕk+1◦. . .◦ϕk+mg.
We have

∫
‖ϕkf − ϕkE(g | Gk)‖ dP ≤

∫
‖f − E(g | Gk)‖ dP (9)

which by the induction hypothesis is

≤ E((N − k)+)(‖T0‖+ ‖g‖∞). (10)

As E((N − k + 1)+) = P (N ≥ k) + E((N − k)+), summing inequalities (8)
with h = E(g | Gk) and (10) proves (7).

Fix a bounded F-measurable function f : Ω → X (for which the func-
tions ϕ0 ◦ . . . ◦ ϕkE(f | Fk+1) are well defined). It follows from (6) and (7)
that the sequence of X-vectors E(ϕ0 ◦ . . . ◦ ϕkE(f | Fk+1)) is a Cauchy
sequence and thus converges. Its limit is defined as TΘf . Every element
x ∈ X is also identified with the constant function ω 7→ x, and thus TΘx
is defined.

For every generalized iterate Θ = 〈(Ω,F , P ), (Fk)k≥0, N〉 and a positive
integer n we denote by Θ∧n the generalized iterate 〈(Ω,F , P ), (Fk)k≥0, N∧
n〉 where N ∧n := min(N, n). It follows that for every bounded measurable
function f : Ω → X we have

TΘ∧nf = E(ϕ0 ◦ . . . ◦ ϕn−1E(f | Fn))

and TΘ∧nf →n→∞ TΘf.

The next proposition generalizes the inequality ‖Tny− y‖ ≤ n‖Ty− y‖
to the generalized orbit of a nonexpansive map.

Proposition 1 Let X be a Banach space and T : X → X a nonexpansive
map. Then, for every generalized iterate Θ = 〈(Ω,F , P ), (Fi)i≥0, N〉 and
every y ∈ X we have

‖TΘy − y‖ ≤ E(N)‖Ty − y‖.
The next proposition generalizes Theorem 1 to the generalized orbit of

a nonexpansive map.

Proposition 2 Let X be a normed space. Assume that T : X → X is
nonexpansive and ρ := infx ‖Tx − x‖ > 0. Then for every y ∈ X there
exists a linear functional fy ∈ S(X∗) such that for every generalized iterate
Θ = 〈(Ω,F , P ), (Fi)i≥0, N〉 we have

fy(TΘy − y) ≥ E(N)ρ.

Moreover, we could find such a continuous linear functional fy in the w∗
closure of the extreme points of the unit ball of X∗.
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A generalized iterate Θ is called finite if Ω is finite. If f : Ω → X has
finite range and is measurable w.r.t. Gn, e.g., if f is the constant function
y, then the X-valued functions ϕk ◦ . . . ◦ ϕnf have finite range and are
measurable w.r.t. Gk−1. Therefore, if in addition N ≤ n everywhere, the
generalized iterate TΘf equals TΘ′f where Θ′ is a finite generalized iterate.

Therefore, in view of the approximation of TΘy by TΘ∧ny, it is sufficient
to prove Propositions 1 and 2 for finite generalized iterates.

For every y ∈ X the set of all TΘy where Θ is a finite generalized iterate
is denoted by Cy. It follows that Cy is the smallest convex subset of X that
contains y and is invariant under T , i.e., T (Cy) ⊂ Cy.

Let γ+
y (γ−y ) be the smallest (largest) concave (convex) extended real-

valued function on Cy, i.e., γ+
y , γ−y : Cy → R ∪ {−∞,∞} such that

(a) γ+
y (y) ≥ 0, (a′) γ−y (y) ≤ 0,

and for every x ∈ Cy

(b) γ+
y (Tx) ≥ γ+

y (x) + 1 (b′) γ−y (Tx) ≤ γ−y (x) + 1.

Note that the pointwise infimum of all concave extended real-valued func-
tions that obey (a) and (b) is concave and obeys (a) and (b) and therefore
γ+

y is well defined. Similarly, the supremum of all convex extended real-
valued functions that obey (a′) and (b′) is convex and obeys (a′) and (b′)
and therefore γ−y is well defined.

In what follows we state (without proof) two properties of the functions
γ+

y and γ−y . Let Ay be the smallest convex subset of X × R such that
(y, 0) ∈ Ay and such that (Tx, t + 1) ∈ Ay whenever (x, t) ∈ Ay. It turns
out that γ+

y (x) = sup{t | (x, t) ∈ Ay} and that γ−y (x) = inf{t | (x, t) ∈ Ay}.
The other property is that γ+

y (x) equals the supremum of all E(N) where
Θ = 〈. . . , N〉 is a finite generalized iterate such that TΘy = x.

Propositions 1 and 2 follow from the above comments and the following
theorem which is stated without proof.

Theorem 6 Let X be a normed space, T : X → X a nonexpansive map
and y ∈ X. Then, γ+

y (x) ≥ γ−y (x) for every x ∈ Cy, and

‖x− y‖ ≤ γ−y (x)‖Ty − y‖.
If ρ := infx ‖Tx − x‖ > 0, there exists a continuous linear functional fy ∈
S(X∗) such that, for every x ∈ Cy,

fy(x)− fy(y) ≥ γ+
y (x)ρ. (11)

Moreover, we could find such a continuous linear functional fy in the w∗
closure of the extreme points of the unit ball of X∗.
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4. Stochastic Games with Uncertain Duration

This section includes an application of the previous section to stochastic
games where the number of stages is unknown. The information on the
number of stages is identical for all players and the information gets refined
as the game progresses.

Before presenting the general model we start with several examples that
illustrate that the values of the stochastic games with uncertain duration
reduces to the computation of a generalized Ψ-iterate of the vector 0.

4.1. EXAMPLE 1

Fix a two-person zero-sum stochastic game Γ. Consider a decreasing se-
quence α = (αt)∞t=1, αt ↓ 0, with

∑∞
t=1 αt < ∞. The α-weighted stochastic

game, Γα, is the game where the evaluation of a stream (xt) of stage payoffs
is

∑
t αtxt. Assume that α1 ≤ 1 and set α0 = 1. The game is equivalent to

the model of the stochastic game ΓN where the number of stages (the dura-
tion) is a random variable N such that Pr(N ≥ t) = αt and the players are
informed about the distribution of N but do not receive any information
about the value of N . The two models are equivalent in the following sense.
The set of strategies in both game models are identical, and the payoff to
each strategy pair, Eσ,τ (

∑∞
t=1 αtr(zt, at)) and Eσ,τ,N (

∑N
t=1 r(zt, at)), coin-

cide. Therefore, the value of Γα exists if and only if the value of ΓN , val ΓN ,
exists and then both values coincide. If N ′ is another random variable with
nonnegative integer values and α′t := P (N ′ ≥ t) then for every strategy
pair σ and τ we have |Eσ,τ (

∑∞
t=1 αtr(zt, at)) − Eσ,τ (

∑∞
t=1 α′tr(zt, at))| ≤∑∞

t=1 |αt − α′t|K where K bounds all absolute values |r(z, a)| of stage
payoffs. Therefore, |val ΓN − val ΓN ′ | ≤ ∑∞

t=1 |αt − α′t|K. In particular,
|val ΓN − val ΓN∧n| ≤

∑
t>n αtK, where N ∧ n is the nonnegative-integer-

valued random variable whose distribution given by P (N ∧ n ≥ k) equals
αk if k ≤ n and equals 0 if k > n.

The common value val ΓN can thus be approximated by the values
val ΓN∧n of the truncated games ΓN∧n. Val ΓN∧n can be expressed by
means of the Shapley operator Ψ. For every n let VN,n be defined by

VN,n = (Ψ1 ◦Ψ2 ◦ . . . ◦Ψn)(0)

where ΨtV = Ψ( αt
αt−1

V ) and α0 = 1. It follows by induction on n that
VN,n = val ΓN∧n.

4.2. EXAMPLE 2

The general model of a game with a symmetric uncertain duration process
includes public incremental information about the uncertain duration that
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the players receive as the game evolves. First we illustrate how to express
the unnormalized value of the corresponding game in three examples. In
each one the uncertain number of stages N is either n or m, each equally
likely. The three examples differ in the structure of the information about
N .

Fix a zero-sum two-person stochastic game Γ and let Ψ denote the corre-
sponding Shapley operator. Assume that before the start of play the players
are informed about the number of stages. The value of the unnormalized
game is thus the average of the value of the n-stage game and the m-stage
game; i.e., it is represented by 1

2Ψn0 + 1
2Ψm0.

If the players do not receive any information about N and n > m the
value of the corresponding game is Ψm(1

2Ψn−m0). Indeed, following the play
at stage m, the players can assume without loss of generality that there are
additional n − m stages. Therefore, the expected future payoff in stages
m + 1, . . . , n equals 1

2Ψn−m0. Therefore, by backward induction it follows
that the value of the entire game equals Ψm(1

2Ψn−m0).
However, if m,n > 0 and the players are informed of the value of N

only following the play at stage 1 the value of the unnormalized game is
Ψ(1

2Ψn−10 + 1
2Ψm−10). Indeed, following the play at stage 1 the expected

total payoff in stages t ≥ 1, as a function of the state in stage 2, is 1
2Ψn−10+

1
2Ψm−10. Therefore, the value of the game equals Ψ(1

2Ψn−10 + 1
2Ψm−10).

The expected number of stages in each of the three above-mentioned game
models is (m+n)/2. Let us however compute this expected number in two
additional ways that correspond to the final formula of VΘ. First, E(N) =
m + (n−m)/2, and second, E(N) = 1 + (m− 1 + n− 1)/2.

4.3. EXAMPLE 3

Consider for example a zero-sum two-person stochastic game Γ where the
uncertain number of stages N is either 6 or 7 or 8 or 9, each equally likely.
Assume that following the play at stage 3 the players are informed as to
whether the number of stages equals 6 or not. Following the play at stage
5 the players are informed whether or not the number of stages is 9. The
value VN of the unnormalized game can be expressed by generalized iterates
of the Shapley operator as follows.

VN = Ψ3

(
1
4
Ψ30 +

3
4
Ψ2

(
2
3
Ψ2

(
1
2
Ψ0

)
+

1
3
Ψ40

))
.

4.4. SYMMETRIC UNCERTAIN DURATION PROCESS

The uncertain number of stages is an integer-valued random variable N
defined on a probability space (Ω,F , µ) with finite expectation Eµ(N).
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The players receive partial information about the value of N as the game
proceeds. Formally, the incremental information regarding N is modelled
as an increasing sequence of σ-algebras Ft ⊂ F , t ≥ 0. The interpretation
is that Ft represents the information on N of the players prior to the play
at stage t + 1. Equivalently, letting dt : Ω → Dt be measurable ((Dt,Dt)
is a measurable space) random variables such that the σ-algebra generated
by d1, . . . , dt, σ(d1, . . . , dt), equals Ft, the players receive information about
N via a sequence of public signals d0, d1, . . .. Each signal dt is a measurable
function defined on the probability space (Ω,B, µ) with finite range Dt.

A public (symmetric) uncertain duration process2 Θ is a generalized
iterate Θ = 〈(Ω,F , P ), (Fk)k≥0, N〉.

It is called finite (countable) if Ω is finite (countable). If Ω is finite, then
N is bounded and the sequence Fk is eventually constant; i.e., there is m
such that for every k ≥ m, Fk = Fm.

Public uncertain duration processes model symmetric incomplete in-
formation about the (active) number of stages, where the information is
revealed (to the players) gradually over time but is independent of past
history.

The interpretation is as follows. The number of (active) stages is N ,
and it depends on ω ∈ Y . The information of the players on the random
duration of the game, prior to the selection of actions at stage t, is given
by Ft−1: given θ ∈ Y , the atom of Ft−1 that includes θ is revealed to the
players before the play at stage t. Thus, in a stochastic game with a finite
public uncertain duration process, the action of a player at stage t may
depend on the past play z1, a1, . . . , zt and the atom of3 Ft−1. The resulting
set of strategies is called Fk≥0-adapted strategies.

4.5. THE RESULTS

In the following theorem we assume a fixed two-person constrained stochas-
tic game with state space S (see [15], Section 7). B(S) stands for the
normed space of the bounded measurable functions f : S → R. The map
Ψ : B(S) → B(S) is defined by

Ψf(z) = sup
ν∈X1(z)

inf
µ∈X2(z)

r(z, ν, µ) +
∫

f(z′)dp(z′ | z, ν, µ).

We use the notations of Section 3: the subsets Cy and Ay of B(S) and
B(S) × R respectively and the function γ+

y : Cy → R are associated to Ψ
and defined as in Section 3. Given a public uncertain duration process Θ =

2The term was introduced in [18].
3I.e., the information regarding the uncertain duration which is available prior to the

play at stage t.
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〈(Ω,F , P ),Fk≥0, N〉, we denote by Σi
Xi,N

all Gk≥0-adapted Xi-constrained
behavioral strategies (where Gk is the σ-algebra generated by Fk and the
event N > k).

Theorem 7 a) For every public uncertain duration process Θ = 〈∗, ∗, N〉,
the point

x = sup
σ1∈Σ1

X1,N

inf
σ2∈Σ2

X2,N

Eσ1, σ2

(
N∑

t=1

r(zt, at)

)

equals ΨΘ0.
b) For any point (x, t) ∈ A0, there is a finite public uncertain duration
process Θ〈∗, ∗, N〉 with E(N) = t and

x = sup
σ1∈Σ1

X1,N

inf
σ2∈Σ2

X2,N

Eσ1, σ2

(
N∑

t=1

r(zt, at)

)
.

Given a real-valued function v : S → R we denote v+ = supz∈S v(z)
and v− = infz∈S v(z). In what follows we consider a two-player zero-sum
constrained stochastic game, and we let the functions vn, n ≥ 1, and VΘ,
where Θ is an uncertain duration process, stand for either the corresponding
maxmin v n and V Θ respectively or the corresponding minmax v̄n and V̄Θ

respectively.
The norm dual of (Rk, ‖ ‖∞) is (Rk, ‖ ‖1), and the extreme points of the

unit ball of (Rk, ‖ ‖1) are the unit vectors (0, . . . , 0,±1, 0, . . .). Therefore,
the next theorem is a direct implication of Theorems 7 and 6.

Theorem 8 Fix a two-person constrained stochastic game with a finite
state set S. Let VΘ denote either the minmax or the maxmin of the stochas-
tic game with uncertain duration process Θ. Assume limn→∞ 1

n‖Vn‖ > 0.
Then, there are states z, z′ ∈ S such that for any uncertain duration process
Θ = 〈∗, ∗, N〉,

VΘ(z)) ≥ E(N) lim
n→∞ v+

n

and
VΘ(z′)) ≤ E(N) lim

n→∞ v−n .

The following example illustrates that the conclusion of Theorem 8 no
longer holds when the state space is countable. The state space S is the set
of all integer pairs (i, j) with 0 ≤ j ≤ i. The payoff function is independent
of the actions and is given by r(i, j) = 1 if j < i and = 0 if j = i. The
transition is deterministic and independent of the actions; P ((i, j + 1) |
(i, j)) = 1 if j < i and P (i, j | i, j) if j = i. Note that Vn(i, j) = min(i −
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j − 1, n). Thus v+
n ‖vn‖ = 1. However, for every state z limn→∞ vn(z) = 0,

and thus there is no state z such that Vn(z) ≥ n for every n.
The proof of the previous theorem does not extend to the countable state

space for the following reason. The Shapley operator acts here on `∞(S),
the bounded functions on the the countable state space S. The norm dual of
`∞(S) consists of all finitely additive measures on S, whose extreme points
are no longer the (±) Dirac measures, but rather all {−1, 1}-valued finitely
additive measures.

The next theorem extends Theorem 8 to two-person zero-sum stochas-
tic games with an infinite state space S (either a countable space S or a
measurable space (S,S)) and a uniformly bounded stage payoff function r.
The conclusion in Theorem 8 regarding the existence of the states z and z′
is replaced with the existence of finitely additive probability measures.

Theorem 9 a) The limits of v+
n and v−n exist.

b) There exists an atomic finitely additive probability measure µ such that
for every public uncertain duration Θ = 〈(Ω,F , P ),Fk≥0, N〉,

∫
VΘ(z)dµ(z) ≥ n lim

n→∞ v+
n .

c) There exists an atomic finitely additive measure µ such that for any
uncertain duration 〈Y,Fk≥0, N〉,

∫
VΘ(z)dµ(z) ≤ n lim

n→∞ v−n .

Proof. W.l.o.g. we may assume that all payoffs r(z, a) are in [0, 1].
Therefore Tn0 ≥ 0 and thus v+

n = ‖ 1
nTn0‖. As T is nonexpansive w.r.t. the

sup norm, and ‖ 1
nTn0‖ converges for every nonexpansive map T , the limit

of v+
n , as n → ∞, exists. Replacing the payoff function r of the stochastic

game with 1 − r results in a new stochastic game where the value of the
normalized n-stage game equals 1 − v−n , which completes the proof of a).
Let f be a continuous linear functional defined on B(S,S) s.t. f is an
extreme point of the unit ball of X∗, the dual of B(S,S), and such that
f(VΘ) ≥ E(N) limn→∞ v+

n . The continuous linear functionals on B(S,S)
are bounded finitely additive measures on (S,S) and the extreme points
of the unit ball correspond to atomic finitely additive measures with total
mass either 1 or −1. The linear functional f is an atomic finitely additive
measure on (S,S).

However, if S is a compact Hausdorff space and the nonexpansive oper-
ator associated with the maxmin or minmax of the constrained stochastic
game maps continuous functions to continuous functions, then the Shapley
operator acts on the continuous functions on S, C(S). The norm dual of
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C(S) is the space of all countably additive regular measures, and the ex-
treme points of the unit ball are the ± Dirac measures. Therefore, there
are always states z, z′ ∈ S such that for any uncertain duration Θ =
〈Y,Fk≥0, N〉,

VΘ(z)) ≥ n lim
n→∞ v+

n

and
VΘ(z′)) ≤ n lim

n→∞ v−n .

5. Law of Large Numbers for Nonexpansive Stochastic Processes

This section is based on [9].

5.1. BACKGROUND

The Operator Ergodic Theorem (OET) asserts that, if A : H → H is a
linear operator with norm 1 on a Hilbert space, then, for every x ∈ H,

x + Ax + . . . + Anx

n
converges (strongly).

The Strong Law of Large Numbers (SLLN) for martingales in Hilbert
spaces says that if (xn) is an H-valued martingale such that

∞∑

k=1

k−2E(‖xk+1 − xk‖2) < ∞,

then xn

n
converges a.e. (to zero).

The proposition below provides a result which generalizes both these
classical theorems.

Let (Ω,Σ, P ) be a probability space and let F0 ⊂ F1 ⊂ . . . ⊂ Fn be an
increasing chain of σ-fields spanning Σ. A sequence (xn) of strongly Fn-
measurable and strongly P -integrable functions on Ω taking on values in a
(real separable4) Banach space X, is called an X-valued stochastic process.
If in addition, for some map T : X → X,

E(xn+1 | Fn) = T (xn), n = 0, 1, . . . ,

4The results hold for any Banach space. However, as the values of any sequence (xn)
of strongly Fn-measurable and strongly P -integrable functions on Ω taking on values in
a Banach space are with probability 1 in a separable subspace, we may assume w.l.o.g.
that the values are in a separable B-space.
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then (xn) is called a T -martingale.
Of course, if T is the identity, then T -martingales are just ordinary mar-

tingales. In general, the class of all T -martingales consists of all sequences
(xn) of the form x0 = d0, . . . ,xn+1 = T (xn) + dn+1 where (dn) is an
ordinary martingale-difference sequence, i.e., E(dn+1 | Fn) = 0.

Proposition 3 (Kohlberg and Neyman [9]) Let T : H → H be a nonex-
pansive map on a Hilbert space H, and let (xn) be a T -martingale taking
on values in H. If

∞∑

n=1

n−2E(‖xn+1 − Txn‖2) < ∞,

then xn

n
converges a.e.

To see that the proposition in fact includes both the SLLN and the
OET (for Hilbert spaces), note the following equivalent reformulation of
the OET: If T : H → H is a nonexpansive affine map on a Hilbert space,
then T nx

n converges ∀ x ∈ H.
To verify the equivalence of the formulations note that any map T :

H → H is a nonexpansive affine map if and only if it is of the form Ty =
x+Ay where A is a linear operator of norm less than or equal to one; since
Tny = x + Ax + . . . + An−1x + Any, the sequence T nx

n converges ∀x ∈ H if
and only if the sequence x+Ax+...+An−1x

n converges ∀x ∈ H.
Thus the OET can be obtained from the proposition by restricting at-

tention to deterministic (xn), whereas the SLLN is the special case where
T is the identity.

But the proposition also yields results combining the OET and the
SLLN. For example, [9] shows that it implies the following.

If A : H → H is a linear operator of norm 1 on a Hilbert space, and if
Bi : H → H are (random) linear operators of norm at most 1 such that

E(Bn | B1, . . . , Bn−1) = A

and ∞∑

k=1

E(‖Bk −A‖2) < ∞

then, for every x ∈ H, almost everywhere

lim
n→∞Anx = lim

n→∞
x + Ax + A2x + . . . + Anx

n + 1
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where
An =

I + Bn + BnBn−1 + . . . + BnBn−1 . . . B1

n + 1
.

In the next subsection, we present the general version of Proposition 1,
which encompasses more general versions of the SLLN (e.g., [24] and [6])
and of the OET.

5.2. THE RESULT

Before stating our theorem we review some definitions.
The modulus of smoothness of a Banach space X is the function ρX :

R+ → R defined by ρX(t) = sup{(‖x + y‖ + ‖x − y‖)/2 − 1 : ‖x‖ =
1 and ‖y‖ ≤ t}. X is uniformly smooth if ρX(t) = o(t) as t → 0+; it is
p-uniformly smooth, 1 < p ≤ 2, if ρX(t) = O(tp) as t → 0+.

To simplify the statement below, we define a Banach space to be 1-
uniformly smooth if it is uniformly smooth.5

Theorem 10 (Kohlberg and Neyman [9]) Let T : X → X be a nonexpan-
sive map on a p-uniformly smooth Banach space X, 1 ≤ p ≤ 2, and let
(xn) be a T -martingale (taking on values in X). If

∑
n−pE(‖xn − Txn−1‖p) < ∞, (12)

then there exists a continuous linear functional f ∈ S(X∗) such that

lim
n→∞

f(xn)
n

= lim
n→∞

‖xn‖
n

= inf{‖Tx− x‖ : x ∈ X} a.e. (13)

If, in addition, the space X is strictly convex,

xn/n converges weakly to a point in X; (14)

and if the norm of X∗ is Fréchet differentiable (away from zero),

xn/n converges strongly to a point in X. (15)

Proposition 3 is a special case of Theorem 10 because any Hilbert space,
H, is 2-uniformly smooth, and the norm of H∗ (i.e., H) is Fréchet differen-
tiable. [6] and [24] demonstrate the SLLN for martingales in a p-uniformly
smooth Banach space, under condition (12). Thus, Theorem 10 may be
viewed as a generalization of both the Hoffmann-Jorgensen and Pisier SLLN
for martingales as well as the OET for p-uniformly smooth Banach spaces.

5Note that if X is p-uniformly smooth for some 1 ≤ p ≤ 2, then X in particular is
uniformly smooth and thus ([4] p.38) reflexive.
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When (xn) is a deterministic sequence, the conclusions of the theorem
already follow from the nonexpansiveness of T and the reflexivity of X
(which is weaker than p-uniform smoothness of X; Assumption (12) is ob-
viously redundant). In fact, conclusions (13), (14) and (15) are Theorem
1.1, and Corollaries 1.3 and 1.2 of [7], respectively.

The extension of those results to the stochastic case requires the stronger
conditions of Theorem 10. Indeed, weaker conditions do not suffice: if the
norm of X is not Fréchet differentiable we can construct a nonexpansive
T -martingale (xn) satisfying ‖xk+1 − Txk‖ ≤ 1 everywhere and for which
lim inf ‖xn‖/n < lim sup ‖xn‖/n [9].

One may wonder whether weaker conditions would guarantee that xn

converge in direction, i.e., that xn/‖xn‖ converge: an example of a finite-
dimensional normed space X which is not smooth and a T -martingale (xn)
satisfying ‖xk+1 − Txk‖ ≤ 1 with lim inf ‖xn‖/n > 0, but where xn/‖xn‖
does not converge, is given in [9].
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