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Abstract. This chapter is based on a lecture of Jean-François Mertens.
Two main topics are dealt with: (i) The reduction of a general (stochastic)
game model to various combinatorial descriptions; (ii) the use of consistent
probability distributions on the Universal Belief Space in order to exploit
a recursive structure of zero-sum games.

These constructions lead to a conjecture that would guarantee the ex-
istence of the maxmin and its characterization whenever the information
received by the maximizer is finer than that received by the minimizer.

1. Introduction

1.1. DESCRIPTION OF THE MODEL

Throughout the chapter, S is a finite state space and A (resp. B) is a finite
set of actions available for player I (resp. player II) in any state s ∈ S.
There is no loss of generality since by duplicating actions we can insure
that the action sets are the same regardless of the state.

Any pair of payoffs (one for player I and one for player II) r = (rI , rII)
remains in a compact set R ⊂ R2. The signals mI ∈ M I (resp. mII ∈ M II)
received by player I (resp. II) will be his only source of information. As
above M I (resp. M II) is finite. Let us denote by M the product M I×M II .

Our game model Γ(IP) is described by:

(i) A probability measure IP ∈ ∆(S ×M).
(ii) A transition probability Q : S ×A×B → ∆(R× S ×M).

Observe that IP is seen as a variable whereas Q is fixed. Later on we shall
see why such a point of view is useful. The game Γ(IP) unfolds as follows:
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− An initial state s1 ∈ S and an initial pair of signals (mI
1,m

II
1 ) ∈ M

are chosen according to IP. Then, player I (resp. II) receives the signal
mI ∈ M I (resp. mII ∈ M II).

− At stage n, assuming that the game is in state sn, player I (resp. II)
selects an action an ∈ A (resp. bn ∈ B) on the basis of his private in-
formation mI

1, . . . , m
I
n (resp. mII

1 , . . . ,mII
n ). Subsequently, a new state

sn+1, a pair of signals (mI
n,mII

n ) and a pair of payoffs (rI
n, rII

n ) are
chosen according to Q(sn, an, bn).

Observe that the players are not told the current state unless it is included
in their signal. For both players, any belief regarding the state or the pre-
vious actions of the opponent is based on past and current signals received
so far. It is usual to assume that the signal of player I (resp. II) contains
his previous action.

This model includes information lags. This means that the signals might
not be communicated immediately to the players. The way information lags
are modelled is as follows: each state s̃ ∈ S̃ of a finite-state machine specifies
which information should be given and retains any new information to be
disclosed later on.

Instead of IP (item (i)), our model is characterized by a probability
measure IP′ ∈ ∆(S × S̃ ×M) which selects the state s ∈ S, the state of the
machine s̃ ∈ S̃ and the pair of signals m ∈ M .

The transition probability Q (item (ii)) is modified so as to include
an effect of the current s̃ on the signals. Formally, this means that it is
of the form Q : S̃ × S × A × B → ∆(R × S × M). Moreover, the new
state of the machine is chosen by the following transition probability Q̃ :
S̃ ×A×B ×R× S → ∆(S̃) involving the new state that has already been
chosen using Q.

We obtain the exact formulation of the previous model when we consider
a larger state space, S′ = S×S̃, with a corresponding transition probability
Q′ = Q′(Q, Q̃).

1.2. RECURSIVE STRUCTURE

In Section 2, we shall operate a few transformations of the initial model of
Section 1.1. The final reduction of Section 2.1 is the one the reader should
keep in mind since we will use it in Sections 5 and 6. In those sections, we
shall make the assumption that the game Γ(IP) is zero-sum (rI + rII = 0).

The recursive structure appears when one links the value of the (finite)
T -stage game ΓT (IP) with the value of some (T − 1)-stage games ΓT−1(IP′)
where IP′ is an “updated” initial probability measure (see formula (4) in
Section 5).
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The first idea is to reformulate our game on a different state space called
the Universal Belief Space (Section 3). The types of the players play the
role of the signals. We show that the recursive structure is transferred to
this new game (Proposition 3) and that the value of finite or discounted
games is preserved.

At first sight, it is not at all clear how this “artificial” game could be
useful in studying uniform properties. However, let us assume that, when
playing Γ(IP), the signal of player II is included in the signal of player I.
Then, it turns out that the game defined on the Universal Belief Space can
be formulated as a stochastic game with the state space being the set of
player II’s types (Section 6).

The next idea is as follows: if this stochastic game has a value (in the
spirit of [1]) or a max min, then the game Γ(IP) has a max min (Proposition
4).

2. Reductions

2.1. MODELS WITH PARTITIONS

First, we shall refine the initial model so that payoffs and signals are related
to particular partitions of the state space. For this purpose we have to define
a set of more complex states. Somehow, such states include the previous
ones, the payoffs and the signals.

Next, observe that the payoffs could be renormalized so that any pair of
payoffs r = (rI

n, rII
n ) is spanned by X1 = (1, 0), X2 = (0, 1) and X3 = (0, 0).

Furthermore, since eventually we will be interested in dealing with the
expected payoff, there is no loss of generality in assuming that r is replaced
by a probability measure on the set X = {X1, X2, X3}.

The new state space is S̄ = X × S × M . The probability IP on S is
rewritten as a probability ĪP on S̄ (the pair of payoffs is X). Accordingly,
we change the domain and the image set of the transition probability Q
(item (ii)). Let us denote the modified transition probability by Q̄ with

Q̄ : S̄ ×A×B → ∆(S̄).

Now, our model is characterized by:
(i) A finite state space S̄.
(ii) A partition ΠI (resp. ΠII) of S̄ corresponding to the information avail-

able to player I (resp. II).
(iii) A partition {W I ,W II ,W 0} of S̄ such that W I (resp. W II) is the set

of states with payoffs X1 (resp. X2). The former may be seen as the
set of winning states of player I (resp. player II).

A play unfolds as follows:
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− An initial state s̄1 is selected at stage 1 according to ĪP ∈ ∆(S̄).
− At any stage n ≥ 1, if the state is s̄n, then player I (resp. II) is informed

of the element of the partition ΠI (resp. ΠII) containing s̄n. Given
that additional information, the players simultaneously select an action
a and b. The next state s̄n+1 is chosen according to the probability
measure Q(s̄n+1, a, b).

2.2. COMBINATORIAL MODEL

In this section we wish to give an insight about how to eliminate the stochas-
tic features of our model. First we shall enlarge the state space. Let us
introduce

Ŝ = S̄ ∪ (S̄ ×A) ∪ (S̄ ×A×B).

The transition probability Q̄ is extended in a deterministic way. Given
s̄ ∈ S̄, if player I chooses the action a ∈ A, then the next state is (s̄, a). It
is now player II’s turn. If player II selects the action b ∈ B, then the next
state is (s̄, a, b). Finally, a new state s̄′ ∈ S̄ is chosen according to Q̄(s̄, a, b),
and so on.

Next, one wants to remove the stochastic nature of Q̄. Notice that this
last reduction step provides an equivalence with the previous formalizations
in a limited sense only when the game is not zero-sum ([3],[4]). For simplic-
ity, we shall restrict ourselves to the zero-sum case and in addition assume
that the probability measures are rational and therefore have a smallest
common denominator m. (It is unclear how limiting this assumption is but
we guess that if the supports of the distributions are preserved, a small
perturbation of the probability measures should not affect the model too
much.)

With our rationality assumption, to any probability measure there cor-
responds a canonical partition of Zm (the usual group of relative integers
modulo m), i.e., each element of the partition is related to a particular
outcome of the lottery. Let us replace the initial action set A (resp. B) by
the following one A′ = A × Zm (resp. B′ = B × Zm). If the current state
is s̄ ∈ S̄ and if player I chooses the action a′ = (a, zI) then the subsequent
state is (s̄, a′). Next, if player II selects b′ = (b, zII), the following state is
(s̄, a′, b′). To close the cycle, one looks at z = zI + zII and the next state is
the outcome corresponding to the element of the partition of Zm, associated
with Q̄(s̄, a, b), that contains z.

Let us consider the average payoff of T full cycles. In both models (with
or without randomization), it is a finite game and therefore it has a value.
Are both values equal and how are the optimal strategies related to each
other?
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The values are indeed the same and any optimal strategy in the model
with randomization induces an optimal strategy in the one without ran-
domization in a simple way. At stage t, in the latter model, player I (for
instance) chooses his action at according to an optimal strategy in the
former model and zt according to the uniform probability on Zm. The ver-
ification is left to the reader as an exercise. The argument for dealing with
some version of the asymptotic payoff would be a bit more technical, but
basically the same (use of the “Haar” measure on Zm × Zm × . . .).

To summarize, here is the description of our combinatorial model:

− We have a partition S = SI ∪ SII of our state space. SI (resp. SII) is
the set of states such that it is player I’s (resp. II’s) turn to play. Each
set SI and SII is partitioned by ΠI and ΠII so that it represents the
information available to player I and II respectively.

− The set of actions A (resp. B) of player I (resp. II) is a subset of the
set of mappings f : SI → SII (resp. SII → SI).

3. Universal Belief Space

To play the game Γ(IP), one first selects randomly an initial state in the
finite state space S and a pair of signals m = (mI , mII) in a finite product
set M = M I×M II . It is particularly interesting to isolate such a mechanism
and to study it for its own sake. The rest of the chapter will show how useful
it could be to analyze Γ(IP).

Definition 1 An Information Scheme I is a pair (Ω, IP) where

− Ω = S ×EI ×EII , where EI (resp. EII) is a set of signals.
− IP ∈ ∆(Ω), with finite support.

A triple ω = (s, eI , eII) is chosen according to IP. Then, eI (resp. eII)
is communicated to player I (resp. II).

Observe that the players know IP, they know that each knows and so
on... . It is beyond the scope of the present chapter to elaborate formally
on this, but any pair of signals given to the players generates an infinite
sequence of hierarchical inferences for each player about the beliefs of his
opponent [2]. Given ω ∈ Ω, player I (resp. II) has a conditional distribution
on S × EII (resp. S × EI) since he knows eI = eI(ω) (resp. eII = eII(ω)).
Therefore, player I (resp. II) has a marginal probability measure tI1(ω) (resp.
tII
1 (ω)) on ∆(S). Let us denote by T I

1 (resp. T II
1 ) the set of such probability

measures. Consequently player I (resp. II) has a probability measure tI2(ω)
(resp. tII

2 (ω)) on S×T II
1 (resp. S×T I

1 ). The set of such probability measures
is denoted by T I

2 (resp. T II
2 ). Thus, one obtains a sequence of sets T I

1 , T I
2 , . . .

for player I and similarly for player II. With T I
0 = {1} (resp. T II

0 = {1}),
let us introduce the uniquely defined mapping f1

0 : T I
1 → T I

0 (resp. g1
0 :
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T II
1 → T II

0 ) and starting from it let us define fn+1
n : T I

n+1 → T I
n in a

straightforward way since T I
n+1 = ∆(S×T II

n ). What we have is a projective
system, so let us define T I = lim← T I

n (resp. T II = lim← T II
n ). Any element

of T I is called a type of player I and any element of T II is a type of
player II. Observe that T I (resp. T II) is a Hausdorff space homeomorphic
to ∆(S × T II) (resp. ∆(S × T I)) (the set of regular probability measures
endowed with the weak?-topology. [2], [4]).

Definition 2 The Universal Belief Space is defined as Ω̃ = S × T I × T II .

To any ω = (s, eI , eII) there corresponds canonically a type tI(eI) (resp.
tII(eII)) of player I (resp. II). Therefore, there is a canonical mapping
φ : Ω → Ω̃ defined by φ(ω) = (s, tI(eI), tII(eII)) with ω = (s, eI , eII).
Notice that IP ◦ φ−1 is a probability measure ĨP on Ω̃ with finite support.

The probability measure ĨP is consistent in the following sense:

ĨP[s, tI |tII ] = tII [s, tI ] (1)

and similarly with the type of player I.
Notice that if tII(eII) = tII , then

IP[{(s, eI)|tI = tI(eI)}|eII ] = tII [s, tI ] (2)

and similarly, if tI(eI) = tI , then

IP[{(s, eII)|tII = tII(eII)}|eI ] = tI [s, tII ]. (3)

Observe that (Ω̃, ĨP) itself is a particular information scheme, denoted by Ĩ.
It has an interesting property: it does not need to be known to the players.
It is sufficient for them to know that the types are chosen according to
a consistent probability measure. Even if they know it, their type would
coincide with the types that have been randomly chosen.

4. Finite Games and Information Schemes

Let I and J be two finite action sets and let G = (Gs)s∈S be a family of
I × J-matrix zero-sum games [Gs

i,j ]i,j . Given an information scheme I, let
us consider the following zero-sum game GI :

− Choose ω = (s, eI , eII) and communicate the signals to the players
according to I.

− After receiving his signal, player I (resp. II) selects an action i ∈ I
(resp j ∈ J).

− If the actual state is s, then the payoff of player I is Gs
i,j .
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Since GI is a finite game, it has a value, denoted by v(GI). In parallel to
GI , we will consider the game GĨ . Likewise, its value is denoted by v(GĨ).

One way to use his signal eI would be for player I to take into account
his type tI = tI(eI) to implement a strategy of GĨ . It would seem that in
doing so, there is a loss of information. But there is none because we are
dealing with a zero-sum game.

Proposition 1 − If σ guarantees an amount w in GĨ , so does its im-
plementation in GI .

− In particular, the implementation of any optimal strategy from GĨ is
an optimal strategy in GI .

− Furthermore, v(GI) = v(GĨ).

Proof. Let x̃ : T I → ∆(I) be a strategy of player I that guarantees w

in GĨ and let us denote by x̄ : EI → ∆(I) the strategy x̃ ◦ tI of player I in
GI . It is called the implementation of x̃ in GI .

Let ȳ : EII → J be a strategy of player II in GI . Let us denote by
ỹ : T II → ∆(J) the strategy of player II in GĨ defined as follows (j ∈ J):

ỹ(tII)[j] =
IP[{eII |tII(eII) = tII , ȳ(eII) = j}]

ĨP[tII ]
.

This technique is described as averaging ȳ with respect to the type of player
II.

Note that:

IEω[
∑

i

x̄(eI)[i]Gs
i,j(eII)] =

∑

eII

IP[eII ]
∑

s,eI ,i

x̃(tI(eI))[i]Gs
i,j(eII)IP[s, eI |eII ]

=
∑

tII

ĨP[tII ]
∑

s,tI ,i,j

x̃(tI)[i]y(tII)[j]Gs
i,jt

II [s, tI ]

by application of (2). By consistency (1) we obtain

IEω[
∑

i

x̄(eI)[i]Gs
i,j(eII)] = ĨEω̃[

∑

i,j

x̃(tI)[i]y(tII)[j]Gs
i,j ].

Remember that, in GĨ , x̃ guarantees w to player I. This implies that

IEω[
∑

i

x̄(eI)[i]Gs
i,j(eII)] ≥ w.

Hence in particular v(GI) ≥ v(GĨ). A reverse inequality could be shown,
thus establishing that the two values are the same and that the implemen-
tation of optimal strategies produces optimal strategies.

Next, we state a property that will play an important role in Section 6.
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Proposition 2 Seen as a function v(ĨP) of a consistent probability measure
ĨP with finite support, v(GĨ) is affine.

Proof. Let ĨP1 and ĨP2 be two consistent probability measures with
finite support. Let us denote by Ĩ1 (resp. Ĩ2) the corresponding information
scheme. We can define a new information scheme Ĩ as follows:
− Choose ĨP1 (resp. ĨP2) with probability λ (resp 1−λ). The players are

informed of the outcome of the lottery.
− Play GĨ1 (resp. GĨ2) if the lottery has drawn ĨP1 (resp. ĨP2).

Observe that, since we are dealing with consistent probability measures,
the players do not need to know which one has been drawn by the lottery.
Therefore, Ĩ is equivalent to choosing the type of the players with the
consistent probability measure λĨP1 + (1− λ)ĨP2.

5. Games with a Recursive Structure

From now on, we deal with the formalization of Section 2.1. Let us use our
initial notations, namely S for the state space and IP for the initial lottery
(instead of S̄ and ĪP) and assume that Γ(IP) is zero-sum. The set of winning
states W I for player I is simply denoted by W .

As the game unfolds, a family of past and present signals (i.e., elements
of the partition where the actual state s falls) is available to player I (resp.
player II) at any stage. The current payoff depends only on the current
state and any assessment about the current state is based solely on those
signals. How should the players treat that information in order to construct
an optimal or an ε-optimal strategy? Remember that for both players, his
current signal contains his previous action.

At any stage, it seems that we have a particular information scheme
with very large sets of signals, except that the players ignore which strategy
has been chosen by his opponent. Therefore, the players don’t know what
theoretical probability measure induced those signals. As we said when
defining information schemes, the knowledge of this probability measure is
crucial.

Nevertheless, we are going to show that given any pair of strategies, the
corresponding consistent probability measure with finite support on the
Universal Belief Space Ω̃ is useful. We will define an auxiliary game which
will have the same value as the initial one whenever the minmax theorem
applies to the latter. In this section we show recursive formulae satisfied by
finitely repeated or discounted games. In the next section we will address
the question of infinitely repeated games.

Let us consider the T -stage game ΓT (IP). Note that it is a finite game
and it begins, at stage 0, by an initial lottery that amounts to an information
scheme (because this time IP is known by the players). Let us denote by ĨP
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the corresponding consistent probability measure on Ω̃. As we have shown
in Proposition 1, the value of ΓT (IP) is also the value of ΓT (ĨP), hence a
function vT (ĨP) of ĨP. It is possible to implement a pair of optimal strategies
which depend on the initial type (tI1 or tII

1 ) instead of the first signal (mI
1

or mII
1 ).

Now, let σ be an optimal strategy of player I such that σ = σ1, σ̄ where
σ1 : T I → ∆(A) and σ̄ is a strategy in the T − 1-stage game, starting at
stage 2, that does not involve the first signal mI

1 received but the initial
type tI1. Similarly, let us denote by τ = τ1, τ̄ an optimal strategy of player
II such that τ1 : T II → ∆(B) and τ̄ is a strategy in the T − 1-stage
game, starting right after stage 1, that does not involve the first signal mII

1

received but the initial type tII
1 .

To play at stage 2, the information used by player I (resp. II) is his
initial type tI1 (resp. tII

1 ) and his current signal mI
2 (resp. mII

2 ). The corre-
sponding distribution IPσ1,τ1 on S×T I×T II can be calculated using (σ1, τ1)
and ĨP. Therefore, assuming that the players have used the pair (σ1, τ1) at
the first stage, the game that the players face after that is nothing other
than ΓT−1(IPσ1,τ1) where the previous types are added to the new signals
(given by the partitions ΠI and ΠII as usual). Let us denote by ĨP

σ1,τ1 the
corresponding consistent probability measure. The value of ΓT−1(IPσ1,τ1) is
a function vT−1(ĨP

σ1,τ1) of ĨP
σ1,τ1 .

Obviously the pair (σ̄, τ̄) is optimal in ΓT−1(IPσ1,τ1). Once again, one
may assume that instead of depending on the initial type and the first
signal, it depends on the second type (tI2 or tII

2 ), calculated with IPσ1,τ1 .
Hence, (σ̄, τ̄) is optimal in ΓT−1(ĨP

σ1,τ1) where the initial lottery is a con-
sistent probability measure which draws types. Therefore the pair remains
optimal in the game ΓT−1(ĨP

σ′1,τ ′1) for any consistent probability measure

ĨP
σ′1,τ ′1 associated with a different first mixed action σ′1 : T I → ∆(A) (resp.

τ ′1 : T II → ∆(B)) of player I (resp. II).
Let us denote by τ ′ the strategy τ ′1, τ̄ . Since σ is optimal and since by

the previous remark (σ̄, τ̄) achieves vT−1(ĨP
σ1,τ ′1), we have

1
T

ĨP[W ] +
T − 1

T
vT−1(ĨP

σ1,τ ′1) ≥ vT (ĨP).

Hence, by taking the infimum with respect to the arbitrary τ ′1, we obtain

1
T

ĨP[W ] +
T − 1

T
inf
τ1

vT−1(ĨP
σ1,τ1) ≥ vT (ĨP).

Similarly, we could show that

1
T

ĨP[W ] +
T − 1

T
sup
σ1

vT−1(ĨP
σ1,τ1) ≤ vT (ĨP).
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This is enough to prove that (σ1, τ1) is a saddle point of (σ′1, τ
′
1) 7→

vT−1(ĨP
σ′1,τ ′1) and that

vT (ĨP) =
1
T

ĨP[W ] +
T − 1

T
min
τ1

max
σ1

vT−1(ĨP
σ1,τ1)

=
1
T

ĨP[W ] +
T − 1

T
max

σ1

min
τ1

vT−1(ĨP
σ1,τ1). (4)

Instead of uniformly averaging the payoff of the first T stages as we previ-
ously did, we could truncate the (1−λ)-discounted average (with λ ∈ (0, 1)).
It is still a finite game; therefore it has a value vT,λ(ĨP) and a recursive equa-
tion similar to (4):

vT,λ(ĨP) = λĨP[W ] + (1− λ)min
τ1

max
σ1

vT−1,λ(ĨP
σ1,τ1).

Taking the limit when T →∞, the value vλ(ĨP), we obtain

vλ(ĨP) = λĨP[W ] + (1− λ)min
τ1

max
σ1

vλ(ĨP
σ1,τ1). (5)

We have exploited the fact that the payoff of a discounted game can be
uniformly approximated by the payoff of a finite game.

Now, our goal is to define a new game Γ̃(ĨP) which could play the role
of a “formal” representation of Γ. We proceed as follows: its state space
is the set of consistent probability measures ĨP with finite support. An
action of player I (resp. player II) is a mapping σ : T I → ∆(A) (resp.
τ : T II → ∆(B)). The current payoff is ĨP[W ] and given a pair (σ, τ),
the next state is ĨP

σ,τ
(deterministic transition). Obviously, the definition

of a game implies the full specification of the information available to the
players at each stage. For the moment let us assume that his current type is
the only information available to a player. Our goal is to show the existence
of a “value” which satisfies a recursive equation. In the discounted game
case, we obtain a fixed-point equation analogous to (5). Later on, we will
enrich the structure of Γ̃(ĨP) (Section 6) without affecting the fixed-point
equation.
Proposition 3 The game Γ̃T (ĨP) (resp. Γ̃λ(ĨP)), with initial state ĨP, has a
value ṽT (ĨP) (resp. ṽλ(ĨP)) that is the same as vT (ĨP) (resp. vλ(ĨP)), hence
as vT (IP) (resp. vλ(IP)) as well.

Proof. When T = 0, the proposition is clearly true. Suppose that the
proposition is true for T − 1, T > 1. One derives from (4) that:

1
T

ĨP[W ] +
T − 1

T
min
τ1

max
σ1

ṽT−1(ĨP
σ1,τ1) =

1
T

ĨP[W ]

+
T − 1

T
max

σ1

min
τ1

ṽT−1(ĨP
σ1,τ1).
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This is enough to guarantee that the value ṽT (ĨP) exists and satisfies the
same recursive equation as vT (ĨP). Therefore, we have ṽT (ĨP) = vT (ĨP).

To prove the statement about the discounted value, introduce as above
the truncated discounted game.

6. Player I Has More Information Than Player II

In this section we restrict ourselves to the case where player I always has
more information than player II. In other words, the signal received by
player I includes the signal received by player II. This will have among
other consequences the fact that one can use the auxiliary game on the
Universal Belief Space to study uniform properties.

Clearly, by (1), any consistent probability measure ĨP is spanned by
finitely many types tII . Notice that we restrict ourselves to considering
types tII of player II inducing a marginal probability measure with fi-
nite support on T I such that any type tI in the support includes tII . In
other words, the marginal probability measure induced by tI on T II is δtII

(“Dirac” measure).
What can we say about the probability measure induced by such a type

tII on Ω̃ ?
Lemma 1 The probability measure induced on Ω̃ by tII is consistent.

Proof. Observe that

ĨP[s, tI |tII ] =
ĨP[s, tI , tII ]

ĨP[tII ]

=
ĨP[s, tI ]
ĨP[tII ]

=
ĨP[s|tI ]× ĨP[tI ]

ĨP[tII ]

= ĨP[s|tI ]× ĨP[tI , tII ]
ĨP[tII ]

= ĨP[s|tI ]× ĨP[tI |tII ].

By application of (1), we obtain:

tII [s, tI ] = tII [tI ]× tI [s] = tII [tI ]× tI [s, tII ].

This means that tII induces a consistent probability measure on Ω̃.
We shall slightly modify the structure of Γ̃(ĨP). Following Lemma 1 and

Proposition 2 the value ṽλ(ĨP) of Γ̃λ(ĨP) can be decomposed as
∑

tII ĨP[tII ]×
ṽλ(tII) where we identify tII with the corresponding consistent probability
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measure induced on Ω̃. We thus choose as new state space the set of types
tII of player II. Let us reformulate the recursive equation, derived from (5).
If the initial type of player II is tII , if player I uses a tuple α of mixed
action α(tI) ∈ ∆(A) for any tI in the support of tII and if player II selects
the pure action b ∈ B, then with probability, say p(tII , α, b)[t′II ], the next
type of player II is t′II . We obtain:

ṽλ(tII) = λtII [W ] + (1− λ) min
β∈∆(B)

max
α

∑

t′II

β[b]× p(tII , α, b)[t′II ]× ṽλ(t′II).

(6)

We define a new game Γ̂(ĨP) that unfolds as follows: an initial state tII is
chosen according to ĨP and after that a play proceeds as in a stochastic game
(the current state being known to both players). For simplicity, the type of
player II (state) at stage t is denoted by µt. Obviously, one has ṽλ(µ1) =
v̂λ(µ1). In the theory of stochastic games [1], a fixed-point equation identical
to (6) is one of the sufficient ingredients to prove the existence of the uniform
value. In addition to (6), we shall request that, for any initial state µ1,
limλ→1 v̂λ(µ1) = v̂(µ1) exists. Observe that, if such is the case, v̂(ĨP) =∑

µ ĨP[µ]× v̂(µ) is the natural candidate for the value of Γ̂(ĨP) (considering
the asymptotic average payoff). However, we should be careful to specify
the information available to the players in addition to the current state µt

at stage t. For an argument similar to that of [1] to hold, one should assume
that each player is informed of the actions of his opponent.

A crucial idea of the proof to come (Proposition 4) is to implement ε-
optimal strategies for Γ̂(ĨP) into Γ(IP). Remember that in Γ(IP), the signal
of player I contains the signal of player II. This implies that the previous
action of player II is known to player I (since the signal of player II contains
his previous action). Therefore, in Γ̂(ĨP), we assume that at stage t + 1
player I is informed of the action bt ∈ B chosen by player II at stage t.
The information received by player II in Γ̂(ĨP) is not as straightforward.
Nothing tells us that player II knows the previous action of player I in
Γ(IP). Looking carefully at what we want to prove (Proposition 4), the
existence of the max min of Γ(IP), observe that it is as if player II knew the
strategy of player I. This has the following consequence for the information
provided to player II in Γ̂(ĨP).

A pure action of player I in any state µt is a tuple of actions in A. Only
actions corresponding to types tI of the support of µt need to be specified.
There is no loss of generality in considering mixed actions that are a tuple of
mixed α ∈ ∆(A). Based on what we said above, it is convenient to assume
that, at any stage, player II is informed of the previous mixed action chosen
by player I.
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To recapitulate, in Γ̂(ĨP), a strategy σ̂ of player I is a family of σ̂t (t ≥ 1)
specifying a mixed action αtI (µ1, . . . , µt−1, b1, . . . , bt−1, ) ∈ ∆(A) for any tI

in the support of µt. The previous actions α1, . . . αt−1 of player I do not
appear explicitly, because if they did, then they could be replaced by what
they are, a function of past states and past actions of player II. A strategy
τ̂ of player II is a family of τ̂t which specifies

βµt(µ1, . . . , µt−1, α1, . . . , αt−1, b1, . . . , bt−1) ∈ ∆(B).

From now on, γT (σ, τ) (resp. γ̂T (σ̂, τ̂)) denotes the expected average
payoff associated with the pair (σ, τ) (resp. (σ̂, τ̂)) in ΓT (IP) (resp. Γ̂T (ĨP)).

We assume that we can prove the existence of the maxmin ŵ(ĨP) of
Γ̂(ĨP). Formally, this is expressed in the form of the next statement.

Assumption 1 For any ε > 0, player I has a strategy σ̂ε in Γ̂ that guar-
antees ŵ(ĨP) up to ε. In other words, there exists T0 > 0 such that for any
T ≥ T0 and any strategy τ̂ of player II

γ̂T (σ̂ε, τ̂) ≥ ŵ(ĨP)− ε. (7)

On the other hand, for any strategy σ̂ of player I and any ε > 0, there exists
an ε-best reply τ̂(σ̂) for player II. This means that

lim sup
T→∞

γ̂T (σ̂, τ̂(σ̂)) ≤ ŵ(ĨP) + ε. (8)

A stronger requirement (satisfied in particular if Γ̂(ĨP) has a uniform value)
would be to assume in addition to (7) a stronger condition of uniformity
with respect to the strategies of player I:
Assumption 2 For any ε > 0, there exists T0 such that, given any strategy
σ̂ of player I, player II has an ε-best reply τ̂(σ̂) satisfying

γ̂T (σ̂, τ̂(σ̂)) ≤ ŵ(ĨP) + ε (9)

for any T ≥ T0.
In the final part of the present chapter we shall deal with the proof of

the following proposition.
Proposition 4 If assumption 1 is satisfied, then ŵ(ĨP) is the maxmin of
Γ(IP). Let us denote it by w(IP).
Under assumption 2 one has in addition:

ŵ(ĨP) = lim
λ→1

ṽλ(ĨP)

= lim
λ→1

vλ(IP).
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Proof. The definition of the max min of Γ(IP) involves as above two
conditions. For any ε > 0:
(i) There exists a strategy σε of player I and T0 such that for any T > T0

and any strategy τ of player II, we have

γT (σε, τ) ≥ v(IP)− ε. (10)

(ii) Against any strategy σ of player I, there exists a strategy τ ε(σ) such
that

lim sup
T→∞

γT (σ, τ ε(σ)) ≤ v(IP) + ε. (11)

In order to establish (i) and (ii), some of our arguments will be reminiscent
of those used for proving Proposition 1.

(i) To start with, let us take any strategy σ̂ = σ̂1, σ̂2, . . . of player I in Γ̂(ĨP).
Let us denote by σ = σ1, σ2, . . . a strategy of player I in Γ(IP) obtained as
follows:
− After stage 0 (choice of the current state) in Γ(IP), player I can cal-

culate his type tI1 as well as player II’s type tII
1 = µ1. Next, he can

implement the appropriate component of σ̂1.
− Assume that player I has calculated a family of past and current types

tI1, . . . , t
I
` for himself. Included in those types, he obtains a family

µ1, µ2, . . . , µ` (` ≥ 1) of past and current types for player II. Since
player I knows the past actions b1, . . . , b`−1 of player II, player I im-
plements σ̂` in order to play in Γ(IP) at stage `, thus obtaining σ`.
The next type tI`+1 is obtained as follows: µ` induces a probability
measure on S (which gives the “law” of the current state s`) as well
as a probability measure with finite support on T I . Given the current
action b`, player I can calculate the “law” of the next state s`+1. From
there, he can calculate his next type tI`+1 depending on his new signal.

For any T > 0, we shall construct a pure strategy τ̂ = τ̂(T ) for player
II in Γ̂(ĨP) such that, at stage t, τ̂t depends on the past and current states
µ1, . . . , µt. Incorporating the knowledge of σ (since it is fixed) player II can
implement τ̂ in Γ(IP). We shall show that τ = τ(T ) is a best reply against
σ in ΓT (IP). Observe that the following holds:

γT (σ, τ) = γ̂T (σ̂, τ̂). (12)

For this construction, let us proceed recursively with respect to T and
for any initial probability distribution IP. When T = 0 it is obvious.

At stage 0 the state is chosen according to IP. Both players are informed
of the element of their respective partition where the state falls. Since player
I uses σ, his first mixed action σ1 depends on his type.
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Right after stage 1, if the type of player II is µ1 and if his action is b1,
then the players face ΓT−1(IPµ1,b1) where the initial probability distribution
IPµ1,b1 can be calculated using σ1 and b1. The truncated strategy σ(µ1, b1)
of player I starting from stage 1 can be seen as the implementation of some
strategy σ̂(µ1, b1) of Γ̂(ĨPµ1,b1). By application of the recursive hypothesis
to the game ΓT−1(IPµ1,b1), we obtain a pure best reply τ(µ1, b1) that is the
implementation of a strategy τ̂(µ1, b1) of the form we want. Clearly, one
can obtain a pure best reply τ against σ in ΓT (IP) by implementation of
some τ̂ with the desired form, by selecting an optimal b1 : T II → B which
player II selects at the first stage.

In particular, if applied to the strategy σ̂ε of player I in Γ̂ introduced in
assumption 1, (12) and (7) will imply that for T ≥ T0

γT (σε, τ) ≥ w(IP)− ε,

that is (10).

(ii) The arguments that we are going to use here are quite similar to those
of part (i).

Let τ̂ be a strategy of player II in Γ̂(ĨP). It may be impossible to directly
implement τ̂ in Γ(IP) because it normally involves the past mixed actions
of player I which are unknown to player II. However, we deal with a reply
and therefore assume that player II knows σ.

So let σ be any strategy of player I in Γ(IP). We aim at proving that
there exists a strategy σ̂ = σ̂(σ) of player I in Γ̂(ĨP) such that given τ̂

in Γ̂(ĨP) one can “mimic” (σ̂, τ̂) in Γ(IP) in the sense that there exists
τ = τ(σ, τ̂) which satisfies

γT (σ, τ(σ, τ̂)) = γ̂T (σ̂(σ), τ̂). (13)

The construction of σ̂ is done stage by stage. Recall that σ is a sequence
of mappings σt, t = 1, . . . ,∞, prescribing a mixed action depending on the
past and present signals. At stage one, average σ1 with respect to the type
of player I to obtain σ̂1.

Let us assume that σ̂1, . . . , σ̂t−1 corresponding to the first t − 1 stages
have been constructed. Once again, let us average σt with respect to the
current type of player I, but conditionally to the fact that the previous types
of player II were µ1, . . . , µt−1 and his previous actions were b1, b2, . . . , bt−1.
The crucial point is that this information is independent of the strategy of
player II. Let us denote by σ̂t the corresponding mixed action for stage t
in Γ̂(ĨP).

As for player II at stage one he can implement τ̂1 in Γ(IP), thus obtaining
τ1, since it depends only on the current state µ1. Knowing σ, he can compute
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σ̂, hence the sequence of types µ1, . . . , µt as well. Using τ̂ this defines a
strategy τ in Γ(IP).

To finish the proof, i.e., to construct an ε-best reply against σ, let us
apply the previous construction to an ε-best reply τ̂(σ̂(σ)) of player II in
Γ̂(ĨP) satisfying (8), hence (11) by (13).

Clearly under assumption 6.2 w(IP) is the limit of vT (IP) when T →∞
(hence w(IP) is also the limit of vλ(IP) when λ → 1).
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