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Abstract. This chapter considers a recent trend in the application of
stochastic games to economics characterized by the use of the lattice-
theoretic approach to capture the monotonic properties of Markovian equi-
libria. The topics covered are: (i) a general framework for discounted stochas-
tic games with Lipschitz-continuous and monotone equilibrium strategies
and values, (ii) a model of capital accumulation, and (iii) two classes of
games with perfect information: strategic bequests and oligopoly with com-
mitment.

In view of the restriction to pure-strategy equilibria and of the natural
monotonicity property of strategies and value functions in most economic
applications, this approach appears most promising.

1. Introduction

This chapter reviews applications of stochastic games in economics, where
lattice-theoretic arguments have played a central role (at least implicitly).
Some areas of application are the same as in the general overview given in
the next chapter. However, the studies contained in this survey are generally
discussed in more, but still incomplete, detail. We begin with a general ap-
proach to stochastic games with continuous equilibrium strategy and value
functions [10]. Then we consider games of capital accumulation [1] and two
classes of sequential-move games: strategic bequests and oligopoly compe-
tition with alternating moves. All the new notions and results from lattice
programming invoked here are presented (without proof) in the appendix.

From a methodological perspective, it is hoped that this review will con-
vey a sense that the lattice-theoretic approach is well-suited for analyzing
dynamic games in economics, as it provides a natural framework for turn-
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ing natural economic structure into appealing monotonic relationships that
survive the dynamic programming recursion while satisfying the desired
restriction to pure strategies.

2. Existence of Pure-Strategy Markov Equilibrium

Consider an n-player discounted stochastic game described by the tuple
{S, Ai, λi, ri, p} with the standard meaning as in earlier chapters. The state
space S and action spaces Ai are all compact Euclidean intervals, with S ⊂
Rk and Ai ⊂ Rki . Denote the joint action set A = A1×...×An and a typical
element a = (a1, ..., an) = (ai, a−i), for any i. The previous definitions of
Markov and Markov-stationary strategies and expected discounted payoffs
are also easily adapted to the case of pure strategies considered here. With p
denoting the transition probability from S×A to S, let F be its associated
cumulative distribution function. The following assumptions are in effect
throughout this chapter (see the appendix for definitions).

(A1) The state distribution function F and the reward functions ri are all
twice continuously differentiable, for all i = 1, ..., n.
(A2) F and ri are supermodular in ai and have increasing differences in
(ai; a−i, z).
(A3) F satisfies a dominant diagonal condition in (ai; a−i), and ri satisfies
a strong dominant diagonal condition in (ai; a−i), for all i.
(A4) F is increasing in (z, a) in the sense of first-order stochastic domi-
nance, and ri is increasing in (z, a−i), for all i.

Let C(S, R) be the Banach space of continuous functions from S to
R with the sup norm, to be denoted ‖·‖. By Assumption (A1) and the
compactness of S and Ai, there exists K > 0 such that ri(z, a) ≤ K, ∀
i, z, a. Hence, all feasible payoffs in this game are also ≤ K. Denote by
CMK(S,R) the subset of the ball of radius K in C(S, R) consisting of
nondecreasing functions. The main results in this section are in

Theorem 1 Under Assumptions (A1)-(A4), we have:
(a)The infinite-horizon discounted stochastic game has a pure-strategy Mar-
kov-stationary equilibrium, with strategies and corresponding value func-
tions that are nondecreasing and Lipschitz-continuous in the state vector.
(b)For any finite horizon T , there exists a unique pure-strategy Markov
equilibrium, with strategy components and corresponding value functions
that are nondecreasing and Lipschitz-continuous in z. Moreover, this is also
the unique Markov equilibrium in mixed and correlated strategies, and the
game is dominance-solvable.

Curtat [10] developed the above framework and established Part (a).
The elaboration given in Part (b) is due to Amir [4]. Curtat also proved



THE LATTICE-THEORETIC APPROACH 445

a comparative dynamics result: the first-period equilibrium actions in the
infinite-horizon problem are higher than the equilibrium actions of the one-
stage game. He then concludes with several applications to economic mod-
els.

Due to space constraints, we provide a self-contained outline of the proof
of Theorem 1 but omit some lengthy details of a technical nature. The argu-
ment proceeds in several steps, via the analysis of auxiliary games defined
here as follows. Let v = (v1, ..., vn) ∈ CMK(S, R)n be an n-vector of contin-
uation values, and consider an n-person one-shot game Gv parameterized
by the state variable, where Player i has action set Ai and payoff function

Πi(v, z, ai, a−i)
4
= (1− λi)ri(z, ai, a−i) + λi

∫
vi(z′)dF (z′/z, ai, a−i). (2.1)

With z fixed, let the above game be denoted by Gz
v.

Lemma 1 For any v = (v1, ..., vn) ∈ CMK(S, R)n, the game Gv has a
unique Nash equilibrium av(z) = (av

1(z), ..., av
n(z)). Furthermore, each av

i (z)
is nondecreasing and Lipschitz-continuous in z uniformly in v.

Proof of Lemma 1. By Theorem 3 and Assumption (A.2), since v is
nondecreasing,

∫
vi(z′)dF (z′/z, ai, a−i) is supermodular in ai and has non-

decreasing differences in (ai, a−i). From Assumption (A.3), it also satisfies a
dominant diagonal condition in (ai, a−i). Since supermodularity, increasing
differences and dominant diagonals are preserved under addition, it follows
from Assumptions (A2)-(A3) that Πi is supermodular in ai and has increas-
ing differences (and dominant diagonals) in (ai; a−i). Then, since the Ai’s
are compact, it follows in particular that Gz

v is a supermodular game for
each z. Existence of a pure-strategy equilibrium av(z) = (av

1(z), ..., av
n(z))

is a consequence of Theorem 6. Uniqueness of the Nash equilibrium av(z)
then follows in a standard way from Πi satisfying the dominant diagonal
condition (see [20] or [16]).

Πi also has increasing differences in (z, ai). Hence, by Theorem 7, each
av

i (z) is nondecreasing in z (due to uniqueness, the maximal and minimal
equilibria clearly coincide). The fact that each av

i (z) is Lipschitz-continuous
in z uniformly in v (i.e., the associated Lipschitz constant D can be chosen
independently of v) follows from the compactness of S and Ai, Assumptions
(A1) and (A3), Theorem 5 (some omitted lengthy details can be found in
[10], p. 188).

Lemma 2 Given v = (v1, ..., vn) ∈ CMK(S, R)n, the (unique) equilib-

rium payoff for Player i, Π∗i (v, z)
4
= Πi(v, z, av) is in CMK(S,R) and is

Lipschitz-continuous in z uniformly in v.
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Proof of Lemma 2. Continuity of Π∗i (v, z) in z follows directly from
Lemma 1 and the structure of the payoffs in (2.1). Monotonicity of Π∗i (v, z)
in z follows from Assumption (A4). To show the uniform Lipschitz conti-
nuity, consider

Π∗i (v, z) = (1− λi)ri(z, av(z)) + λi

∫
vi(z′)dF (z′/z, av(z)).

Hence, by Taylor’s theorem, for any z1, z2 in S, there are constants C1, C2, C3,
C4 such that

|Π∗i (v, z1)−Π∗i (v, z2)| ≤ (1− λi)(C1 + D.C2) ‖z1 − z2‖+

λi(C3 + D.C4)
{∫

S
|vi(t)dt|

}
‖z1 − z2‖

where use is made of Assumption (A1), the compactness of S and Ai,
the Lipschitz continuity of av(z) from Lemma 1, and standard facts about
composition of functions and integrals. With

M
4
= (1− λi)(C1 + kC2) + λi(C3 + D.C4)K

∫

S
dt (2.2)

being independent of v, it follows that

‖Π∗i (v, z1)−Π∗i (v, z2)‖ ≤ M ‖z1 − z2‖ ,

which concludes the proof.
Let Π∗(v, z)

4
= (Π∗1(v, z), ..., Π∗n(v, z)). We now define a single-valued

operator mapping continuation values to equilibrium payoffs as follows.

T : CMK(S, R)n → CMK(S, R)n

v(·) → Π∗(v, ·).
The rest of the proof consists of showing that the operator T has a

fixed point v = Tv, in which case the associated equilibrium strategies
(av

1(z), ..., av
n(z)) clearly constitute a Markov-stationary equilibrium of the

infinite-horizon discounted stochastic game.

Lemma 3 The operator T is continuous in the topology of uniform con-
vergence.

Proof of Lemma ??. Let ⇒ denote uniform convergence. We have
to show that if vk

i (·) ⇒ vi(·) for all i, then Π∗i (v
k, ·) ⇒ Π∗i (v, ·) for all i.
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With vk
i (·) ⇒ vi(·), it follows from the well-known property of upper hemi-

continuity of the equilibrium correspondence in the game Gz
v that, for each

fixed z and each i, avk

i (z) → av
i (z) in R. In other words, we have pointwise

convergence of the functions avk

i (z) to the limit av
i (z). Since these functions

are all Lipschitz-continuous (Lemma 1), the convergence is actually uni-
form. The pointwise, and thus uniform, convergence of Π∗(vk, ·) to Π∗(v, ·)
in view of Lemma 2, follows from standard results on the composition of
continuous functions.

We are now ready to conclude the overall proof.
Proof of Theorem 1. (a) In order to invoke Shauder’s fixed-point

theorem for T, we need to show that there exists a convex and norm-
compact subset Φ of CMK(S,R)n such that T (Φ) ⊂ Φ. To this end, define
the following subset of CMK(S,R)n :

Φ
4
= {v ∈ CMK(S, R)n : ‖vi(z1)− vi(z2)‖ ≤ M ‖z1 − z2‖ for all i, z1, z2}

where M is defined as in (2.2). It follows from that Lemma 2 that Tv ∈ Φ
whenever v ∈ Φ. Since all the functions in Φ are uniformly Lipschitz-
continuous, Φ is an equi-continuous set of functions, so that its compact-
ness in the sup-norm follows from the Arzela-Ascoli theorem. Hence, by
Shauder’s fixed-point theorem, T has a fixed point v = Tv in Φ. Then,
from standard results in discounted dynamic programming, the associated
equilibrium strategies (av

1(z), ..., av
n(z)) in the game Gv clearly constitute a

Markov-stationary equilibrium.
(b) Uniqueness of a pure-strategy Markov equilibrium for every finite

horizon T follows simply by iterating vn = T (vn−1) starting from v0 ≡ 0,
for n = 1, 2, ..., T , and invoking Lemma 1 at every iteration. The rest then
follows directly from [16], Theorem 5, applied to the games Gz

v for each z.

3. Stochastic Games of Capital Accumulation

The model is well known in economic dynamics, as the one-player version of
this game is the standard optimal growth model under uncertainty [9]. Con-
sider two agents who jointly own a productive asset (or natural resource)
and who consume some amount of the available stock at each stage in order
to maximize their (individual) discounted sum of utilities. The payoff and
feasible set of (say) Agent 1 and the state transition law are given by

T∑

t=0

(1− λ1)λt
1r1(a1

t ), 0 ≤ a1
t ≤ K1(zt) and zt+1 ∼ p(·/zt − at − bt)

where zt is the asset stock level; at, bt are the consumption levels of Agents 1
and 2 at time t, bounded by the K ′

is as exogenous extraction capacities; ri is
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Agent i’s one-period utility function with λi being his discount factor; and p
is a transition probability mapping “savings” into (probability distributions
on) the next stock. Let F denote the cumulative distribution of p. The
following assumptions are made throughout.

(B1) ri is strictly increasing and strictly concave, with ri(·) ≤ B, B > 0.
(B2) (i) F (z

′
/·) is weakly continuous, with F (0/0) = 1.

(ii) F (z,/·) is strictly decreasing for every z′.
(iii) F (z,/·) is strictly convex for every z′.

(B3) Ki(·) is continuous and uniformly bounded, with Ki(0) = 0, 0 ≤
Ki(z1)−Ki(z2) ≤ z1 − z2 for all z1 > z2, and K1(z) + K2(z) < z, for all z.

(B1) is standard. (B2)(ii-iii) can be naturally interpreted as saying that
the probability that the next state exceeds a given level is continuous and
increasing at a decreasing rate in the savings, and is thus a stochastic version
of the standard assumption of decreasing marginal returns. Nonetheless, the
convexity of F (z,/·), a key assumption here, is fairly restrictive in that it
rules out the deterministic case and forces the effective state space to be all
of [0,∞) : see [1], [2] for details. Finally, (B3) is natural in many contexts,
and serves to rule out trivial equilibria with stock exhaustion in the first
stage.

Although this problem cannot be formally viewed as a special case of
the framework of the previous section, it has essentially the same mathe-
matical structure (characterized by strategic complementarity and diagonal
dominance), and can thus be analyzed along a very similar line of reason-
ing. The effective space of consumption strategies and value functions are
respectively

Λi
4
= {v : [0,∞) → [0, B] : v is continuous and nondecreasing } and

Σi
4
= {α : S → Ai : α(0) = 0 and 0 ≤ α(z1)− α(z2) ≤ z1 − z2,∀z1 ≥ z2 ≥ 0} .

The main result here is:

Theorem 2 Under Assumptions (B1)-(B3), we have:
(a) The infinite-horizon discounted stochastic game has a Markov-stationary
equilibrium, with strategies in Σi and corresponding value functions in Λi.
(b) For every finite horizon T (t = 0, 1, ..., T − 1), there exists a unique
Markov equilibrium in ΣT

i and corresponding value functions in ΛT
i .

An important difference exists between this model and the framework of
[10], though: in order not to rule out utility functions r with r

′
(0) = ∞, e.g.,

the log and the constant-risk-aversion utilities that are frequently used in
economic dynamics, one cannot work here with the auxiliary games of the
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previous sections, since the resulting value functions need not be uniformly
Lipschitz-continuous. Rather, in order to avoid the second fixed-point ar-
gument (in value function space) above that requires compactness, hence
equi-continuity, of the resulting value functions, Amir [1] defined a standard
best-response mapping in strategy space. Exploiting supermodularity and
diagonal dominance arguments in ways similar to the proof above, one can
show that the best response to a strategy in Σi is unique and lies in Σj , so
that the best response mapping, from Σi×Σj (with the topology of uniform
convergence) to itself, has a fixed point. The details are not presented here.
The proof of Part (b) is analogous to Theorem 1 (b). We close by noting
that with the extra (restrictive) assumption r

′
(0) < ∞, the approach of the

previous section could easily be followed here.

4. Games of Perfect Information

This section summarizes two strands of economic literature dealing with
dynamic games of perfect information that are closely related to stochastic
games. Details and proofs may be found in the references.

4.1. GAMES OF STRATEGIC BEQUESTS

Consider an infinite sequence of identical generations in a one-good econ-
omy, each of whom decides on a consumption level c out of the capital stock
x inherited from the previous generation, with the residual x − c forming
the bequest to the next generation. With stochastic production, the next
stock is determined according to the c.d.f. F (·/x− c), and the payoff to a
generation is then

∫
U [c, h(t)]dF (t/x− c) , c ∈ [0, x] ,

where U is the (common) utility function, and h is the next generation’s
consumption strategy. Here, the Markov assumption takes the form that
each generation is interested only in the welfare of their immediate offspring
(in addition to their own). The first main question is: when is the existence
of a stationary equilibrium consumption strategy guaranteed?

Proposition 1 Let U(c1, c2) be strictly increasing and supermodular in
(c1, c2) and strictly concave in c1. Then a Markov-stationary equilibrium
exists, with strategies in

(a) Σi if F satisfies Assumptions (B2)(i-iii), and in

(b) Σ̃i
4
= {α : S → Ai : α(0) = 0 and α(z1)− α(z2) ≤ z1 − z2} if F sat-

isfies (B2)(i-ii).
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Leininger [13] and Bernheim and Ray [7] independently proved Part (b)
in the deterministic production case, while Amir [2] proved Part (a). The
key assumption in moving from Part (a) to Part (b) is clearly (A2)(iii) and
the mechanism is the same as in the model of Section 2. Lane and Leininger
[12] and Bernheim and Ray [8] study the properties of Markov equilib-
ria. In addition, Amir [2] shows that if U and F are twice continuously
differentiable, the equilibrium consumption strategy will be continuously
differentiable.

4.2. A CLASS OF GAMES WITH ALTERNATING MOVES

Consider the following alternating-move dynamic game from Maskin and
Tirole [14], [15]. Firm 1 (Firm 2) chooses an action in odd-numbered (even-
numbered) periods, each firm remaining committed to its action for 2 pe-
riods (so for all k, a1

2k+2 = a1
2k+1 for firm 1, and a2

2k+1 = a2
2k for firm 2).

Firm i’s payoff is

∞∑

t=0

(1− λ)λtΠi(a1
t , a

2
t ), a

1
t , a

2
t ∈ A,

where Πi is a reduced form for a per-period (static equilibrium) payoff in
price, quantity or other type of competition. A pair of “reaction” func-
tions (R1, R2) forms a Markov-stationary equilibrium if a2

2k = R2(a1
2k−1)

maximizes firm 2’s payoff at any time 2k given a1
2k−1 and assuming that,

henceforth, firm 1 will follow Ri, i = 1, 2, with an analogous condition for
firm 2. Thus, an equilibrium can be described by a triplet (Ri, V i, W i) for
firm 1, such that (say) for firm 1:

V 1(a2) = max
{
(1− λ)Πi(a1, a2) + λW 1(a1) : a1 ∈ A

}

= (1− λ)Πi(R1(a2), a2) + λW 1(R1(a2)), and

W 1(a1) = Πi(a1, R2(a1)) + λV 1(R2(a1)).

Maskin and Tirole [14], [15] prove that at a Markov equilibrium, each
of the Ris is nonincreasing (nondecreasing) if the Πi have decreasing (in-
creasing) differences. (This can be obtained as an application of Topkis’s
monotonicity theorem to the above functional equations.) Then they use
this framework to provide a new look at various well-known key issues in
quantity and price competition, including natural monopoly, kinked de-
mand curve, and strategic excess capacity. They conclude that this new
framework is more suitable than the traditional approaches to analyzing
some of the issues at hand.
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5. Appendix

A brief summary of the lattice-theoretic notions and results is presented
here.

Throughout, S will denote a partially ordered set and A a lattice, and
all cartesian products are endowed with the product order. A function F:
A → R is (strictly) supermodular if F (a∨a′)+F (a∧a′) ≥ (>)F (a)+F (a′)
for all a, a′ ∈ A. If A ⊂ Rm and F is twice continuously differentiable, F

is supermodular if and only if ∂2F
∂ai∂aj

≥ 0, for all i 6= j. A function G :
A×S → R has (strictly) increasing differences in s and a if for a1(>) ≥ a2,
G(a1, s)−G(a2, s) is (strictly) increasing in s . If A ⊂ Rm, S ⊂ Rn and G is
smooth, this is equivalent to ∂2G

∂ai∂sj
≥ 0, for all i = 1, ..., m and j = 1, ..., n.

A set I in Rn is increasing if x ∈ I and x ≤ y ⇒ y ∈ I. With S ⊂ Rn

and A ⊂ Rm, a transition probability F from S × A to S is supermodular
in a (respectively, has increasing differences in s and a) if for every increas-
ing set I ⊂ Rn,

∫
1I(t)dF (t/s, a) is supermodular in a (respectively, has

increasing differences in s and a) where 1I is the indicator function of I. A
characterization of these properties, using first-order stochastic dominance,
follows (see [5], [6] for extensive related work).

Theorem 3 (Topkis [22]). A transition probability F from S × A to S ⊂
Rn is supermodular in s (respectively, has increasing differences in s and
a) if and only if for every integrable increasing function v : S → R,∫

v(t)dF (t/s, a) is supermodular in s (respectively, has increasing differ-
ences in s and a).

Let L(A) denote the set of all sublattices of A. A set-valued function
H : S → L(A) is ascending if for all s ≤ s′ in S, a ∈ As, a

′ ∈ As′ , a∨a′ ∈ As′

and a ∧ a′ ∈ As. Topkis’s main monotonicity result follows (see also [18]).

Theorem 4 (Topkis [23]). Let F : S × A → R be uppersemicontinuous
and supermodular in a for fixed s, and have increasing (strictly increasing)
differences in s and a, and let H : S → L(A) be ascending. Then the
maximal and minimal (all) selections of arg max {F (s, a) : a ∈ H(s)} are
increasing functions of s.

With S ⊂ Rn and A ⊂ Rm, a function F: A → R satisfies (strong)

diagonal dominance if
m∑

j=1

∂2F
∂ai∂aj

(<) ≤ 0 for each i ∈ {1, 2, ..., m} . A tran-

sition probability F from A to S satisfies strong diagonal dominance in a
if

∫
1I(t)dF (t/a) has the same property, for every increasing set I ⊂ Rn,

or equivalently, if for every increasing function v : S → R,
∫

v(t)dG(t/a)
satisfies that same property.
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Theorem 5 (Curtat [10]).1 Assume that F : S × A → R is uppersemi-
continuous and supermodular in a for fixed s, has increasing differences
in s and a, and satisfies SDD in a. Then arg max {F (s, a) : a ∈ A} is an
increasing and Lipschitz-continuous (single-valued) function of s.

A game with action sets that are compact Euclidean lattices and payoff
functions that are u.s.c. and supermodular in own action, and have increas-
ing differences in (own action, rivals’ actions) is a supermodular game. By
Theorem 4, such games have minimal and maximal best responses that are
monotone functions, so that a pure-strategy equilibrium exists by (see also
[24]):

Theorem 6 (Tarski [21]). An increasing function from a complete lattice
to itself has a set of fixed points that is itself a nonempty complete lattice.

The last result deals with comparing equilibria.

Theorem 7 (Milgrom and Roberts [16]). Consider a parameterized super-
modular game where each payoff has increasing differences in the parameter
(assumed real) and own action. Then the maximal and minimal equilibria
are increasing functions of the parameter.
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