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Abstract. This survey provides an extensive account of research in eco-
nomics based on the stochastic games paradigm. Its area-by-area coverage is
in the form of an overview, and includes applications in resource economics,
industrial organization, macroeconomics, market games, and experimental
and empirical economics. As to methodologically defined frameworks, the
coverage is somewhat more detailed (to the extent that the material is not
covered elsewhere in this volume), and includes the open-loop concept, the
linear-quadratic model, myopic equilibrium, games of perfect information,
and stochastic games with a continuum of players. It is hoped that the
survey might be useful as a general guide both to economists and to game
theorists.

1. Introduction

This section provides a general idea of the contents and organization of this
survey of a large body of research in economics and related fields loosely
defined by the adoption of the common methodology of stochastic games.
We note at the outset that this class of games has also been referred to in
various contexts as dynamic games, difference games, state-space games,
sequential games and Markov games.1 Given the breadth of this task, some
omission is inevitable. We begin by describing the intended goals and limi-

1Shapley coined the term “stochastic games” by analogy to “stochastic processes,”
thus implicitly capturing the presence of dynamics. Since most applications actually in-
volve models with deterministic transitions, this may appear somewhat misleading here,
and “dynamic game” seems more appropriate. This is particularly true of studies con-
sidering open-loop equilibria, an essentially meaningless concept for games with chance
moves.
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tations of this survey, the confines and special features of stochastic games
in economics, and the general organization of this survey.

Studies with general reward and transition functions and with mono-
tonicity of equilibrium strategies and value functions as central features of
the problem at hand are presented in the previous chapter, with a summary
of the associated methodology of lattice programming.

1.1. PURPOSE AND SCOPE OF THE SURVEY

This chapter provides a general survey of applications of stochastic games
in economics and related fields. We identify clusters of studies according
to methodological considerations (e.g., reliance on open-loop equilibria or
perfect information or computational simplicity), or to relevant subfields
(e.g., industrial organization or resource economics). The primary concern
has been to come up with convenient and natural categories that are con-
sistent with the general purpose of this volume while appealing to a diverse
readership. For strands of literature defined by a common methodological
framework, a summary of the main results is provided. Otherwise, a list of
references, along with some general descriptive comments, is given.

This survey will not encompass the continuous-time case, or differen-
tial games,2 except in some cases where the results have direct qualitative
analogs in discrete-time, or are otherwise of relevance to issues raised here.
Likewise, although some links exist with the repeated games literature and
with the standard two-stage game framework, these will not be dealt with
here.

The reader is referred to the previous chapters for all general definitions
and results associated with stochastic games, including the classification of
the different types of strategy.

1.2. SPECIAL FEATURES OF ECONOMIC APPLICATIONS OF
STOCHASTIC GAMES

In relating the present survey to the rest of this volume, one must keep in
mind that a number of motivations and widely held beliefs among economists
have in large part shaped the nature and the focus of the studies invoking
the theory of stochastic games in economics. A brief account of these be-
liefs is now given. (For further discussion of various aspects, including the
appropriateness of the different types of strategies, see [7], [35], [36], [64].)

1. Discounted payoffs. As situations where finite-time events are irrele-
vant are unnatural in economics, only models with discounted payoffs have
been considered. The presence of a positive rate of interest is ubiquitous

2See [7], [22] and references therein.
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in economic life. Thus, for economic models, the undiscounted case can be
relevant only as a robustness check on a model with discounting.

2. Pure strategies. Due to a lack of compelling universal interpretation
and to their inherent ex-post regret property, mixed strategies have enjoyed
limited acceptance in economics in general, and this area is no exception.
Mixed strategies have been considered only in a limited number of cases,
when pure-strategy equilibria fail to exist.

3. Uncountable state and action sets. Owing mostly to the prevalence
of calculus-based methods, there is a continuing tradition in economics of
working with uncountable spaces, although the theory of stochastic games
is much more complete for the case of finite state and action spaces, and
reality sometimes conforms more to the latter case (e.g., discrete units for
prices). Some recent models (listed below) do utilize finite spaces, though.

4. Simplicity. To avoid fixed-point arguments in function spaces and
complex systems of functional equations, several studies rely on specific
functional forms that allow closed-form equilibrium strategies, such as the
linear-quadratic and the myopic models. A key advantage of this approach,
in addition to the obvious computational appeal, is that it allows for clear-
cut comparative statics conclusions, otherwise a rare luxury in dynamic
games. Another simplicity-inspired choice is the nature of the strategies al-
lowed, with many models being limited to open-loop behavior often without
compelling contextual economic justification.

5. Predictive power of models. Since applications are typically motivated
by the search for clear-cut conclusions, only highly structured and relatively
aggregated models of stochastic games (typically with scalar state and ac-
tion sets) have been studied. This is also due to the relatively complex
nature of this class of games. Also, history-dependent behavior and folk
theorem-type outcomes have generally been avoided in applications, with
some exceptions.

1.3. ORGANIZATION OF THE SURVEY

In keeping with the overview nature of this survey, the only items covered in
some detail are those that are not discussed elsewhere in this volume, and
yet are important from the point of view of applications. Section 2 provides
a summary of the properties of open-loop equilibria and a list of references
by area. Section 3 deals with dynamic games of resource extraction. Section
4 considers the class of linear-quadratic games, ubiquitous in economics and
systems theory. Section 5 presents the class of stochastic games with myopic
equilibria, with applications. Section 6 collects various applications in the
area of oligopoly theory that are not covered above. Section 7 mentions the
case of perfect information games. Section 8 deals with stochastic games
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with a continuum of players and some applications. Finally, Section 9 lists
some work in empirical and in experimental economics.

2. Open-Loop Equilibrium in Deterministic Dynamic Games

Open-loop strategies are widely used in deterministic dynamic games (i.e.,
those with no chance moves). This section provides an overview of the main
properties of open-loop equilibrium and then lists some of the studies in
economics relying on such behavior.

2.1. DEFINITION AND PROPERTIES OF OPEN-LOOP STRATEGIES

Throughout this section, we consider a Markov dynamic game with de-
terministic transitions. An open-loop strategy is defined as a sequence of
actions depending only on the initial state and on the date (or period). An
open-loop strategy is thus a sequence of length (T+1), where T is the last
period in the (possibly infinite) horizon. Open-loop behavior rests on the
premise that the players simultaneously commit at the beginning of the
game to a completely specified list of actions to be played without any pos-
sibility of update or revision during the entire course of the game. Hence, no
contingency planning of any sort is possible. An alternative way of thinking
about open-loop strategies is as Markovian strategies3 where at each stage
players use only constant functions of the current state. With open-loop
strategies, a game may thus be viewed as a static game with sequences of
length (T+1) as strategy spaces.

Several important properties of open-loop equilibria are discussed next.
To begin with, in deterministic Markov one-person dynamic optimization,
there always exists an optimal open-loop strategy, so restricting oneself
to open-loop policies results in no loss of value compared to using more
sophisticated behavior. This fact is certainly intuitive, as is its failure in
the presence of chance moves or stochastic transitions.

The game-theoretic analog of the above fact is perhaps less intuitive: in
deterministic dynamic games, an open-loop equilibrium remains an equi-
librium when the strategy spaces are expanded to include Markovian or
history-dependent strategies. The reason is that if all of a given player’s ri-
vals are using open-loop strategies, the player cannot achieve a higher payoff
by using more sophisticated strategies than open-loop. This follows directly
by invoking the above fact for the player’s best-response problem which,
given the open-loop strategies of the rivals, is a deterministic Markov dy-

3In the systems theory and macroeconomics literature [7], Markovian strategies are
usually referred to as feedback strategies, and sometimes as closed-loop (no-memory)
strategies.
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namic program.4 No general results are known about the comparison of
equilibrium payoffs under open-loop vs. Markovian behavior.

Open-loop equilibria are generally not subgame-perfect. 5 By contrast,
open-loop optima in one-player deterministic problems clearly satisfy the
principle of optimality, since the optimal Markovian and open-loop policies
lead to the same actions and states at every period.

Open-loop equilibria are typically much simpler to analyze than Marko-
vian equilibria. In particular, the usually difficult question of existence of
pure-strategy equilibrium is most often straightforward in the open-loop
case, where it amounts to using Brouwer’s fixed-point theorem with the
action set viewed as a subset of R∞ (with the product topology), under
standard conditions on the primitives. This relative simplicity is at the
heart of the widespread use of open-loop strategies in the early stages of
the adoption of stochastic games, despite the broad consensus that the com-
mitment to a completely specified course of action over the indefinite future
is not a realistic behavioral postulate in most cases of interest.6 The simul-
taneous presence of explicit long-term dynamics and of restricted static-like
behavior seems contradictory. Furthermore, subgame perfection is broadly
viewed as a desirable property of equilibrium behavior. Consequently, focus
has markedly shifted towards Markovian strategies.

4This argument is similar to the better-known argument that Markovian (resp.
Markov-stationary) equilibria of a Markov (resp. Markov-stationary infinite-horizon)
stochastic game remain equilibria when history-dependent strategies are allowed. This
also follows from the fact that with all rivals playing Markovian (resp. Markov-stationary)
strategies, a player’s best-response problem is a Markov (resp. Markov-stationary) dy-
namic program, for which there exists a Markov (resp. Markov-stationary) optimal policy.
This argument is equally valid in the presence of chance moves (i.e., stochastic transi-
tions). These important justifying arguments, as well as the so-called one-shot deviation
principle, follow directly from the theory of dynamic programming.

5For the issue to be well defined, it is clear that one needs to assume that the action sets
are essentially independent of the state. On the other hand, an equilibrium in Markovian
strategies is always subgame-perfect in a strong sense: uniformly in the starting state.

6A very common framework of analysis adopted in industrial economics consists of
modelling competing firms as making two decisions each, e.g., R&D levels and prices
(or outputs). This can be done in a one-shot framework (with two decisions per firm),
or in a two-stage game where R&D levels are chosen in the first stage, and prices are
then chosen in the second stage, conditional on the observed R&D decisions. These
two different timing structures can be viewed as relying on open-loop and closed-loop
strategies, respectively. For instance, Brander and Spencer [13] provide a comparison
of the two cases in a study of oligopolistic R&D. In such models, the use of open-loop
strategies is much easier to justify as approximating real behavior, as it simply amounts
to assuming that a firm does not get to observe its rivals’ new technology before choosing
its output level.
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2.2. OPEN-LOOP EQUILIBRIUM IN ECONOMIC MODELS

Open-loop equilibrium originated and has been extensively analyzed in sys-
tems theory. See [7] for a detailed account. For problems with a linear-
quadratic structure (covered in Section 4), open-loop equilibria are easily
computed and characterized.

A class of applications that is of interest both from an economic and
from a methodological point of view deals with continuous-time patent
races. This class includes work by Loury [57], Lee and Wilde [53], and
Reinganum [62], [63], among others. These papers a priori postulate differ-
ential games with stochastic duration corresponding to the occurrence of a
success in an R&D project that would lead to a patent. The probability of
a success for a firm follows an exponential distribution with parameter de-
pending on the R&D expenditure of the firm. Due to the special structure
of the model, in particular to the memoryless property of the exponential
distribution, using Markovian strategies leads to an open-loop equilibrium,
so that these games actually boil down to simple static games.

In the economics of natural resource exploitation and sustainability,
studies that rely on the open-loop information structure tend to be older.
They include, among many others, [69], [55], [21].

Various intrinsically dynamic problems in industrial organization were
also considered under open-loop strategies early on. Spence [75] deals with
investment in a new market, Spence [76] and Fudenberg and Tirole [34]
propose models of the learning curve, Flaherty [32] studies dynamic limit
pricing, and Flaherty [33] and Spence [77] are among the early attempts to
model the effects of strategic process R&D.

The above list is far from complete, but can provide the reader with
a flavor of the various approaches to, and results in, dynamic strategic
competition relying on open-loop interaction.

3. Strategic Resource Extraction or Capital Accumulation

This is one of the areas of economics that has witnessed a high level of
research activity involving stochastic/dynamic games as the key method-
ological approach. The seminal paper of Levhari and Mirman [54] considers
two agents noncooperatively exploiting a natural resource. With zt, ai

t de-
noting the resource stock and Agent i’s consumption at time t, and βi his
discount factor, his payoff and the stock equation are given respectively by7

∞∑

t=0

βt
i log ai

t and zt+1 = (zt − a1
t − a2

t )
α , with 0 < α, βi < 1.

7The one-player version of this problem is an example of the Solow-Cass-Koopmans
growth model.
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Using standard induction, Levhari and Mirman showed for this “Great Fish
War” that (i) for every finite horizon with end-period T, there is a unique
Markovian equilibrium with linear consumption strategies and logarithmic
value functions,8 (ii) the limits of these strategies as T →∞, given for (say)
Agent 1 by αβ2(1−αβ1)z

1−(1−αβ1)(1−αβ2) , constitute a Markov-stationary equilibrium of
the infinite-horizon game,9 (iii) a tragedy of the commons prevails in both
cases, in that the given equilibria are not Pareto-optimal and lead to over-
consumption of the resource stock (relative to a Pareto-optimal path), and
(iv) the equilibrium resource stock converges to a unique globally stable
steady-state level given by z = { 1

αβ1
+ 1

αβ2
− 1} α

α−1 .

Cave [15] termed the “Cold Fish War” the situation where the two
agents, observing the entire history of play, employ trigger strategies. Specif-
ically, agents coordinate on cooperative extraction paths secured by the
threat of reversion to the Markov-stationary strategies in case of defection.
Assuming that β1 = β2, Cave characterizes the resulting open set of equi-
libria, which are clearly subgame-perfect. A simple necessary and sufficient
condition is given for this set to include a Pareto-optimal extraction path.

The Levhari-Mirman analysis has been extended to more complex re-
source dynamics, including interactive fish species by Fisher and Mirman
[30], [31]. Furthermore, related work dealing with general utility and growth
functions includes Dutta and Sundaram [24], [25], [26]. Other general analy-
sis papers, as well as studies of strategic bequests are covered in the previous
chapter dealing with the lattice-theoretic approach [1].10

4. The Class of Linear-Quadratic Games

In a general linear-quadratic game, player i’s objective functional and the
state equation are, for t = 1, 2, ..., T,

max
T∑

t=1

1
2



z

′
t+1Q

i
t+1zt+1 +

∑

j∈N

aj′
t Rij

t aj
t



 and zt+1 = Atzt +

∑

j∈N

Bj
t a

j
t ,

8Interestingly, the complementary choices of functional forms for the utility and bio-
logical growth functions in this model produce the same convenient qualitative results as
in the linear-quadratic case. Here, due to the linearity of the equilibrium strategies, the
value functions inherit the log nature of the utility function.

9Uniqueness of equilibrium in the infinite-horizon game remains an open question to
date. There may exist infinite-horizon equilibria that are not necessarily related to the
finite-horizon equilibrium strategies.

10There is also an extensive literature on strategic resource extraction in continuous
time, which we will not cover here. The results therein are often quite different from their
natural discrete-time counterparts.



462 RABAH AMIR

where11 zt and aj
t denote respectively the state vector (an element of <n)

and player j’s action vector (an element of <lj ), at time t; At, Bj
t , Qi

t+1,
and Rij

t are matrices with appropriate dimensions, Rij
t is negative definite,

and Qi
t+1 is symmetric and negative semi-definite.

A Markov equilibrium can be given in closed form as follows. Let P i
t be

matrices satisfying, for i = 1, 2, ..., N ; t = 1, 2, ..., T,

[Rii
t + Bi′

t Zi
t+1B

i
t]P

i
t + Bi′

t Zi
t+1

∑

j 6=i

Bj
t P

j
t = Bi′

t Zi
t+1At, (4.1a)

where the Zi
t are defined recursively by

Zi
t = F

′
t Z

i
t+1Ft +

∑

j∈N

P j′
t Rij

t P j
t + Qi

t , with Zi
T+1 = Qi

T+1, (4.1b)

and Ft
4
= At −

∑

i∈N

Bi
tP

i
t .

There is a unique Markov equilibrium if and only if (4.1) has a unique
solution set

{
P j∗

t

}
, with equilibrium strategies (specifying player i’s action

vector at time t in a T-period horizon problem) and value function for
player i from stage t onwards given by, for i = 1, 2, ..., n; t = 1, 2, ..., T,

γi∗
t = −P i∗

t zt, and V i
t (zt) =

1
2
z
′
t(Z

i
t −Qi

t)zt.

Some extensions of this class of games are now noted: (i) the state
equation or the payoff functions may include additional linear terms (affine-
quadratic games; the resulting equilibrium strategies are then affine func-
tions of the state); (ii) exact conditions for P j∗

t to exist and be unique can
be given in terms of invertibility of a composite matrix formed from the
primitives of the problem; (iii) uncertainty in the form of an additive Gaus-
sian vector (i.i.d. across time) in the state equation is easily incorporated,
resulting in no qualitative changes in the solution; and (iv) the open-loop
equilibrium is also easily computed.

Next, consider the infinite-horizon undiscounted stationary version of
the game, obtained by letting T = ∞ and A, Bi, Q, Rij be time-invariant.
Sufficient conditions on the primitives that guarantee existence are not

11Matrices are denoted by capital letters, vectors by lower-case letters and the transpose
operation by a “prime” sign. Further details may be found in [7].
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known at this point.12 Nonetheless, the following partial answer (involving
assumptions on derived objects) is known. Consider the following matrix
equations, which are clearly limits of (4.1a-b):

[Rii + Bi′Z
i
Bi]P i + Bi′Z

i ∑

j 6=i

BjP
j = Bi′Z

i
A, i = 1, 2, ..., N, (4.2a)

where Zi is defined by

Z
i = F

′
Z

i
F +

∑

j∈N

P
j′
RijP

j + Qi, and F
4
= A−

∑

i∈N

BiP
i
. (4.2b)

Proposition 4.1 Suppose there exist two N-tuples of matrices
{
Z

i
, P

i
}

satisfying (4.2). Let F i
4
= A− ∑

j 6=i
BjP

j
and Qi

4
= Qi +

∑
j 6=i

P
j′
RijP

j
. If the

pair (F i, B
i) is stabilizable 13 and the pair (F i, Qi) is detectable,14 then:

(i) there is a Markov-stationary equilibrium where player i’s strategy is

γi∗(z) = −P
i
z and his (finite) payoff is 1

2z
′
1Z

i
z1, and

(ii) the resulting equilibrium system dynamics zt+1 = Fzt is stable (i.e.,
limt→∞ Dt = 0).

While (4.2) can be viewed as the limit of (4.1) as T → ∞, (4.2) can have
other solutions that are not related to the finite-horizon solution. Under
the above assumptions of stabilizability and detectability, the latter would
also constitute equilibria of the infinite-horizon game.

There is an extensive literature in various areas of economics analyzing
models that constitute either a special case or a variant of the above frame-
work (some in continuous-time). Furthermore, all infinite-horizon models
have discounted rewards.

A very partial list of references follows. [29], [65], [66], [8] and [23] deal
with dynamic oligopolistic competition. [56] discusses natural resources.
[61], [51], [5], [17] and [44] deal with macroeconomic policy games. Some
more examples are given in Section 6.

12By contrast, nice sufficient conditions are available in the one-player case (e.g., [11],
pp. 73-80) and in the zero-sum case [6].

13This is defined as follows. The matrix [Bi, F iB
i, F

2
i B

i, ..., F
n−1
i Bi] has full rank.

Intuitively, this ensures the existence of a pair of strategies that will drive the state to 0
in finite time.

14This is defined by (F
′
i, Q

′
i) being stabilizable.
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5. Stochastic Games with Myopic Equilibrium

A stochastic game is said to have a myopic equilibrium if a static game
can be constructed from the primitives of the stochastic game such that
the infinite repetition of an equilibrium of the static game constitutes an
equilibrium for the stochastic game. We provide sufficient conditions on the
reward and transition functions ensuring the existence of a myopic equilib-
rium for a discounted stochastic game, and then list some applications of
this approach. Our presentation follows [42].

Proposition 5.1 Assume that a stochastic game is such that:
(i) the reward function is additively separable: ri(z, a) = Ki(a)+Li(z), ∀z, a, i.
(ii) the transition law is state-independent: Pr(zt+1 = z

′
/zt = z, at = a) =

p(z
′
/a) or zt+1 ∼ ξ(at).

(iii) the one-shot game where player i’s action set is Ai and his payoff is
γi(a) = Ki(a) + βiE{Li[ξ(a)]} has a pure-strategy equilibrium a∗.
(iv) P{ξ(a∗) ∈ {z : a∗ ∈ Az}} = 1 (i.e., a∗ is feasible in the next period for
all current states).
Then the strategy where, at every stage t, player i plays a∗i if z ∈ S(a∗)
and any feasible action otherwise is a Markov-stationary equilibrium of the
infinite-horizon game.

There are several applications in economics and management science
for which this class of games provides a natural framework of analysis. For
an early attempt at bringing quantity and price competition together in an
oligopoly model with inventory and uncertain demand, see [50]. Different
one-player inventory control models have myopic optimal policies: see [42],
Chapter 3 for references. In the context of fisheries, see [74]. Noncooperative
advertising models with this special structure have also been analyzed by
Monahan and Sobel [58]. A simple model of dynamic R&D competition
with myopic equilibrium investment strategies is developed by Blonski [12].

6. Other Applications to Dynamic Oligopoly

In addition to the previously mentioned studies of dynamic inter-firm com-
petition using stochastic games, this section describes other papers in in-
dustrial organization, clustered according to sub-area without regard to
methodological considerations.15

15There is a very large body of literature in industrial economics dealing with two-stage
games where firms typically make simultaneous long-term decisions in the first stage (such
as R&D level, capacity, entry, or advertising, etc.), and, upon observing the outcome of
the first stage, the firms make short-term decisions in the product market (price or
output levels) in the second stage. While such games can generally be translated into
the framework of (finite-horizon) stochastic games, we do not cover here the numerous
examples available (see, e.g., [3] for one such example and some related discussion).
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Among the models with truly dynamic strategic competition, there is
one class characterized by price competition and some form of inertia on the
part of consumers. Rosenthal [67] pioneered this literature with Bertrand
duopoly competition under complete consumer loyalty, with one firm’s
market share as the natural state variable. He characterized a Markov-
stationary equilibrium where prices remained above marginal costs indefi-
nitely. By contrast, under less-than-complete consumer loyalty, Rosenthal
[68] produces an ε-equilibrium in Markov-stationary strategies where prices
converge with probability one to marginal costs. A distinctive feature of
these papers, as well as of the follow-up piece by Chen and Rosenthal [16],
is that a closed-form mixed-strategy equilibrium was considered and ac-
tually exhibited. A closely related strand of literature deals with long-run
price competition when consumers face costs for switching between different
buyers: see [28], [8], [59]. The latter paper also deals with mixed strategies.

Inter-firm racing models, which may be viewed to some extent as discrete-
time extensions or analogs of the patent race models discussed in Section
2.2, have been investigated: [38], [39], [4], among others.

Learning-by-doing in Arrow’s sense, whereby firms’ production costs
fall with production experience, also naturally gives rise to interesting phe-
nomena of a dynamic character. Cabral and Riordan [14] characterize the
long-term consequences of this feature in a Markov-stationary framework
with firms’ cumulative sales as the natural state variables.

Another natural source of strategic dynamic competition is also due to
technological progress, but allows for market entry and exit. Here, techno-
logical progress is modelled as process R&D, with firms expending resources
to lower their unit costs. For a rich model of industry dynamics featuring
process R&D-type of strategic competition over time and allowing for en-
dogenous entry and exit of firms, see [27]. Another strategic model of indus-
try dynamics without process R&D is studied in [2]. Perfectly competitive
(nonstrategic) models of industry dynamics are listed in Section 8.

7. Dynamic Games of Perfect Information

In some subfields of economics, another class of dynamic games that has
been used with some frequency is characterized by perfect information:
players move sequentially, with each player knowing the history of play,
including the previous move. Perfect information has many simplifying fea-
tures, leading to much more general existence results. A general framework,
with uncountable action sets, has been developed and existence of pure-
strategy subgame-perfect equilibrium proved in [37] and [40], generalizing
the classical result erroneously attributed to Zermelo (see [70]).

An early application to duopoly is by Cyert and DeGroot [19], who
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model long-term competition with firms moving alternately, each being
committed to its choice in the off-period. This work has given rise to more
general analysis, covered in the previous chapter, along with the theory of
strategic bequests (under limited altruism.)

8. Stochastic Games with a Continuum of Players

This class of games has not been covered in the summer institute, aside
from a brief mention. Our presentation here follows Bergin and Bernhardt
[9], [10]. With a continuum of players, each player is identified by a charac-
teristic, α ∈ Λ, with α evolving stochastically over time. In addition, there
is aggregate uncertainty, modeled as a Markov sequence of shocks over time
{θt}∞t=1 , θt ∈ Θ : at each period in time, an aggregate shock θt is realized
in the per-period state space Θ. The full process is modeled as a joint dis-
tribution, ν , on the sequences of aggregate shocks, Θ∞. At time t, given a
history of states θt = (θ1, ..., θt) ∈ Θt, the conditional distribution on Θ∞
given θt is ν(·/θt).

Each player α ∈ Λ chooses an action, a, from a common action space
A. In the stage game, a distributional strategy for the population is a joint
distribution over players and actions — τ ∈ M(Λ × A), the set of prob-
ability measures on Λ × A. Preferences of a player at time t are given
by a (uniformly bounded) function r(α, a, τt, θt). The characteristic of a
player α evolves stochastically over time according to a transition kernel
P (dα/α, a, τt, θt). For the distribution on characteristics, a current distri-
bution τt implies that the next distribution on characteristics is given by
µt+1(X) =

∫
P (X/α, a, τt, θt)dτt, so that τt+1 must have marginal distribu-

tion µt+1. Players seek to maximize the present discounted value of payoffs.
Under continuity assumptions on the payoff functions and transition

kernels (the latter in the weak* topology), a Markov equilibrium is shown
to exist with the state variable being the triplet (µ, θ, v) where v : Λ → R is
a continuous function.16 In equilibrium, at any state (µ, θ, v), the value of
the distributional strategy depends only on these variables, where v(α) gives
the expected payoff of α in the remainder of the game, and in equilibrium
this is the actual payoff. (The role of v is similar to the role of sunspots
as an alternative coordinating device in the state space, used to achieve
existence of Markov equilibrium.)

The above discussion is in the context of an environment where the
aggregate distribution evolves deterministically, conditional on the value
of θt. The second result uses a reformulation of aggregate uncertainty and

16When the data of the game is history-dependent, existence of a (non-Markovian)
equilibrium is also shown.
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focuses on the case where the aggregate distribution evolves stochastically,
but where aggregate uncertainty is not explicitly separated.

This class of games constitutes a natural game-theoretic framework for
analyzing dynamic perfect competition. There are two main strands of eco-
nomic literature that consider models related to this form. The first deals
with dynamic market games: see [71], [46], [47]. The second strand deals
with purely competitive industry dynamics (relying on a price-taking as-
sumption in partial equilibrium), with entry and exit over time: see, e.g.,
[45], [43], [52].

9. Empirical and Experimental Work

Last but not least, some empirical and experimental studies based on
stochastic games have been conducted in recent times. For some examples
of empirical work, see [60], [72], [73], among others. Walker and Wooders
[79], [80] test the minmax hypothesis in a zero-sum Markov game model of
tennis serves using field data from Wimbledon, and find better support than
earlier work based on laboratory data. There are also experimental studies
testing the ability of laboratory subjects to play in dynamic games. In a
simple oligopoly market game, Keser [48] finds little support for theoretical
predictions based on a unique finite-horizon Markov equilibrium. On the
other hand, Herr, Gardner and Walker [41] find the theoretical solutions
quite well confirmed by laboratory behavior in a common-property resource
game. Keser and Gardner [49] report a good fit for subgame perfect equi-
librium predictions at the aggregate, but not at the individual, level.
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