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The Big Match is a multi-stage two-player game. In each stage Player 1 hides one or two pebbles in his
hand, and his opponent has to guess that number; Player 1 loses a point if Player 2 is correct, and otherwise
he wins a point. As soon as Player 1 hides one pebble, the players cannot change their choices in any future
stage.

The undiscounted Big Match has been much-studied. Blackwell and Ferguson (1968) give an ε-optimal
strategy for Player 1 that hides, in each stage, one pebble with a probability that depends on the entire
past history. Any strategy that depends on just the clock or just a finite memory is worthless (i.e., cannot
guarantee strictly more than the least reward). The long-standing natural open problem has been whether
every strategy that depends on just the clock and a finite memory is worthless.

The present paper proves that there is such a strategy that is ε-optimal. In fact, we show that just two
states of memory are sufficient.
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1. Introduction The game of Odd and Even (Latin: Par Impar Ludere, Greek: ἀρτιασμός)
has been popular since ancient Greek and Roman times. It is played by two players, Player 1 and
Player 2. Player 1 hides (e.g., in his hands) a number of pebbles or other items (e.g., beans, nuts,
almonds, astragali, or coins), and his opponent, Player 2, has to guess whether the number of
hidden items is odd or even. Player 1 then reveals the number. If Player 2 is right, Player 1 loses
a point; otherwise, Player 1 wins a point (from Player 2).

Player 1 can guarantee that he gets (at least) zero points on average by hiding an odd or even
number of items with equal probability. Player 2 can guarantee that Player 1 gets (at most) zero
points on average by guessing odd or even with equal probability.

The repeated Odd and Even game is the same game repeated many times. Each player can
still guarantee himself zero points on average (per stage and hence also in total) by playing,
independently, in each stage as before.

The Big Match is also a multi-stage game. It is a variant of the repeated Odd and Even game.
In each stage Player 1 hides one or two pebbles. In each stage, Player 1 wins or loses a point. As
long as Player 1 hides two pebbles, Player 1 wins a point iff Player 2 guesses odd in that stage.
The first stage in which Player 1 hides one pebble is called the stopping stage. In the stopping
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stage Player 1 wins a point iff Player 2 guesses even. In each subsequent stage, he wins a point iff
he won a point in the stopping stage.

The Big Match was introduced by Gillette [3] and has been much studied, in part due to its
arguably being the most basic game model that illustrates the difficulty of balancing the trade-off
between short- and long-term strategic considerations.

In the Big Match, Player 2 can still guarantee that Player 1 gets zero points on average, indepen-
dently of the number of stages, by guessing odd or even with equal probability and independently
in each stage. Executing such a strategy does not require that Player 2 know the past history, the
number of stages, or the stage number. However, the situation of Player 1 is completely different!
Henceforth, unless otherwise mentioned, a strategy refers to a strategy of Player 1.

If Player 1 knows the number of stages, T , in advance, he can guarantee himself (at least) zero
points on average. To guarantee this, he must hide one pebble with probability 1

k+1
when k stages

remain. Thus, for example, in the last stage he hides one or two pebbles with equal probability, and
in the first stage he hides one pebble with probability 1

T+1
. Executing such a strategy requires that

Player 1 know the stage number and the number of stages, but it does not require that Player 1
know the past history.

It follows from the above that if Player 1 does not know the number of stages T in advance, then
he has no way of guaranteeing himself (at least) zero points (per stage) on average. This has led
researchers to look for strategies that guarantee close to zero per stage on average in all sufficiently
long Big Match games.

Any strategy in the Big Match has to decide on the stopping stage. A natural possibility is just
to specify in advance the probability of each stage being the stopping stage. Such a strategy is
called a Markov strategy. It has long been known, and it is easy to verify, that any Markov strategy
in the Big Match is worthless; i.e., for any ε > 0 it does not guarantee more than −1 + ε points
(per stage) on average in any sufficiently long Big Match game.

The principle of sunk cost seems to imply that optimizing from any point onwards should be
independent of the past, and hence any optimization of the long-run average of the rewards can
be achieved by a Markov strategy. Since any Markov strategy is worthless, one might erroneously
conclude that any strategy is worthless.

However, this is not the case! Blackwell and Ferguson [2] introduced worthy (i.e., not worthless)
strategies that prescribe the choice in each stage as a function of the past history. Moreover, [2]
introduced, for every ε > 0, a strategy that is ε-optimal; namely, it guarantees at least −ε points
(per stage) on average in all sufficiently long games.1

The question that arises is how much dependence on past history is needed for an ε-optimal
strategy, or even a worthy one. This dependence is formalized using the following concept.

A memory-based strategy in the Big Match is a strategy in which the conditional probability of
hiding one pebble depends on the current memory state and the clock (i.e., the stage number).
The memory state is updated as a stochastic function of the current memory and of the guess of
Player 2 in the previous stage, as well as of the clock.

The ε-optimal strategies in [2, Theorem 2] are memory-based, and those in [2, Theorem 1] are
memory-based and clock-independent; i.e., the hiding and memory updating do not depend on the
clock. The memory state is simply the difference between the number of odd and even guesses;
hence, up to stage T it takes integer values in the interval [−T,T ].

The ε-optimal strategy in [4] is memory-based and clock-independent. The memory state can be
encoded so that, with high probability, up to stage T it takes integer values in [0, lnc T ], for some
constant c (and T > 3).

1 Recall that Player 2 has a strategy that ensures himself zero points per stage on average.
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On the other hand, all memory-based strategies that have a finite set of memory states and
either are clock-independent (see, e.g., [8]) or have a deterministic memory update function [4] are
worthless in the Big Match.

It has been a long-standing natural open problem whether there exists an ε-optimal memory-
based strategy that has a finite set of memory states (or even just a worthy one).

The present paper answers this question positively. We show that, for every ε > 0, there is such
a strategy that is ε-optimal. Moreover, it is a two-memory strategy; namely, it has a two-element
memory set.

Our ε-optimal strategy is also ε-optimal in the infinite game. In the infinite game, the average
win per stage need not be well defined, as the average number of wins over the first T stages need
not converge. Nonetheless, the ε-optimality of our strategy in the infinite game result is as strong
as possible: Our ε-optimal strategy guarantees that for any strategy of Player 2 the expectation of
the limit inferior of the averages of the stage payoffs is at least −ε.

2. The model and related results

2.1. Stochastic games A finite two-person zero-sum stochastic game Γ, henceforth, a
stochastic game, is defined by a tuple (Z, I,J, r, p, z1), where Z is a finite state space, I and J
are the finite actions sets of Players 1 and 2 respectively, r : Z × I × J → R is a payoff function,
p :Z × I ×J→∆(Z) is a transition function, and z1 is a starting state.

A state z ∈Z is called an absorbing state if p(z, ·, ·) = δz, where δz is the Dirac measure on z. An
absorbing game is a stochastic game with only one nonabsorbing state.

A play of the stochastic game is an infinite sequence (z1, i1, j1, . . . , zt, it, jt, . . .) ∈ (Z × I × J)∞,
where (zt, it, jt) ∈ Z × I × J . The set of all plays is denoted by H∞. A play up to stage T is the
finite sequence hT = (z1, i1, j1, . . . , zT ) ∈ (Z × I × J)T−1 ×Z. The payoff rt in stage t is r(zt, it, jt)
and the average of the payoffs in the first T stages, 1

t

∑T

t=1 rt, is denoted by r̄T .
The initial state of the multi-stage game is z1 ∈Z. In the t-th stage players simultaneously choose

actions it ∈ I and jt ∈ J .
A behavioral strategy of Player 1, respectively Player 2, is a function σ, respectively τ , from

the disjoint union ∪̇∞t=1(Z × I × J)t−1 × Z to ∆(I), respectively to ∆(J). The restriction of σ,
respectively τ , to (Z× I×J)t−1×Z is denoted by σt, respectively τt. In what follows, σ denotes a
strategy of Player 1 and τ denotes a strategy of Player 2.

A strategy pair (σ, τ) defines a probability distribution Pσ,τ on the space of plays as follows. The
conditional probability of (it = i, jt = j) given the play ht up to stage t is the product of σ(ht)[i]
and τ(ht)[j]. The conditional distribution of zt+1 given ht, it, jt is p(zt, it, jt). The expectation w.r.t.
Pσ,τ is denoted by Eσ,τ

A stochastic game has a value v = (v(z))z∈Z if, for every ε > 0, there are strategies σε and τε
such that for some positive integer Tε

ε+Eσε,τ r̄T ≥ v(z1)≥Eσ,τε r̄T − ε ∀σ, τ,T ≥ Tε, (1)

and

ε+Eσε,τ lim inf
T→∞

r̄T ≥ v(z1)≥Eσ,τε limsup
T→∞

r̄T − ε ∀σ, τ. (2)

It is known that all absorbing games [5] and, more generally, all stochastic games [7] have a
value.

A strategy σε that satisfies the left-hand inequality (1) is called uniform ε-optimal. A strategy
σε that satisfies the left-hand inequality (2) is called limiting-average ε-optimal.

A strategy σε that satisfies both left-hand inequalities (1) and (2) is called ε-optimal.
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2.2. Memory-based strategies A memory-based strategy σ generates a random sequence
of memory states m1, . . . ,mt,mt+1, . . ., where the memory is updated stochastically in each stage,
and selects its action it according to a distribution that depends on just the current time t, its
current memory mt, and the current state zt. Explicitly, the conditional distribution of it, given
hmt := (z1,m1, i1, j1, . . . , zt,mt), is a function σα of (t, zt,mt) and the conditional distribution of
mt+1, given (hmt , it, jt, zt+1), is a function σm of (t, zt,mt, it, jt) (i.e., it depends on just the time t
and the tuple (zt,mt, it, jt)).

A memory-based strategy σ is clock-independent if the functions σα and σm are independent of
t.

A k-memory strategy is a memory-based strategy in which the memory states mt take values
in a set with at most k elements.2 Note that a strategy is a Markov strategy if and only if it is
a one-memory strategy, and a strategy is a stationary strategy if and only if it is a one-memory
clock-independent strategy. A strategy uses finite memory if it is a k-memory strategy where k is
finite. A strategy that uses finite memory is called a finite-memory strategy. The set of all k-memory
strategies is denoted by Mk.

The long-standing natural open problem that motivates the present paper is whether for every
stochastic game, or even just the Big Match, there are ε-optimal strategies that use finite memory.

In order to present previous results, we introduce a concept of a memory-based strategy with
an infinite set of memory states, but where there is a bound on the growth of the number of
memories in the first t stages of the game, for all t. The bound on this growth is represented by
a nondecreasing function f :N →N and a nonincreasing function γ :N → [0,1]. An (f, γ)-memory
strategy is a memory based strategy σ whose set of memory states is N and for every strategy τ
and positive integer t′ ∈N , the Pσ,τ -probability that mt ≤ f(t) for all t ≥ t′ is at least 1− γ(t′).
Note that for the constant function f = k and the zero function γ = 0, an (f = k, γ = 0)-memory
strategy is a k-memory strategy.

2.3. The Big Match The Big Match, introduced in [3], is a highly inspiring stochastic game.
The state space Z is {−1,0,1}.

Each state z ∈ {−1,1} is absorbing and the payoff function (to Player 1) in an absorbing state z
is r(z, ·, ·) = z. The state z =−1 is called the losing state of Player 1 and the state z = 1 is called
the winning state of Player 1.

The action sets I and J are {0,1}, and the payoff function in the nonabsorbing state 0 is

r(0, i, j) =

{
1 if j 6= i,

−1 if j = i.

The transition distributions from the nonabsorbing state 0 are given by

p(0, i, j) =


δ0 if i= 0

δ-1 if i= j = 1

δ1 if i= 1 6= j.

Blackwell and Ferguson [2] shows that the value of the Big Match is 0 by introducing, for every
ε > 0, an ε-optimal strategy (which is, in addition, a clock-independent (f,0)-memory strategy
where f(t) = 2t− 1).

Hansen, Ibsen-Jensen and Koucký [4] introduces, for the Big Match (and also for any absorbing
game), an ε-optimal, clock-independent, (f, γ)-memory strategy, where f(t) = (log t)O(1) and γ is
converging to 0.

2 The present paper focuses on a k-memory strategy where k is a finite integer. However, the definition applies to any
cardinal number k, which could be necessary for more general classes of games.
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Figure 1. The Big Match

Fix ε < 1. It is known that there is neither a limiting-average nor a uniform ε-optimal strategy
that is a finite-memory strategy that uses a deterministic memory-updating function σm; see [4]
for the limiting-average case. Moreover, there is no ε-optimal mixed strategy that is a mixture
of finitely many finite-memory strategies that each use a deterministic memory-updating function
σm.

It is also known that there is neither a limiting-average nor a uniform ε-optimal strategy that is
a clock-independent finite-memory strategy; see, e.g., [8] for the limiting-average case. Moreover,
there is no mixed strategy that is a mixture of clock-independent finite-memory strategies that is
ε-optimal [1].

3. The result The main result of the present paper is that, in the Big Match, there is a
finite-memory strategy that is ε-optimal and moreover it is a two-memory strategy.

Theorem 1. For every ε > 0 there is a two-memory strategy σ of Player 1 and Tε such that
for every strategy τ of Player 2,

Eσ,τ lim inf
T→∞

r̄T ≥−ε, (3)

and
Eσ,τ r̄T ≥−ε ∀T ≥ Tε. (4)

4. The proof We label the nonabsorbing action of Player 1 by C and the absorbing action of
Player 1 by A. The actions of Player 2 are labelled by −1 and 1 according to the resulting payoff
to Player 1 when the nonabsorbing action is chosen by Player 1. The Big Match is depicted in
Figure 1.

A pure strategy of Player 2 is identified with a sequence x = (xt)
∞
t=1 where xt is the action of

Player 2 in stage t conditional on no absorption.
In order to prove the theorem it suffices to define for every ε > 0 a strategy σ ∈M2 of Player 1

and Tε such that for every pure strategy x of Player 2 and T ≥ Tε, we have

Eσ,x lim inf
T→∞

1

T

T∑
t=1

rt ≥−4ε (5)

and

Eσ,x
1

T

T∑
t=1

rt ≥−5ε. (6)
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Fix 0< ε < 1. The set of stages t= 1,2, . . . of the infinite game is partitioned into consecutive
epochs, indexed by i= 1,2, . . ., where the number of stages of the i-th epoch is si,ε, or si for short.
The number of stages in the first n epochs equals

∑n

i=1 si and is denoted by Sn.
Two of the properties of the (to-be-defined) sequence of the number of stages in the i-th epoch,

si, are

si+1 ≥ si ≥ 1 ∀i and sn/Sn→n→∞ 0. (7)

The payoff to Player 1 in the j-th round of epoch i is denoted by rij. Note that the j-th round

of epoch i is the (Si−1 + j)-th stage of the game. Therefore,
∑Sn

t=1 rt =
∑n

i=1

∑si
j=1 r

i
j. Hence, for n

sufficiently large and Sn−1 <T ≤ Sn, 1
T

∑T

t=1 rt ≥
1
Sn

∑n

i=1

∑si
j=1 r

i
j − ε.

Therefore, in order to prove the theorem it suffices to define a strategy σ ∈M2 of Player 1 and
nε such that for every pure strategy x of Player 2 and n≥ nε, we have

Eσ,x lim inf
n→∞

1

Sn

n∑
i=1

si∑
j=1

rij ≥−2ε (8)

and

Eσ,x
1

Sn

n∑
i=1

si∑
j=1

rij ≥−4ε. (9)

The strategy σ consists of patching together epoch strategies σsi , which will be defined later.
The epoch strategy σsi is a strategy in the Big Match with si stages. It defines the strategy σ in
the i-th epoch. The i-th epoch strategy σsi depends on the number of stages si in the epoch and
the fixed positive number ε.

The strategy σs will be defined for every positive integer s. However, its essential role in the
proof is for large values of s.

Recall that a pure strategy of Player 2 is identified with the sequence x of actions of Player 2 when
Player 1 plays constantly the nonabsorbing action. Let xij be the coordinate of x that corresponds
to the j-th round of the i-th epoch.

Remark. This remark serves to motivate the objectives and the desired properties of the epoch
strategies σsi and the strategy σ that is obtained by patching together the epoch strategies.

The epoch strategy σsi tests (in an epoch that starts with the nonabsorbing state) the average
x̄i of xij, j = 1, . . . , si. The objective of the i-th epoch strategy σsi is to ensure a good expected
outcome if the absorbing action is played (see (1) in the next paragraph). The objective of the
strategy σ is to eventually play the absorbing action if the upper density of the stages in epochs i
with x̄i ≤−ε is positive (see (2) in the next paragraph), and to ensure that for all sufficiently large
n, the expectation of the density of the stages in epochs i≤ n with x̄i ≤−ε and no absorption yet
is small (see (3) in the next paragraph)

The strategy σ of Player 1 controls two processes: the process of the values of the states (where
the value of the nonabsorbing state is 0, the value of the losing state for Player 1 is −1, and the
value of the winning state for Player 1 is 1) and the process of the actual payoffs. The strategy σ
of Player 1 will guarantee (1) that an approximation of the process of the values of the states is a
submartingale, and thus moves “upwards,” and that the process of the payoffs obeys the following
two properties. Set αi =−x̄i if the i-th epoch starts in the nonabsorbing state, and αi = 0 otherwise.
(2) for any strategy of Player 2, the fraction of the number of stages that are in epochs i≤ n with
αi ≥ ε, namely, 1

Sn

∑
i≤n si1{αi≥ε}, goes to 0 as n→∞, and (3) for all sufficiently large n, for any

strategy of Player 2, the expectation of 1
Sn

∑
i≤n si1{αi≥ε} is ≤ ε.

The control of the process of the values of the states along the control of the process of the actual
payoffs guarantees the ε-optimality of the strategy σ. This concludes the remark.



Hansen, Ibsen-Jensen, and Neyman: The Big Match with a clock and a bit of memory
Article submitted to Mathematics of Operations Research; manuscript no. MOR-2018-230 7

The careful definition of the epoch strategies and the duration of the epochs will guarantee that
the sequence of random variables vi, where

vi =


0 if the state in stage Si + 1 is the nonabsorbing state

ε−1 if the state in stage Si + 1 is the losing state for Player 1

1 if the state in stage Si + 1 is the winning state for Player 1

obeys the following two properties. For every pure strategy x of Player 2,

Eσ,x lim inf
1

Sn

n∑
i=1

sivi−1 ≥ v0− ε, (10)

and
Eσ,x vi ≥ v0− ε ∀i. (11)

Remark. This remark’s role is to explain the necessity of conditions (10) and (11). Condition
(10) is essentially necessary for the strategy σ to obey (8): one can show that if σ is a strategy of
Player 1 for which there is a pure strategy x of Player 2 such that the left-hand side of inequality
(10) is <−3ε, then there is a pure strategy x∗ of Player 2 for which inequality (8) does not hold.3

Condition (11) is essentially necessary for the strategy σ to obey (9): one can show that if σ is a
strategy of Player 1 for which there is i and a pure strategy x of Player 2 such that the left-hand
side of inequality (11) is <−4ε, then there is a pure strategy x∗ of Player 2 for which inequality
(9) does not hold for all sufficiently large n. This concludes the remark.

In addition, the strategy σ will satisfy the following two properties. Set αi = −x̄i if vi−1 = 0
(i.e., before absorption) and αi = 0 if vi−1 6= 0 (i.e., after absorption). For every pure strategy x of
Player 2,

lim
n→∞

1

Sn

n∑
i=1

si1{αi≥ε} = 0 Pσ,x-a.e. (12)

and for a sufficiently large nε, for every n≥ nε and every pure strategy x of Player 2,

Eσ,x
1

Sn

n∑
i=1

si1{αi≥ε} ≤ ε. (13)

Remark. This remark’s purpose is to explain the role of conditions (12) and (13), and serve as
an informal and sketchy proof of Lemmas 2 and 3. Note that whenever vi−1 6= 0 the payoffs in the
i-th epoch are constant: rij = 1 if vi−1 = 1 and rij =−1 = vi−1−ε if vi−1 = ε−1. If vi−1 = 0 = vi then
−αi is the average of the payoffs to Player 1 in the i-th epoch. Therefore, whenever vi−1 6= 0 or
vi−1 = 0 = vi, and αi ≤ ε, the average of the payoffs to Player 1 in the i-th epoch is at least vi−1−ε.
Note that there is at most one epoch i such that vi−1 = 0 6= vi. Hence the impact of the payoffs in
such an epoch is immaterial for the long-term averages of the payoffs. Therefore, if the durations
of the epochs satisfy (7), a strategy σ that obeys (10) along (12) satisfies (8), and a strategy σ
that obeys (11) and (13) satisfies (9). This concludes the remark.

We now return to the formal proof. We will prove that if the sequence (si) satisfies (7) then a
strategy σ that satisfies (10) and (12) satisfies (8) and a strategy σ that satisfies (11) and (13)
satisfies (9). We will use the following simple lemma.

Lemma 1. For every n and for any strategy pair, the sequence of rewards satisfies

n∑
i=1

si∑
j=1

rij ≥
n∑
i=1

si(vi−1− ε)−
n∑
i=1

si1{αi≥ε}−
n∑
i=1

si1{vi−1 6=vi}. (14)

3 And even the weaker inequality, Eσ,x lim sup 1
Sn

∑n
i=1 sivi−1 ≥ v0 − 3ε, does not hold.
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Proof. Note that

si∑
j=1

(rij − vi−1)≥


−εsi ≥−εsi− si1{αi≥ε} if vi−1 = ε− 1

0 ≥−εsi− si1{αi≥ε} if vi−1 = 1

−αisi ≥−εsi− si1{αi≥ε} if vi = vi−1 = 0

−si =−si1{vi 6=vi−1} if vi 6= vi−1 = 0.

(15)

Therefore,

si∑
j=1

(rij − vi−1) ≥ −εsi− si1{αi≥ε}− si1{vi−1 6=vi}. (16)

Summing these inequalities over 1≤ i≤ n yields inequality (14). �

Note that as
∑n

i=1 1{vi 6=vi−1} ≤ 1, (7) implies that

1

Sn

n∑
i=1

si1{vi 6=vi−1} ≤
sn
Sn
→n→∞ 0. (17)

Lemma 2. If the sequence (si) satisfies (7) then a strategy σ that satisfies (10) and (12) satisfies
inequality (8).

Proof. Fix a pure strategy x of Player 2. As σ satisfies (10),

Eσ,x lim inf
n→∞

1

Sn

n∑
i=1

si(vi−1− ε)≥ v0− 2ε.

By (12), we have

Eσ,x lim inf
n→∞

1

Sn

n∑
i=1

−si1{αi≥ε} = 0.

By (17), we have

Eσ,x lim inf
n→∞

1

Sn

n∑
i=1

−si1{vi 6=vi−1} ≥ lim inf
n→∞

−sn/Sn = 0.

By Lemma 1, and by summing the three inequalities displayed above, we conclude that

Eσ,x lim inf
n→∞

1

Sn

n∑
i=1

si∑
j=1

rij

≥ Eσ,x lim inf
n→∞

(
1

Sn

n∑
i=1

si(vi−1− ε)−
1

Sn

n∑
i=1

si1{αi≥ε}−
1

Sn

n∑
i=1

si1{vi−1 6=vi}

)
≥ Eσ,x lim inf

n→∞

1

Sn

n∑
i=1

si(vi−1− ε) +Eσ,x lim inf
n→∞

1

Sn

n∑
i=1

−si1{αi≥ε}

+Eσ,x lim inf
n→∞

1

Sn

n∑
i=1

−si1{vi−1 6=vi}

= Eσ,x lim inf
n→∞

1

Sn

n∑
i=1

si(vi−1− ε)≥ v0− 2ε.

�
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Lemma 3. If the sequence (si) satisfies (7) then a strategy σ that satisfies (11) and (13) satisfies
inequality (9).

Proof. Assume that the strategy σ satisfies (11) and (13). Fix a pure strategy x of Player 2. By
(11), we have that for every n,

Eσ,x
1

Sn

n∑
i=1

si(vi−1− ε)≥Eσ,x
1

Sn

n∑
i=1

si(v0− 2ε) = v0− 2ε.

By (13), we have that for every n≥ nε,

Eσ,x
1

Sn

n∑
i=1

−si1{αi≥ε} ≥−ε.

W.l.o.g. we assume that nε is sufficiently large so that sn/Sn < ε for every n≥ nε. Hence, for n≥ nε
we have

Eσ,x
1

Sn

n∑
i=1

−si1{vi 6=vi−1} ≥−sn/Sn ≥−ε.

By Lemma 1, and by summing the three inequalities displayed above, we conclude that for n≥ nε,

Eσ,x
1

Sn

n∑
i=1

si∑
j=1

rij ≥ v0− 4ε.

�
The epoch strategies σs. We now define the epoch strategies σs. If s = 1 then σs plays the

nonabsorbing action in the sole round of the epoch. We proceed with the definition of the strategy
σs for s > 1.

Let s > 1 be an integer. We define a two-memory strategy σs of Player 1 in the s-stage Big
Match. The two states of memory of the strategy σs are Ĉ (for continuing throughout) and Â (for
possible future absorption). The initial state of memory, m1, is Â.

To make several of the formulas below easier to read, we set p= 1− ε. Recall that the payoff in
stage t, rt, is either +1 or −1.

We continue with the definition of the probabilistic memory-updating function. If mt = Â and
it =A, then mt+1 = Ĉ (i.e., the conditional probability of mt+1 = Ĉ is 1). If mt = Â, it = C, and
rt = 1, then the conditional probability that mt+1 = Â is p2 = p1+rt . In all other cases, mt+1 =mt.
(In particular, if mt = Â, it =C, and rt = 1, the conditional probability that the memory state does
not change, i.e., that mt+1 = Â, is 1−p1+rt .) Figure 2 illustrates the probabilistic memory-updating
function.

We continue with the definition of the selection of the mixed action as a function of stage t and
memory state mt. The strategy plays action C if it is in memory state Ĉ. In order to define the
mixed action in round j if it is in memory state Â, we set

qj := εps−j.

Note that qj ≥ 0 and for j ≤ s we have
∑

k≤j qk ≤ ε
∑∞

`=0 p
` = ε/(1− p) = 1. Hence, 0 ≤ qj/(1−∑

k<j qk)≤ 1.

When the memory state of strategy σs in round j is Â, it plays the absorbing action A (and
moves to memory state Ĉ) with a conditional probability that depends on round j. This conditional
probability is given by

qj
(1−

∑
k<j qk)

.
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mt = Ĉ

Pr[it =A] = 0
Pr[it =C] = 1

mt = Â

Pr[it =A] = εps−t/(1−
∑

k<t εp
s−k)

Pr[it =C] = 1− εps−t/(1−
∑

k<t εp
s−k)

mt+1 = Ĉ

Pr[it+1 =A] = 0
Pr[it+1 =C] = 1

mt+1 = Â

Pr[it+1 =A] = εps−(t+1)/(1−
∑

k<t+1 εp
s−k)

Pr[it+1 =C] = 1− εps−(t+1)/(1−
∑

k<t+1 εp
s−k)

(C
,1

),(C
,−

1)

(A,1), (A,−1)

(C
,−

1
)

(C
,1)

1− p 2

p
2

Figure 2. The figure illustrate how the memory is updated in the epoch-strategy. Initially, in each epoch, we have
that m1 = Â

Note that this conditional probability is, given parameters p and s that are specified by the strategy,
a function of round j.

It follows that when it is in memory state Â it plays the nonabsorbing action C with the
conditional probability (that depends on round j)

1− qj
1−

∑
k<j qk

=
1−

∑
k≤j qk

1−
∑

k<j qk
.

A pure strategy of Player 2 in the auxiliary game with s+1 stages is identified with the sequence
(xk)1≤k≤s of actions of Player 2; equivalently, with the sequence of payoffs to Player 1 conditional
on no absorption. Note that if there was no absorption before round k then xk = rk. Fix a strategy
x= (xk)1≤k≤s for Player 2.

Lemma 4. Let pj(x), or pj for short, be the (unconditional) probability that the strategy σs of
Player 1 plays the absorbing action in stage 1≤ j ≤ s. Then,

pj = εps−1+
∑
k<j xk .

Proof. Note that p21{xk=1} + p01{xk=−1} = p1+xk is the conditional probability that mk+1 = Â,

given that mk = Â and the action of Player 1 in round k is C.
Round j is the first round in which Player 1 plays the absorbing action iff the play follows the

following pattern: Player 1 plays the absorbing action for the first time in the j-th round and
mk = Â for every k≤ j.

The conditional probability, given x1, x2, . . ., that the play follows this pattern is

qj
1−

∑
k<j qj

∏
i<j

1−
∑

k≤i qk

1−
∑

k<i qk

∏
k<j

(p21{xk=1}+ p01{xk=−1})
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= qj
∏
k<j

p1+xk

= qjp
j−1+

∑
k<j xk = εps−jpj−1+

∑
k<j xk = εps−1p

∑
k<j xk .

In the first equality we used the telescopic product
∏
i<j

1−
∑
k≤i qk

1−
∑
k<i qk

= 1−
∑

k<j qj and the equality

p21{xk=1}+ p01{xk=−1} = p1+xk . �

Remark: An alternative description of the epoch strategy. We introduce here an alternative and

equivalent definition of our epoch strategy. We do so to make the sampling aspect of our epoch

strategy σs clearer. The alternative description is as follows: select a positive integer `, where for

each 1≤ j ≤ s, the probability that the selected ` equals j is qj. Sample the action of Player 2 in

each round with probability 1− p2 and let the sampling of the different rounds be independent.

Play the absorbing action in round j iff j = `≤ s and the payoff in each of the previously sampled

rounds is −1.

Let σ∗s be the strategy defined by the above alternative description. Let p∗j (x) be the Pσ∗s ,x-

probability, i.e., the probability that is defined by the strategy σ∗s of Player 1 and the pure strategy

x = (xk)1≤k≤s of Player 2, that the action A is played for the first time in round j. In order to

show that the strategy σ∗s equals σs, it suffices to show that for every pure strategy x of Player 2,

p∗j (x) = pj(x). Note that p∗j (x) equals qj times the probability of no sampling in rounds k < j with

xk = 1, i.e., times the product Πk<jp
1+xk . Hence, p∗j (x) = εps−jΠk<jp

1+xk = pj(x). Therefore, the

strategy σ∗s equals the strategy σs. This concludes the remark.

Consider the auxiliary games with s+1 stages, where dynamics and stage payoffs follow the rules

of the Big Match and the players are active only in the first s stages j, j = 1, . . . , s.

Let σ = σs. We study the distribution of the state in the last period, s+ 1, as a function of the

strategy σ of Player 1 and a pure strategy τ of Player 2.

Let τ be a pure strategy of Player 2. Recall that we labelled the left-column action of Player 2 by

-1 and the right-column action of Player 2 by 1; hence, the pure strategy τ of Player 2 is identified

with the sequence of actions x= x(τ) = (x1, . . . , xs).

Define a function v on plays of the auxiliary (s+1)-stage game as follows. If the play is absorbed

in the winning state for Player 1, then v= 1. If the play is absorbed in the losing state for Player 1,

then v= ε− 1, and otherwise v= 0.

Lemma 5. Let α(x) =−
∑s

j=1 xj/s. Then

Eσ,xv = p(1−α(x))s− ps (18)

≥ p(1−δ)s1{α(x)≥δ}− ps ∀δ > 0 (19)

≥ −ps. (20)

Proof. 4 For every integer c let J+
c be the set of all indices 1 ≤ j ≤ s such that c = −

∑
k<j xk

and xj =−1, and let J−c be the set of all indices 1≤ j ≤ s such that c+ 1 =−
∑

k<j xk and xj = 1.

Obviously, for each integer c, the sets of indices J+
c and J−c are disjoint, and the set of integers

{1, . . . , s} is the disjoint union ∪c(J+
c ∪ J−c ). There is an illustration of the sets J+

c and J−c in

Figure 3.

4 The proof is broadly similar to [5, Lemma 2.6].
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Figure 3. To illustrate the sets J+
c and J−c arcs are drawn between the points (t,−

∑t
j=1 xj). The set J+

c is then

given by the arcs crossing the horizontal line at height c+ 0.5 upward and the set J−c is given by the arcs crossing
the line downward. Shown here are the sets J+

1 (red dots) and J−1 (blue dots).

Obviously, if j ∈ J+
c and j′ ∈ J−c then pc+1 = p1+

∑
k<j xk = p

∑
k<j′ xk . Therefore, using Lemma 4,

we have

Eσ,xv =
s∑
j=1

1{xj=−1}pj −
s∑
j=1

1{xj=1}pjp

=
∑
c

∑
j∈J+

c

εps−c−1−
∑
c

∑
j∈J−c

εps−c−1.

Note that

|J+
c |=



|J−c | if α> 0 and c /∈ {0,1, . . . , αs−1}
|J−c |+ 1 if α> 0 and c∈ {0,1, . . . , αs−1}
|J−c | if α= 0

|J−c | if α< 0 and −c /∈ {1,2, . . . ,−αs}
|J−c | − 1 if α< 0 and −c∈ {1,2, . . . ,−αs}.

Therefore,

Eσ,xv=


∑αs−1

j=0 εps−j−1 = p(1−α)s− ps if α> 0,

∑−αs
j=1 εp

s+j−1 = p(1−α)s− ps if α≤ 0.

(21)

This completes the proof of equality (18).
The function α 7→ p(1−α)s is nonnegative and monotonic increasing in α, and p(1−α)s ≥

p(1−δ)s1{α≥δ} ≥ 0. Therefore, equality (18) implies inequalities (19) and (20), which completes the
proof of the lemma. �

The epochs’ duration. We now define the sequence (si), i.e., the sequence of durations of
epochs. W.l.o.g. we assume that 0< ε< 1/2; hence, 1/p < 2. As 1 + ε > 1,

∑∞
i=1

2

i(1+ε)
<∞. Let iε

be a sufficiently large positive integer so that

∞∑
i=iε+1

2

i(1+ε)
< ε. (22)

The duration of the i-th epoch, si, is the largest integer such that p−si ≤ i1+ε if i > iε, and si = 1
if i≤ iε. Also, the sum of the duration of the first n epochs is denoted by Sn =

∑n

i=1 sn.
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Lemma 6. The sequence (si) satisfies (7).

Proof. In short, the definition of si implies that the sequence si is nondecreasing and that sn =
Θ(lnn) and hence Sn = Θ(n lnn), and therefore sn/Sn→n→∞ 0.

For completeness, we spell out the details. Recall that p= 1− ε > 1/2. Note that 1< p−1 ≤ i1+ε
for every i > 1; hence, si ≥ 1 for every i > iε, and recall that si = 1 for every 1≤ i≤ iε. For i > iε,
p−si ≤ i1+ε by the definition of si, and i1+ε < (i+ 1)1+ε. Hence, by the definition of si+1, we have
si+1 ≥ si. We conclude that 1≤ si ≤ si+1 for every i.

For i > iε, the definition of si implies that p−si ≤ i1+ε ≤ p−si−1; hence, 1+ε
− lnp

ln i ≥ si ≥
−1 + 1+ε

− lnp
ln i. Therefore, sn = Θ(lnn) and Sn =

∑n

i=1 si = Θ(n lnn) as n → ∞, and therefore
sn/Sn→n→∞ 0.

�

Lemma 7. There exists a constant K such that for all positive integers i and n with i≤ n,

si
Sn
≤ sn
Sn
≤Kn−1 ≤Kn−ε

2

iε
2−1. (23)

Proof. In short, this lemma follows from the following properties: si is nondecreasing, sn =
Θ(lnn), Sn = Θ(n lnn), and n−1 = n−ε

2
nε

2−1 ≤ n−ε2iε2−1.
For completeness, we spell out an explicit derivation of these inequalities. For i > iε, si ≥−1 +

1+ε
− lnp

ln i ≥ −1 + 1+ε
2ε

ln i (using the inequality 2ε ≥ − ln(1 − ε) = − lnp for ε < 1/2); hence, for

n > 2(iε + 1), Sn ≥
∑

n/2−1≤i≤n si ≥−n+ n
2
1+ε
4ε

lnn. For n > iε, sn ≤ 1+ε
− lnp

lnn≤ 1+ε
ε

lnn (using the

inequality ε≤− ln(1− ε) =− lnp for 0< ε < 1); hence, sn ≤ 1+ε
ε

lnn≤Kn−1Sn for a sufficiently
large K. Hence, for n> 2(iε + 1), sn/Sn <Kn

−1 for a sufficiently large K, and therefore there is a
positive constant K such that for every n we have sn/Sn <Kn

−1.
�

We proceed with the definition of the strategy σ of Player 1. The strategy σ plays in the i-th
epoch the strategy σsi .

The next lemma introduces an auxiliary sequence of random variables, whose properties are used
in the following lemma that show that the strategy σ obeys properties (10), (11), (12), and (13).

Lemma 8. The sequence of random variables (Yi)i≥1 that is defined by

Yi = vi−
∞∑

k>max(i,iε)

2

k(1+ε)

obeys Yi− vi→i→∞ 0, Yi ≤ vi ≤ Yi + ε, −1<Yi < 1, and for every pure strategy x of Player 2,

Eσ,x(Yi−Yi−1 | hi)≥ iε
2−11{αi≥ε} (24)

for any history of play hi up to the start of the i-th epoch.

Proof. By the definition of vi and (22), |Yi|< 1 and Yi ≤ vi ≤ Yi+ε. As
∑∞

k>max(i,iε)
2

k(1+ε)
→i→∞ 0,

Yi− vi→i→∞ 0.
Let x be a pure strategy of Player 2 and let xi = (xi1, . . . , x

i
si

) be the sequence of actions of
Player 2 in epoch i assuming no absorption, and recall that

αi =

{
−
∑si

j=1 x
i
j/si if vi−1 = 0 and i > iε,

0 otherwise.
(25)

For 1≤ i≤ iε, vi = 0 and αi = 0. Therefore, inequality (24) holds for every 1≤ i≤ iε. In addition,
inequality (24) holds whenever vi−1 6= 0. Hence it remains to prove that inequality (24) holds for
i > iε and vi−1 = 0.
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Assume that vi−1 = 0 and that i > iε. Inequality (19) along with the definition of αi and si
implies that for i≥ iε,

Eσ,x(vi− vi−1 | hi) ≥ p(1−ε)si1{αi≥ε}− p
si

≥ iε
2−11{αi≥ε}−

2

i1+ε
(26)

for any history of play hi up to the start of the i-th epoch. As Yi − Yi−1 = vi − vi−1 + 2
i1+ε

for
i > iε + 1, we get that inequality (24) holds for every i > iε. �

Lemma 9. The strategy σ obeys properties (10) and (11).

Proof. Let x be a pure strategy of Player 2. As Yi−1 is a function of the play up to the start of the
i-th epoch, inequality (24) shows that the sequence of random variables (Yi)i≥0 is a submartingale
(with respect to the probability distribution Pσ,x on plays). In addition, Y0 ≥ v0 − ε and vi ≥ Yi.
Therefore, Eσ,xvi ≥Eσ,xYi ≥Eσ,xY0 ≥ v0− ε, which proves (11).

As Yi is a bounded submartingale, it converges a.e. to a limit Y∞ and Eσ,xY∞ ≥ Y0. As Yi −
vi→i→∞ 0, we have vi→i→∞ Y∞.

As vi→i→∞ Y∞, si
Sn
→n→∞ 0 for each fixed i, and Sn =

∑n

i=1 si, we have

1

Sn

n∑
i=1

sivi−1→n→∞ Y∞ Pσ,x-a.e. (27)

Hence, Eσ,x limn→∞
1
Sn

∑n

i=1 sivi−1 =Eσ,xY∞ ≥ Y0 ≥ v0− ε, which proves (10). �

Lemma 10. The strategy σ obeys properties (12) and (13).

Proof. Note that (as −1 < Yi < 1) Yi − Yj < 2. Taking the expectations in inequality (24), we

deduce that Eσ,x(Yi − Yi−1) ≥ Eσ,x iε
2−11{αi≥ε}. Summing these inequalities over all i such that

1≤ i≤ n, we deduce that

2>Eσ,x(Yn−Y0)≥Eσ,x
n∑
i=1

iε
2−11{αi≥ε}. (28)

By the monotone convergence theorem, inequality (28) implies that 2≥ Eσ,x
∑∞

i=1 i
ε2−11{αi≥ε}.

Hence,
∑∞

i=1 i
ε2−11{αi≥ε} is finite a.e. Hence, using (23), for every pure strategy x of Player 2,

0≤ 1

Sn

n∑
i=1

si1{αi≥ε} ≤Kn−ε
2

n∑
i=1

iε
2−11{αi≥ε}→n→∞ 0 Pσ,x-a.e., (29)

which proves (12).
We proceed to prove (13). Let nε be a sufficiently large integer so that Kn−ε

2

ε < ε
2
. Hence,

si
Sn
≤ iε2−1ε/2 for every n≥ nε and iε < i≤ n. Then, using inequality (28), we have

Eσ,x
1

Sn

n∑
i=1

si1{αi≥ε} ≤Eσ,x
n∑
i=1

iε
2−11{αi≥ε}ε/2< ε ∀n≥ nε, (30)

which proves (13).
�

5. Open problems The main open problem is whether or not in any stochastic game each
player has a finite-memory strategy that is ε-optimal.

In the remainder of this section we introduce several additional open problems. These open
problems are of independent interest and a few of them may turn out to be building blocks toward
the solution of the main open problem.
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5.1. Private versus public memory states The ε-optimal two-memory strategy in our
proof uses private memory states (i.e., Player 2 does not observe the memory states of the strategy
of Player 1).

We say that the memory states mt are public if they are observed by all players and a strategy
is public if the memory states are. For example, the memory states of the Blackwell and Ferguson
[2] strategy in the Big Match, which are the possible differences between the number of odd and
even guesses of Player 2, are public. Also, the Mertens and Neyman [7] ε-optimal strategies are
public in a stochastic game, and so are any memory-based strategy in which the memory-updating
functions are deterministic. The ε-optimal strategies that are introduced in Hansen et al. [4] are
not public.

All the above-mentioned ε-optimal strategies are memory-based strategies with an infinite set of
memory states. One can generalize the proof of [4, Theorem 6] to show that in the Big Match any
public finite-memory strategy is worthless.

A natural question that arises is what is the minimal size of the public memory (as a function
of t) that is needed for an ε-optimal strategy in a stochastic game. In order to state this problem
formally, we recall the reader of the notion of an (f, γ)-memory strategy, where f : N → N is a
nondecreasing function and γ :N → [0,1] is a nonincreasing function.

An (f, γ)-memory strategy is a memory-based strategy σ whose set of memory states is N and
for every strategy τ and positive integer t′ ∈N , the Pσ,τ -probability that mt ≤ f(t) for all t≥ t′ is
at least 1− γ(t′).

The question is then for which functions f, γ does there exists a public (f, γ)-memory strategy
for the Big Match and for stochastic games in general?

Note that we distinguish between a public finite-memory strategy and a mixed strategy that is a
mixture of such strategies. In fact, a general mixing principle implies that in any stochastic game,
any k-memory strategy (even if all memory states are private) is equivalent to a mixed strategy
that is a mixture of (uncountably many) public k-memory strategies.

This principle follows from the following construction of a mixture of public k-memory strategies.
Let σ be a k-memory strategy with memory states (mt)t∈N, action function σα, and memory-
updating function σm. For any sequence of permutations of [k] := {1, . . . , k}, π= (πt)

∞
t=1, we define

the public k-memory strategy πσ that follows strategy σ and that makes public the memory states
renamed according to πt in round t, for each t.

The mixture of πσ, where the sequence of random permutations πt, t= 1,2 . . ., is a sequence of
i.i.d. permutations of [k] and each πt is uniformly distributed over all k! permutations, is equivalent
to the k-memory strategy σ.

5.2. Recall-based strategies The definitions in this section apply to a general stochastic
game. A few of the open problems in this section concern some specific stochastic game.

A recall-based strategy is a memory-based strategy in which the memory state mt is simply an
encoding of zt−kt , it−kt , jt−kt , . . . , zt−1, it−1, jt−1, zt, where kt < t. As it is a memory-based strategy
it follows that kt+1 ≤ kt + 1. A k-recall strategy is a recall-based strategy where the recall size kt
equals k. A finite-recall strategy is a k-recall strategy for some fixed finite k.

In a recall-based strategy the memory states are public and the memory-updating function is
deterministic. Therefore, it follows from [4, Theorem 6] that in the Big Match, Player 1 has no
worthy strategy that is a finite-recall strategy.

A natural question that arises is, what is the minimal recall (as a function of t) that is needed for
an ε-optimal strategy in a stochastic game? In order to state this problem formally, we introduce
the concept of f -recall strategies, where f : N→ N is a nondecreasing function with f(t)< t and
f(t+ 1)≤ f(t) + 1.

An f -recall strategy is a memory-based strategy in which the memory state mt is an encoding of
zt−f(t), it−f(t), jt−f(t), . . . , zt−1, it−1, jt−1, zt.
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The question that arises is, what are the functions f for which there is an f -recall strategy that
is ε-optimal? The question applies to a general stochastic game as well as to the special case of the
Big Match.

It is worthwhile to note that the ε-optimal strategy in the Big Match that is introduced in the
present paper is an f -recall strategy with f(t)≤ K log t

ε
for some positive constant K.

Remark. A counterpart of a recall-based strategy is a strategy with information lag. A strategy
with information lag corresponds to a strategy in the model where a player observe the actions of her
opponent after some time-dependent delay. An f -delay strategy, where f :N→N is a nondecreasing
function with f(t)< t and f(t+ 1)≤ f(t) + 1, specifies the action in stage n as a function of the
state in stage n and the history of the play up to stage n− f(n).

Levy [6, Theorem 3.1.1] assets that for any finite stochastic game and ε > 0, for any β > 1
Player 1 has an ε-optimal strategy which is an f -delay strategy, where f(n) =O( n

(logn)β
), and [6,

Proposition 3.2.2] asserts that if n
log(logn)

= o(f(n)), then, for every ε > 0, Player 2 has a strategy

τε such that for every f -delay strategy σ of Player 1, Eσ,τε lim infn→∞
1
n

∑n

t=1 rt ≤ ε− 1.
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