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1. INTRODUCTION

Since 1960 attention has focused more and more on games with large masses of
players,lj i.e., where some of the participants are individually insignificant.
Milnor and Shapley (1961), Shapiro and Shapley (1960), Shapley (1961) and

Hart (1973), investigated value theories of "oceanic games," i.e., weighted
majority games in which a sizable fraction of the total vote is controlled

by a few large (major) players, and the rest is distributed among a large
number of small (minor) voters. Shapiro and Shapley (1960), Milnor and Shapley
(1961), and Shapley (1961), presented asymptotic results for the values of the
major players, when the others become smaller and smaller. As for the minor
ones, finding the limit of their values, turned out to be a much more difficult
task; even in the case where there are no major players, this was an open

problem for many years ~ only recently solved by the author (1979).

The main purpose of this paper is to settle the above question in general -
i.e., for games with both major and minor voters. Intuitively, the result is
that, for a coalition of small players, the (limit) value does not depend on

its composition, but only on the total vote it has. More precisely, we consider
two measures on the set of small players: the 'voting' and the 'value'. We
prove that, as the largest minor vote tends to zero, the distance between the
above two measures (defined as the bounded variation of the difference of

their normalizations) also tends to zero.

The problem finds its natural and more general setting in the context of values
of games with a continuum of players. The central interest is in those that
are obtained as limits of values of finite approximants. The asymptotic value

is the "strongest' possible such value in the sense, that if it exists for a

*This work was supported by National Science Foundation Grant S0C75-21820-A01
at the Institute for Mathematical Studies in the Social Sciences, Stanford
University.

l/Kuhn and Tucker list fourteen outstanding research problems in [1§|. The
eleventh urged us "to establish significant asymptotic properties of n-person
games, for large n" (110}, p. xii).
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particular game v, then any limiting <wwcmm\ will exist for that game and equal
the asymptotic ome. It should be pointed out that the existence of the
asymptotic value for v is essentially a strong statement on the limit of the

3/

values of games with finitely many players™ (which approximate v).

The asymptotic value of games with a continuum of players bas been studied
extensively, A_Homv “mm, _uﬁq mmm and _wmﬁv. The set of all games having an
asymptotic value is denoted by ASYMP. It has long been known {Kannai (1966},
Aumann-Shapley (1974)] that non~atomic games that are "sufficiently differen-
tiable" (i.e., games in pNA) have asymptotic values (i.e., pNA T ASYMP).
Recently [Neyman (1979)] established the existence of an asymptotic value for
singular non~atomic games (i.e., proved that bv'NA C ASYMP). As for mixed
games, i.e., games with finitely many large players it has been shown [Fogelman
and Quinzii (1975)] that mixed games that are sufficiently differentiable are
in ASYMP (i.e., that TpPFL C ASYMP). Arm,awwﬁ result of this papexr is that

singular mixed games are in ASYMP i.e. to prove that bv'FL C ASYMP.

2. STATEMENT OF THE MAIN RESULT

A game is a set-function v: C + R, where (I,0} is a (standard) messurable
space (the player space) with v{#) = 0; it is called finite if C if finite.

The Shapley value of a finite game v is the measure on C given by

(z.1) dv(A) = mﬁdhvm U A) - <Avau

R
A
in the order R, and E is the expectation operation when each order has equal

where P, is the set of players (atoms of () preceding 4 ({an atom of ()
probability ﬁwmm. To define the asymptotic value for a game v that is not
necessarily finite, one approximate it by finite games. Specifically, if 1
is a finite subfield of C, define a finite game vy on I by v, = <wm.
Given an 8§ in € (a "coalition"), an increasing sequence *mw.mm,,..w of
finite subfield of C is called S-admissible if § € mH and mwmw generates
C. An asymptotic value of v is a set function ¢wv on C such that for all

coalitions § and all S-admissible sequence, we have

(2.2) lim @<ﬁ (58) = yw(S) .
n

m\ﬁwwm the p-value ~m_. mw_ and the partition value wwmm.
3 :

!\Moﬁ example, in (1977) Aumann-Kurz used the p-value as the underlying value
concept, which restricted the conclusions of their model to democratic societies.
Later, when their games were shown to have asymptotic value (cf. Mwmwuv it led

to more general results.
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The set of all games having asymptotic values is denoted by ASYMP.

Let (I,() be a measurable space isomorphic to ([0,1],B) where B is the
og~field of Borel sets in [0,1]. We denote by FL the set of all measures

on (I,0) with finitely many atoms. The space of all real-valued functions £
of bounded variation on [0,1] that obey f£(0) = 0 and are continuous at 0
and 1 1is denoted bv'. The closed subspace of BV spanned by the set func-
tions of the form f©oyp, where y € FL is a probability measure and f € by’

is denoted bwv'FL.

Main Theorem: bv'FL C ASYMP.

3. VALUES FOR FINITE GAMES — PREPARATIONS FOR THE PROOY

We begin by recalling that a finite game in coalitional (or characteristic
function) form (a finite game for short) is usually represented as a pair

(N,v), where N is a finite set and v is a real-valued function on the family
Ny of all subsets of N, with v(#) = 0 (clearly, this is equivalent to our
definitions in the previous section; N is the set of atoms of the finite field

Cy. We may consider ¢v as a measure on N.

The formula (2.1) for the Shapley value uses the finite probability space of the
orders on N. 71t turns out that it is much more convenient and powerful to

replace that discrete probability space by a continuous one.

This is done as follows: Let (R,5,P) be a probability space such that to every
i € ¥ corresponds a real-valued random variable xwu defined on (R,Z,P), having

uniform distribution on (0,1); furthermore, let the random variables Nm be

mutually independent. This "continuous embedding" induces, for almest mww

© € 0, an order R(w) on N by iR(w)j iff xwﬂev < NuAevv and for every order
R on § Prob (R(w) = R) = H\~z~_. In what follows we will use vw or ﬁw
instead of vMAav. Observe that the stochastic process Zn" 0,11 = Nz defined
by Zﬁﬁsv = {i: 1 €N, waev < t}, is nondecreasing, has statiomary increments,
which are sums (unions) of independent random variables, zo = ¢ , and ZH = N.

In particular, if w is a measure on N, then 2n2nv is a sum of independent
(real-valued) random variables. For w© €Q, 1 €N and a game v on N we

define

X, (w) X, (w)
Ad,w) = v(N & ) - v \{ibh .
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X, )

Obviocusly mM =N \{i} and therefore,

1
(3.1) $v(i) = EGEw)) = [E@ L0 |%, = 1) - dr .
0

A weighted majority game is one of the form mwﬂus where w 1is a non-negative
measure on the players' set N (called: the voting measure), 0 < g < w(N),

and maﬂxv =0 or 1, according to x < q or x> q. It is normalized if w
is a probability measure, i.e., w(N) = 1. In the case of a finite (or countable)
N, we shall sometimes use a more explicit symbol for the game; namely

fgq; EM.Smu...w. Here N = {1,2,...} and w, stands for w({i}}. We will also

EX

use xw for M {i}; in particular ZM n Zn/ﬁww.

Lerma 1: Let vz {q: sH,...»asw be a finite weighted majority game, with

0 < g < w{¥N). Then

1
ov(d) = [ Prob (w(dD) € [q - v,,q)) - dt
0 1 1

1 .
FTIVE OY
=u(fx, 0 Woahvan .
o lemw,a)i .
Proof: $v{1) = E(a(w)) = Prob (w(P) € [q - w,,q))
1
= = {q - %, =) -
% Frob (w(P,) € [q - w0 |¥X t) - dt
1

0

and apply Fubini's theoren.

= [ Prob W) € [q - w,@) - dc

Lemma 2: Let v = [q; ew..».aaww be a weighted majority game, and let

T = inf {t: w(®) > q}. Then
$v(i) = Prob (T = %wv .

Proof: Follows easily from the finiteness of N.

We turn now to the "key" lemma, which is a2 reformulation, in terms of weighted

majority games, of the main result of WH»M.

Lemma 3: TFor every & > 0 there exist K >0 and & > 0 such that if

v = [q; sHu....znw is a normalized weighted majority game with LA § and

K. SM <g <1l~K- sw for every 1 € N, then

um@<ﬁﬁwwv - €Hm <g .

i) 1

i

Consider a sequence
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of (m + 5rvlmwnmos normalized weighted majority games

v, = {q; aw SW Sw ﬂw

k P Tk Yy
such that

T k
(3.2) M Vps T O 0 as k>

=1
(3.3) sw > w, as k=

i i
and

ko _ k

(3.4) awx £E+u =V 0 as k +®

3
We shall use the following notations: M for the set {1,...,m} of "major"

k

players; N for the set {m + 1,...,m + n } of "minor" players; w for the

k
voting measure on

k

MUY : and w for the "limiting' voting measure on M.

(Note that the players do not retain their identities from game to game in the

sequence, nevertheless, in our continuous embedding, xpv...,x will be

independent of k.}
t

b
We associate to that sequence of games the "ideal” stochas—

tic process Z defined by A ﬂAznv + at, and we define the hitting time

of {q,1} by n@ =

inf {e: 2t > q}. The stochastic process 75 and the

71t

hitting time ty are "ilimits” of the "actual' stochastic processes

k.t ¥t
NW =y (M) +w Azx

Lemma 4: For every

and

va:aernwswnwawm nw = iaf {t: z-

> qt.
q .24

e>0, 0 ¢gt<l,and 0<g=< 1
Prob AWNM - Nmm > g}y —r O
v
: k .
Prob (jt -t | >e) —0 .
e 1 oo

Proof: The first part follows from (3.3) and Chebyshev's inequality (the weak

law of large numbers) applied to awAZnu (which is a sum of independent random

variables). 'The second part is then implied by the observation that

> Qﬁnm - ﬁwv whenever 0 < t

X.
Let »wﬁav = ?@\WJ

xw = t)dt.

Lemma 5: Let Qﬁ

Then

22 - g0

AnAw.

X, L 2- : 1

, wiM )1, and let ¢, = Prob (q € A)) = [Prob (g€ >Hﬁevm
0

denote the value of the game vy to the i-th major player.

GM -+ &w dag k > w

ol
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Proof: This is Theorem 1 in Milnor-Shapley (1961) (alternatively, Theorem 1 in
Shapiro-Shapley (1960)). For completeness we present here a short proof, based
on our continuous embedding. Let ma = {t: ta + w(8) = q for some S C M}.
The set B is finite. For every ¢t & mav min |w(S) + ot - q| > 0, and thus

q S
(by Chebyshev's inequality) we deduce that, for every 1 < i<m

£,(t) = Prob @O + izw € (q - wp,allx; = )

-+ Prob (g € A_(w)|X, = t) .
R 1
k-sen

Using Lebesque dominated convergence theorem, we finally conclude that

1 1
13
;= mmwa . dt xﬂ % Prob (q € fs_:xw =t)-de=d, .

4. PROOF OF THE MAIN THEOREM

The notations are as in the previous sections.

Lemma 6: Let @M. for 1 <ic<cm+ oy denote the value of the game Vi to the
S " X
i~th player, and let n = 1 — M @w. Then,
i=1 . !
E+5W . .
(4.1 T Jorel-newl >0 as koo
i=mtl

Procf: Let nw = inf {t: zNAZn U zwv > q}; by Lemma 2, GM = Prob Axw =t).

In order to prove {4.1) it is enough to prove that for every mw TN,

(46.2)  Llima(ev,)(S,) - M (S) =0 .
k k k
Keroo
By lLemma 5, and the efficiency of the Shapley value, e<wAzwv +n, as k> =, t

and therefore it will be encugh te prove that for every mx C zw.

k
(4.3) lim inf (@év, (S,) - nw (S, N> 0 .
Koo Tk k7 -
Let mx C zw be given. Thus,
k k !
(6.8) $v. (§,) = ) Prob (¢t =X.,) = Prob {t €& X(5)}
Tk . k
ies
k
where Nﬂmwv is the random finite set ﬁxww . The idealization of nxv
ies §
namely t , is a function of X.,...,X  only. k Let :

q 1 m

PO UL L NG Ve A e
) Kot x,. " K, t
£ = inf {t: w Azwu +w MD >q) = dnf {t:w Azwv > pxw ,
t
where G =9~ 2xﬁz aV .

Consider the weighted majority games (which depend on xHA...«N )

™
u, = o ; v o
k ke Tl a+dw
on the set of players zx, Let mw be its value, and let ex be the restric-

tien to N k

k
of @w (as a "sub average”), and then use Lemma 3.

of the value of Vi We would like to approximate ¢ in terms

Let H° denote the event that for all 1 < i <m, Mnn - xw_ > g3 the

event q & »»mau for all 1 <i <m will be denoted by H. Obviously,

n = Prob (H). WNow we claim that

(4.5) Prob (E°lH) — 1 . :
0
Indeed, if Mng - Mww <g and gq & bwnsv then xw e wa + (~g,e) where
ma = {t: q = to + w(8) for some § CM}. Since mm is finite, the Lebesque
measure of wn + (-£,e) tends to zero as ¢ + 0, which completes the proof
of {(4.5).
For every fixed & » 0, if ﬂw satisfies
y E, . E
(4.6} QAMV < g < afl Nu s
then by Lemma 3,
. k
(4.7) Tim adu, (S.) ~w (8,) =0 .
" kT Tk k
il
Lemma 4 now implies Prob mmn - nxw > ¢/2) — 0, hence,
q ke
(4.8)  Prob (i = f|E%) — 1 .
koo
Now,
k x_ =k, -k
(4.9) e<wﬁmwv = Prob (¢t € xnmwvv > Prob (£~ =t At & xﬁmxv A D) .

Observe that for (sufficiently) small e > 0, there is K (large enough),

such that for every k > K, (4.6) is implied by E°. As 4u (5)

= Prob Amw & xAmwvv. we can combine (4.5), (4.7), (4.B) and (4.9), using stan-
dard probability rules, to get (4.2) - which completes the proof of this lemma.
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We proceed by proving that the "jump functions” are in ASYMP. We identify a
finite subfield of ( with the partition it induces. If v is any set func-
tiom on (I,C), its dual v¥ dis defined by v*({§) = v(I) - v(I\5). Observe

that v € ASYMP iff v* € ASYMP (easily shown by reversing order, see (|5],

p, 140)). If 0 < q< 1 then .m.n?& =0 or 1 according to x<gq or x> q.

Lemma 7: Let A be a probability measure in FL, and 0 < g < 1. Then

mn o) € ASYMP and ma o) € ASYMP.

Proof: Let i -

¢ wuwuw
of (. Let mmw....vmaw be the finite set of atoms of A. As Amxva is
3 s N "H
increasing and me generates (, there exists K (large enough) such that

for all k > K, each of the mw_m is in a different atom of T For such

w 'S
sequences Amwv_awww it is known that, as %k + «, we have w?ywu - mews
whenever .ww = .PM & mw“ and yQJﬁu -+ 0 whenever >W C mw does not contain any

af the atoms a, (1 < i < m). Therefore, the sequence of finite games
' k k _k k

£ o are of the form {q:

?m vmw orm  {g: Wy, L AR Jéa»‘rzw

(3.3), and (3.4) whenever x contains a (non-trivial) non-atemic part. Thus

1, and satvisfy (3.2},

,cwwbsammsmwno:owammnrwn mu oymbmﬁ%.wmyva:ﬁmu‘mmagﬁn»mrwn
obviously £ o) € ASTIP. '

Now observe that .ma.ny = mmw:aawv» and therafore mm o) & ASYMP.

Lemma 8: Let § & bv' be right continuous, and let X be a probability mea-

sure in FL. Then £o ) € ASYMP.

Proof: Let 5 €, and let Qwvﬂuw be an S~admissible sequence. By Lemma
3.4 of {15},

o [ =
o (£ yvmwﬂmv q

(T3 Sy ok

BE o0 (U@

M,,onmdmwwomnAr m@ m‘ymﬁmu?mgmdwnwcmwmw,vwiﬁAmo\Cm Amv
q k

-+ Gﬁmmayv:wamv where 1 denotes the asymptotic value. Using Lebesque's
1

dominated convergence theorem, we conclude that @Amo»vmwﬁmv > N‘Wﬁ Amaoyvmmv - dE(g),

hence f£o) € ASYMP and

1
(4.10) G(Eoa)(S) = ?Amai:mzm@ .
0

Theorem A: bv'FL C ASYMP.

Proof: Theorem F of ~mT asserts that ASYMP 1is a closed symmetric Linear
subspace of BV-the space of all set functions of bounded variation. Thus,

by Lerma 5 and Lemma 6, ASYMP contains every game of the form

be an increasing S-admissible sequence of finite subfield

FlONrr S0 LU ISy W EE etk e e

(4.11) f=g+
i

o, F s
1t N

i o~1 8

©

with g &€ bv' right continuous, a € (0,1), and M HQZ < w. §ince every
i=1

f & bv' has such (i.e., (4.11)) a representation, we couclude, by recalling

definition of bv'FL, and using again the closeness of ASYMP that

bv'FL C ASYMP.

5. FURTHER RESULTS AND OPEN PROBLEMS

In this section we shall state few additional results, and present some open

problems.

Denote by M the space of measures on the underlying mesurable space (I,0),
zm will dencte the subspace of M of all purely atomic measures, and
Ed = Z/Zm“ i.e., 25 is the set of all measures with a (non-trivial) non-atomic

part; ¥l  denotes the subset of M of all non-negative measures jp, with

w(I) = 1, and mﬁu,w xw, wrw are similarly defined. The closed subspace of BV
spanned by power of measures in ZH is denoted by pM, and the one spammed by

the set functions of the form foy where f € bv' and u & zwv is denoted

by bv'M. In the same manner the spaces pFl, ﬁzm. E\Mv» ?.13&, .913@ are
defined. Tet A denote the clesed algebra generated by games of the form
fou, where u mﬁgw and f & bv' is continuous. If ou, and Do are two
subspaces of BV we denote by CH »ow the minimal closed space smy.or contain
oH. ow and o,H . ON.

Theorem B: pFL = pM % bv'FL % pM % bv'FL m A xbv'FL mm ASYMP .

We would like to replace (in Theorem B) FL by M. This leads us to the
following,

Open Problem: Is bv'M C ASYMP, or even is ,c<_zw C ASYMP  or wd.ﬁv C ASYMP,

oy even is onm € ASYMP forx every u € ZW, or for every u & xw.

This problem has proved to be very stubborn. The last part turns out to be
equivalent to the open problem raised by Shapley AWNDC as to whether or not
every weighted majority game with countable many players is regular. Observe,
that our method implies, that if u & Zw and mao u & ASYMP for every
0<q<1 than fep €ASYMP for every £ & bv', and thus these problems
reduces to those of the jump functions. A positive solution to this question
would imply in particular the existence of a partition value (in particular

a value) on bv'M, Even this is unkmown. Indeed we state
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Open Problem: Does there exist a partition value on bv'M, or, even, does there

exist a value on bv'M.
Along these lines, we can state the following:

Theorem G: (a) There exists a partition value on v4.zw.
(b) If £E€bv' and A € ZH, then for every subset B of the set
of atoms of the measure A, and every B-admissible sequence of partitions

8
Aawkuw. nwavaHn WMH eam oyvmwnwv mxmmnwmsmwmwdamvmﬂamuHOmnWmvanwncl

w

lar sequence Anwvwnw.

We turn now to results concerning asymptotic pre~values; for each Borel measure
A on [0,1] the h-pre valuve N of the finite game (N,v) is the measure

on N given by,

1
$,v(i) = [EQE[X, = 0 dr) .
A h 1

The main conceptual interest is in those that are semi values, i.e., where X
is a probability measure (see "m~» mmu_v. However the pre values are mathe-

matically convenient.

As with values, we may investigate the limiting XA-pre values, and we define
(in the natural way) the space bm&zwy to be the space of all games having an
asymptotic A-pre value. The proof of Lemma 5, reveals that the A-pre values
for the major player in the sequence of games Vi (we use notations from
previous sections), converges to the limit, Mmﬁnv + dA(t), whenever X does not
have an atom in the set mn. {When XA 'has an atom in the set B the A-pre
value of the major player does not necessarily converge.) Thus wm A is non-
atomic, the A-pre values of the major players converge to a limit for every

0 < g < 1. However, in order that the r-pre values of the sequence of games

Vi will converge (in the same manner that the values do) further assumptions

{on 1) are needed.

Theorem D: (a) bv'FL C >mwzwy iff X is absolutely continuous with respect

to Lebesque measure £, and such that dA/d2 is continuous.

() pM C >m&3ﬁy iff A dis absolutely continuous with respect to
the Lebesque measure &, and dA/dL €1, .
0

AIIFIF TUT LU ¥VALULD Wi 3rarsme oo o
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