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Correlation of players’ actions may evolve in the common course of the play of a 
repeated game with perfect monitoring (“online correlation”). In this paper we study the 
concealment of such correlation from a boundedly rational player. We show that “strong” 
players, i.e., players whose strategic complexity is less stringently bounded, can orchestrate 
the online correlation of the actions of “weak” players, where this correlation is concealed 
from an opponent of “intermediate” strength. The feasibility of such “online concealed 
correlation” is reflected in the individually rational payoff of the opponent and in the 
equilibrium payoffs of the repeated game.
This result enables the derivation of a folk theorem that characterizes the set of equilibrium 
payoffs in a class of repeated games with boundedly rational players and a mechanism 
designer who sends public signals.
The result is illustrated in two models, bounded recall strategies and finite automata.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Consider a group of agents interacting with each other sequentially, where the overall strategies employed by these 
agents are independent. Some level of correlation between their actions may still evolve; i.e., if we look at the actions 
that they take at some point in time, these actions may be correlated.1 On the other hand, as every mixed strategy (in a 
game with perfect recall) is equivalent to a behavioral one (Kuhn, 1953), conditional on the full history up to that point in 
time, these actions are independent.2 Therefore, the correlation of actions is not concealed from a fully rational observer: 
this observer has the resources to make a statistical prediction of the coming tuple of actions, so that conditional on 
his prediction, the actions are independent. This fact plays an important, albeit implicit, role in various folk theorems of 
repeated games.
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1 For example, if player 1 chooses with probability 1/2 to play repeatedly the action α, and with probability 1/2 to play repeatedly the action β , and 
player 2 imitates at each stage the previous action of player 1, then at any stage t ≥ 2, the probability distribution over the action pair (a1

t , a2
t ) is correlated: 

the probability of (α, α) is 1
2 , and so is the probability of (β, β).

2 E.g., in the previous example, at any stage t ≥ 2, conditional on the history (a1, . . . , at−1), the distribution of the action pair (a1
t , a2

t ) is uncorrelated: 
either the history tells you (from stage 2 on) that the forthcoming pair is (α, α) with probability 1, or it tells you that it is (β, β) with probability 1.
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The current paper is concerned with repeated games in which players are not fully rational. We consider the impact 
on equilibrium when the players’ ability to gather and process information and make computations is not unlimited. The 
literature contains various models of such bounded complexity in repeated games. One prominent model is that of finite 
automata (see, e.g., Ben-Porath, 1986; Neyman, 1985, 1998; Kalai, 1990; Papadimitriou and Yannakakis, 1994), where each 
player has some finite capacity for memory storage. Another prominent model is bounded recall (see, e.g., Aumann, 1981;
Lehrer, 1988), where each player has a finite number of the last previous stages that he is able to recall. There are, of course, 
variations to these models (e.g., Rubinstein, 1986), as well as other interesting models (e.g., Gilboa and Schmeidler, 1994;
Gossner et al., 2006). The paper is focused on the bounded recall model, for which the main results of the paper are 
discussed, stated, and proved, in detail. The analogous results for the variations of the bounded recall model, as well as for 
the finite automata model, are stated and derived in the last section of the paper.

For the case of more than two players, little is known about the equilibrium payoffs of repeated games with boundedly 
rational players. The main difficulty in the characterization of equilibrium payoffs of infinitely repeated games lies in the 
identification and quantification of feasible punishments, which depend on the possibilities of concealed correlation that a 
group of players may have.

The possibility of concealing correlation certainly depends upon the capabilities of the players. It seems reasonable, and 
is demonstrated in various models, that “stronger” players (i.e., players with higher capabilities) can out-strategize “weaker” 
opponents, and the concealment of correlation may be one manifestation of this. In this paper we focus on the surprising, 
indeed counter intuitive, possibility of concealing correlation of players’ actions from a stronger opposition.

A group of players, called the concealing group, can conceal a distribution D over tuples of its members’ actions from 
other players (or observers), if they have a profile of (independent) strategies such that (1) for every strategy profile of the 
other players, the empirical distribution of the sequence of their actions is close to D , and (2) this sequence appears, in the 
eyes of the other players, to be close to an i.i.d. play with that distribution D .

We can distinguish two instances of the problem of concealing a correlated distribution of action profiles. The distinction 
is based on the relations between the recall capacities of the concealing group and that of the other players. For clarity’s 
sake we assume3 that there is only one other player, called the opponent. The first instance is where the concealing group 
consists of relatively weak players and the opponent is stronger.4 The present paper focuses on the second instance, where 
the concealing group of players contains both weak and strong players relative to the opponent.

Suppose (for example) that the concealing group contains two players, whose recall is shorter than that of the opponent, 
and an additional player, and the group tries to conceal from the opponent a distribution of action profiles in which the 
actions of the two weak players are correlated. Then why should this additional player matter at all? After all, in our model 
there is no pre-game communication, and all communication opportunities are embedded within the actions available to 
the players, and these actions are public. Therefore, it seems a priori, that the opponent, whose recall is longer than that of 
the weak players, can untangle whatever use the two weak players can make of the actions of the strong player.

The main message of this paper is that a concealing group that includes a player whose recall is longer than that of the 
opponent (or observer) can conceal from the opponent a distribution of the group’s action profiles in which the actions of 
the “weak” players – those whose recall is shorter than that of the opponent – are correlated (Theorems 2.1 and 2.2).

Theorem 2.1, which is a special case of the more general Theorem 2.2, applies to a four-player game: the concealing 
group consists of two players of relatively short recall, called the weak players, and a player with a long recall, called the 
strong player, and the opponent has intermediate recall. The theorem illustrates the possibility that the concealing group 
can conceal from the opponent a distribution (over tuples of its members’ actions) in which the actions of the two weak 
players are correlated. Moreover, it specifies simply stated conditions on the stage game and the recall capacities of the 
players that enable the concealing group to conceal from the opponent any correlated distribution of the two weak players’ 
actions.

The more general result, Theorem 2.2, applies to repeated games with an arbitrary number of players: the opponent 
has intermediate-length recall, and the concealing group, which consists of the set of all other players, is composed of two 
groups: weak players with relatively short recall and strong players with long recall. The theorem specifies simply stated 
conditions on their recall capacities and an information-theoretic condition on a (possibly correlated) distribution of joint 
actions of the concealing group, so that the concealing group can conceal this distribution from the opponent.

In both theorems it is assumed that the recall of the opponent is subexponential in the recall of the weak players. 
A natural question that arises is whether this “subexponential” condition is essential for the conclusions of the theorems. 
Theorem 2.3 states that when the recall of the opponent is longer than some exponential function of the recall of the weak 
players, then the concealing group cannot conceal more than a negligible amount of correlation of the weak players’ actions. 
Moreover, this conclusion holds even if the concealing group can correlate their strategies before the start of the game, and 
even if their strategies are allowed to choose a randomized action as a function of the recalled past, and the strong players 
are fully rational.

The reader may by now be wondering why allies need to correlate their actions “online,” i.e., in the common course of 
play, by the public sequence of actions taken. Can they not do it “offline” by communicating through private channels? The 

3 It can be shown that this assumption is w.l.o.g.
4 The simple example of this in Section 8.3 demonstrates that things are not so easy for the opponent.
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fact of the matter is that sometimes they cannot. Some examples are anti-cartel regulations, or various types of multistage 
auctions, where “the rules of the game” forbid collusion.

Online concealed correlation affects the individually rational payoff (i.r.p.) in the repeated game. In fact, the concealment 
of correlation in Theorems 2.1 and 2.2 is stated in terms of the i.r.p. Section 8.1 defines a notion of concealment that 
depends upon the strategies at the players’ disposal (and involves no payoffs). This notion enables us to reformulate the 
conclusion of the main result in a form that emphasizes the fact that the result concerns the concealment of a distribution, 
independently of the payoffs.

The rest of the paper is organized as follows. Section 2 describes the model and the main results. In Section 3 we prove 
Theorem 2.3. In Section 4 we prove an instance of Theorem 2.1, for the three-player matching pennies game. This instance 
provides a relatively simple counter-example to Lehrer (1994, Theorem 1) (see also comment 1 in Section 8.5), and serves 
as a helpful introduction to some of the ideas in the general results.

In Section 5 we prove Theorem 2.1 by showing how the proof for the three-player matching pennies game can be 
extended to other four-player games. The proof of Theorem 2.1 presents some of the ideas that appear in greater generality 
in the proof of Theorem 2.2. In addition, there are a few differences between the two proofs. Therefore each of these proofs 
may be a step towards different future extensions and related results. In Section 6 we prove Theorem 2.2. In Section 7 we 
discuss the implications of our results for equilibrium payoffs.

Section 8.2 discusses variations of bounded recall strategies, and Section 8.3 contains an example of a three-player game, 
where the players each have equal strength and can recall the last actions of only the other players, and two players can 
conceal a correlation of their joint actions from the third player. Section 8.4 explains how the main results yield analogous 
results in the model of repeated games with finite automata. Section 8.5 contains several additional remarks.

2. The model and the main result

Our discussion and results are stated for undiscounted infinitely repeated games. However, it will be clear from the tools 
we use that the discussion and results apply to sufficiently long finitely repeated games, as well as to infinite discounted 
games with a large enough discount factor (see comment 2 in Section 8.5).

2.1. Infinitely repeated games

Let G = (N, A, r) be an n-player game in strategic form. N = {1, 2, . . . , |N|} is the finite set of players, A =×i∈N Ai where 
Ai is the set of actions of player i, and r = (ri)i∈N where ri : A → R is the payoff function of i. The linear extension of ri to 
the functions defined on �(A), where �(∗) stands for the probability distributions over the set ∗, is also denoted by ri , and 
for a distribution y on a set B and a distribution x on a set C we denote by (y, x) the product distribution y ⊗ x on B × C .

Player i’s individually rational payoff (i.r.p.) in the mixed extension of G is v̄ i = miny∈×j �=i �(A j) maxx∈Ai ri(y, x).
The game G∞ denotes the infinite repetition of G with perfect monitoring. At each stage t = 1, 2, . . . , the players play 

the game G (the stage game); i.e., at stage t , player i chooses an action ai
t ∈ Ai .

A play of G∞ is an infinite sequence a1, a2, . . . , where at = (ai
t)i∈N ∈ A. In our context, the payoff for i in G∞ is the 

“limit” of his average payoff along the play,5 namely, “ lim ”T →∞ 1
T

∑T
t=1 ri(at). However, we qualify “limit,” since a sequence 

of payoffs (ri(at))t≥1 induced by some play (at)t≥1 need not have a limit of means (Cesaro limit). Nevertheless, such a limit 
does exist for any play that is defined by stationary bounded recall strategies, or finite automata strategies.

The set of all histories that may be played at the first t − 1 stages is At−1 (where A0 stands for {∅}), and A∗ = ⋃∞
t=1 At−1

is the set of all possible histories, of any length. A pure strategy of i in the repeated game with perfect monitoring G∞ is 
a function σ i : A∗ → Ai . For any history h = (a1, . . . , at−1) ∈ At−1, σ i(h) is the action that player i will take at stage t , if 
the history at that stage is h. A profile σ = (σ i)i∈N of pure strategies in G∞ defines a play (at(σ ))t≥1 by induction on t: 
ai

1 = σ i(∅), and ai
t+1(σ ) = σ i(a1(σ ), . . . , at(σ )).

2.2. Bounded recall strategies

A stationary bounded recall (bounded recall for short, or SBR) strategy for player i in G∞ assumes that i’s play at any given 
stage relies only on the last mi actions played.

A (pure) m-recall strategy for i is a pure strategy σ i such that σ i(a1, . . . , at−1) = σ i(at−m, . . . , at−1) for t > m.
Denote by BRi(m) the set of all m-recall strategies of player i in G∞ . Note that any m-recall strategy is, in particular, 

a k-recall strategy for any k > m, i.e., BRi(k) ⊃ BRi(m).
For a tuple −→m = (mi)i∈N , the game G(

−→m) is defined as the infinite repetition of G , but where the strategies of player i
are his mi -recall strategies. I.e.,

G(
−→m) = (

N,
(
BRi(mi)

)
i∈N , r̄

)
,

5 The payoff in infinitely repeated games is sometimes taken to be the discounted average of payoffs, namely, λ ∑∞
t=1(1 −λ)t−1ri(at ), for some 0 < λ < 1. 

In this case the payoff is called discounted.



74 G. Bavly, A. Neyman / Games and Economic Behavior 88 (2014) 71–89
where r̄ is defined for a tuple φ = (φi)i∈N ∈×n
j=1 BR j(m j) by r̄(φ) = limT →∞ 1

T

∑T
t=1 r(at(φ)), where (at(φ))t≥1 is the play 

defined by the strategy profile φ.
Here we can write lim without reservations, since any play resulting from SBR strategies will be periodic. Let M be an 

integer s.t. ∀i mi ≤ M . Since there are at most |A|M possible memories of length M , in any play one of them is bound 
eventually to appear twice, say at stages t1, t2. Then, by induction on t ≥ 1, every player takes at t2 + t the same action he 
took at t1 + t , and therefore the play enters a cycle. The limiting average payoff will then simply be the average payoff over 
the cycle.

In the sequel, we examine player i’s i.r.p. in the mixed extension of G(
−→m), i.e.,

v̄ i(
−→m) = min

σ∈×j �=i �(BR j(m j))

max
τ∈BRi(mi)

r̄i(σ , τ ),

where r̄ is now extended to mixed strategies; that is, it is the expectation of our previous r̄ .
Let vi(

−→m) denote the maxmin level, namely,

vi(
−→m) = max

τ∈�(BRi(mi))

min
σ−i∈×j �=i BR j(m j)

r̄i(τ ,σ−i).

Remark. A behavioral strategy for player i in G∞ is a function σ i : A∗ → �(Ai); i.e., for every possible history it specifies a 
probability distribution over i’s actions. BRi

b(m) denotes the set of all m-recall behavioral strategies of player i.
Our main result also holds for behavioral bounded recall strategies. In particular, if we define v̄ i∗(

−→m) the same way as 
v̄ i(

−→m) except that the maximum is taken over BRi
b(mi), and define v̄ i

b(
−→m) with behavioral strategies for all players, i.e.,

v̄ i
b(

−→m) = min
σ∈×j �=i �(BR j

b(m j))

max
τ∈BRi

b(mi)

r̄i(σ , τ ),

then the result holds for v̄ i∗ and hence for v̄ i
b too (since of course v̄ i∗ ≥ v̄ i

b).

Notation: for two functions g, f : N →R+ we write g 
 f or g(n) 
 f (n) if g(n)/ f (n) →n→∞ 0.

2.3. The main result

In the main results, the set of players N is fixed, and the recall capacities mi , i ∈ N = {1, 2, . . . , |N|}, will depend on a 
parameter n ∈N.

For a gradual presentation of the main result, we start with a special case of the result and a restriction of the number 
of players to four. The general result will be stated thereafter.

Theorem 2.1. Let G = (N, A, r) be a four-player game, and let mi: N →N, i ∈ N = {1, 2, 3, 4}, with limn→∞ mi(n) = ∞, satisfy

(a) |A4| ≥ min(|A1|, |A2|)
(b) m3 
 m4
(c) log m3 
 min(m1, m2).

Then,

lim sup
n→∞

v̄3(
−→m) ≤ min

y∈�(A1×A2)
max
x∈A3

r3(y, x, z), (2.1)

where z is the uniform distribution over A4, and −→m = (m1, m2, m3, m4).
In particular, if, in addition, the payoff function r3 is independent of the actions of player 4, then

lim sup
n→∞

v̄3(
−→m) ≤ min

y∈�(A1×A2)
max
x∈A3

r3(y, x)

and if, in addition, logm4 
 m3 , then

lim
n→∞ v̄3(

−→m) = lim
n→∞ v3(

−→m) = min
y∈�(A1×A2)

max
x∈A3

r3(y, x). (2.2)

Inequality (2.1) asserts that for every distribution y over action pairs of players 1 and 2, lim supn→∞ v̄3(
−→m) is less than 

or equal to maxx r3(y, x, z), where z is the uniform distribution over the actions of player 4.
The next theorem generalizes inequality (2.1) in two important directions. First, z need not be the uniform distribution, 

and y need not be independent of z. We provide a condition on the distribution D−3 of the actions of players 1, 2, and 4, 
such that for any distribution D−3 that satisfies the condition, we have lim supn→∞ v̄3(

−→m) ≤ maxx∈A3 r3(D−3, x). In addition, 
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the number of players need not be 4; we allow for an arbitrary number of players (and more than one of them may be 
strong).

The condition on the distribution D−3, or on D−k in the case of an arbitrary number |N| ≥ k of players, is stated by 
using the following information-theoretic notion (see, e.g., Cover and Thomas, 1991).

For a finite set A, and an A-valued random variable x, denote Pa = Pr{x = a}. The entropy of x is defined6 as 
H(x) = − 

∑
a∈A Pa log(Pa). Note that if x is uniformly distributed, then H(x) = log |A|, and that if x, y are independent 

then H(x, y) = H(x) + H(y).
The assumptions on the recall capacities mi , i ∈ N = {1, 2, . . . , |N|}, which depend on a parameter n ∈N, are:

(A1) mi+1(n) ≥ mi(n) →n→∞ ∞
(A2) mk 
 mk+1
(A3) log mk 
 m1.

The inequality mi+1(n) ≥ mi(n) in assumption (A1) orders the players in N according to their recall capacity. The as-
sumptions (A2) and (A3) single out one player k ∈ N , and partition the other players into two groups: J+ = {i ∈ N : i > k}
and J = {i ∈ N : i < k}. Assumption (A2) asserts that each player i ∈ J+ has a much longer recall than that of player k, and 
assumption (A3) asserts that the length of player k’s recall is subexponential in that of each one of the players j ∈ J .

For k ∈ N we denote by −k the subset { j ∈ N : j �= k} of players, and for a nonempty subset S ⊂ N we denote by D S

a distribution on A S :=×j∈S A j . For every j ∈ S , respectively a nonempty subset S∗ ⊂ S , the marginal distribution of D S

on A j , respectively on A S∗ , is denoted D j , respectively D S∗
.

Theorem 2.2. Let (N, A, r) be a game with N ⊃ {1, 2, . . .k}, and assume that the recall capacities mi(n) (i ∈ N) satisfy (A1), (A2), 
and (A3). Let D−k be a distribution on A−k with marginals D j on A j . If

H
(

D−k) ≥
∑
j<k

H
(

D j), (2.3)

then

lim sup
n→∞

v̄k(
−→m) ≤ max

x∈Ak

rk(D−k, x
)
. (2.4)

Note that Theorem 2.2 generalizes Theorem 2.1. Indeed, if (1) N = {1, 2, 3, 4}, (2) z is the uniform distribution on A4, 
(3) y is a distribution on A1 × A2, and (4) D−3 = y ⊗ z is the product distribution (on A{1,2} × A4) of y and z, then 
H(D−3) = H(z) + H(D{1,2}) = log |A4| + H(D{1,2}) ≥ log |A4| + H(Di) (∀i ∈ {1, 2}), and therefore H(D−3) ≥ H(D1) + H(D2)

whenever |A4| ≥ min(|A1|, |A2|).
There are other special cases of Theorem 2.2 that are of independent interest. One such special case is when there is 

only one “strong player,” i.e., when |N| = k + 1.
Theorems 2.2 and 2.1 have been stated in terms of the i.r.p. of the repeated game. An alternative, and more general, 

concept of an N \ {k} strategy profile σ−k concealing a distribution D−k from a class of strategies of player k is presented 
in Section 8.1.

Our proof of Theorem 2.2 shows that for any distribution D−k that satisfies conditions (A1), (A2), and (A3), there is an 
N \ {k} strategy profile σ−k = (σ j) j �=k of mixtures of m j -recall strategies that (asymptotically, i.e., for sufficiently large n, 
it ε-) conceals D−k from the class of mk-recall strategies of player k. Informally, it shows that for every mk-recall strategy 
τ k of player k, the distribution that is defined by σ = (σ−k, τ k) on plays of the repeated game, is such that for almost 
all t , the conditional distribution of a−k

t , given ak
t , is close to D . It follows that lim supn→∞ maxτ k∈BRk(mk)

r̄(σ−k, τ k) ≤
maxx∈Ak r(D−k, x) holds for any payoff function r : A →R.

2.4. Tightness of the subexponential condition

The above results demonstrate the feasibility of concealing correlation against a subexponential opponent. The following 
theorem shows that this subexponential condition is tight, in the following sense: there exists an exponential relation 
s.t. a group of players cannot conceal more than a negligible amount of correlation against an opponent, whose strength 
stands in that relation to their strength, even if other players help them.7 Moreover, this is the case even if the players 
use behavioral bounded recall strategies (note that a mixture of m-recall behavioral strategies need not be equivalent to an 
m-recall behavioral strategy).

6 Henceforth log = log2.
7 In fact, the conclusion holds even when this strong “opponent” does not actually participate in the game, but merely observes it.
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The theorem states that for every ε > 0 there are universal prediction functions μi : Ak → �(Ai) (i ∈ N), such that 
for any subset J of players and a correlated strategy σ with σ J being a mixture of (1 − ε)

log k
log |A| -recall behavioral strate-

gies, the empirical distance between the conditional σ -distribution of a J
t given (a1, . . . , at−1) and the product distribution ⊗

j∈ J μ j(at−k, . . . , at−1) is close to 0.
The theorem may be viewed as an asymptotic version of one aspect of Kuhn’s theorem (Kuhn, 1953), namely, that condi-

tioning on the full history results in a product distribution. But, in addition, here the prediction strategy is time-independent 
and universal (i.e., it is independent of the strategies of the players), and the theorem holds even if players are allowed to 
correlate their randomized strategies.

The allowance for behavioral strategies only serves to strengthen the result. The proof is simpler if one considers only 
randomization over pure strategies.

Let Σ i denote the set of all (not necessarily bounded recall) behavioral strategies of player i in the repeated game. For a 
subset J ⊂ N of players and a profile a ∈ A of actions, Σ J is the cartesian product ×j∈ J Σ j , BR J

b (m) is the cartesian product 

×j∈ J BR j
b(m), and a J is the list (a j) j∈ J of the J coordinates of a.

Each strategy profile s ∈ BR J
b (m) × ΣN\ J defines a probability distribution P s on plays of the repeated game, and in par-

ticular P s is a probability distribution on any finite list of play coordinates. For each (t ≥ 1 and) fixed point (b1, . . . , bt−1) ∈
At−1, we denote by D J

s (b1, . . . , bt−1) the P s conditional distribution of a J
t given (a1, . . . , at−1) = (b1, . . . , bt−1). Note that for 

each (b1, . . . , bt−1) ∈ At−1, D J
s (b1, . . . , bt−1) is a probability distribution on A J , and thus (a1, . . . , at−1) �→ D J

s (a1, . . . , at−1)

is a random variable defined over the space of plays of the repeated game (and with values in the distributions over A J ).

Similarly, each correlated strategy σ ∈ �(BR J
b (m) × ΣN\ J ), which is a distribution over all s ∈ BR J

b (m) × ΣN\ J , defines 
the probability distribution Pσ = ∫

P s dσ(s) on plays of the repeated game. For each (t ≥ 1 and) fixed point (b1, . . . , bt−1) ∈
At−1, we denote by D J

σ (b1, . . . , bt−1) the Pσ conditional distribution of a J
t given (a1, . . . , at−1) = (b1, . . . , bt−1), and thus 

(a1, . . . , at−1) �→ D J
σ (a1, . . . , at−1) is a �(A J )-valued random variable defined over the space of plays of the repeated game. 

For each t > k and (b1, . . . , bt−1) ∈ At−1, we denote by bt [k] the string of the last k action profiles (bt−k, . . . , bt−1).

Theorem 2.3. Let G = (N, A, r). For any positive integers m and k, there exist maps μi : Ak → �(Ai), i ∈ N, such that for every J ⊂ N
with |A J |6 ≤ k/|A|m, correlated strategy σ ∈ �(BR J

b (m) × ΣN\ J ), and T ≥ 2k, we have

1

k

T∑
t=T −k+m

Eσ

∥∥D J
σ (a1, . . . ,at−1) − μ J (at[k])∥∥ ≤ |A|m/3

k1/3

(√
ln k − m ln |A| + 2|A J |3 + 1

)
, (2.5)

where μ J (at[k]) is the product distribution 
⊗

j∈ J μ
j(at[k]) and ‖ ‖ denotes the L1-norm.

Note that the theorem asserts that (2.5) holds for any correlated strategy σ ∈ �(BR J
b (m) × ΣN\ J ). The implication of the 

theorem for the special case of an uncorrelated strategy σ ∈ (×j∈ J �(BR j
b(m)) × ΣN\ J ) is, by itself, of interest.

We note that if all the players use m-recall behavioral strategies, then the memories of length m along the play, at [m] =
(at−m, . . . , at−1), constitute a stationary Markov chain. And if all the players use mixtures of such strategies, then (at [m]) is 
a mixture of such chains. But no such property holds in the setup of this theorem, where some players may use arbitrary 
strategies.

3. Proof of tightness

Note that D J
σ (a1, . . . , at−1) =

∫
D J

s (a1, . . . , at−1) dPσ (s | a1, . . . , at−1), and since μ J depends only upon at[k] we get 
μ J (at[k]) = ∫

μ J (at[k]) dPσ (s | a1, . . . , at−1). Therefore by the triangle inequality∥∥D J
σ (a1, . . . ,at−1) − μ J (at[k])∥∥

≤
∫ ∥∥D J

s (a1, . . . ,at−1) − μ J (at[k])∥∥dPσ (s | a1, . . . ,at−1).

Therefore, it suffices to prove that (2.5) holds for any σ = s ∈ BR J
b (m) × ΣN\ J .

In what follows we will use the following application of Hoeffding’s inequality. Let X1, X2, . . . be a sequence of 
{0, 1}-valued i.i.d. random variables, Sd := X1+...+Xd

d . Hoeffding’s inequality (Hoeffding, 1963, Theorem 2) implies that for 
every fixed positive integer d and δ > 0, P (|Sd − E X1| > δ) ≤ 2 exp(−2δ2d). Therefore, for every positive real number � > 0, 
P (∃� ≤ d ∈N s.t. |Sd − E X1| > δ) ≤ ∑

d:�≤d∈N 2 exp(−2δ2d) ≤ 2 exp(−2δ2�)/(1 − exp(−2δ2)) ≤ 2
δ2 exp(−2δ2�) for δ > 0 suffi-

ciently small, e.g., for δ ≤ √
1/2.

Therefore, if d is an integer-valued random variable (which can be correlated to X1, X2, . . .), then

P
(|Sd − E X1| > δ

) ≤ P (d < �) + 2
2

exp
(−2δ2�

)
for δ ≤ √

1/2. (3.1)

δ
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Let s ∈ BR J
b (m) × ΣN\ J . Let 1 ≤ � ≤ k/|A|m . (Eventually, we will set � = |A J |2(k/|A|m)2/3.) Recall that for every t > m, 

at[m] is the Am-valued random variable that is defined on the space of plays by at [m] = (at−m, . . . , at−1). For t > k and 
f ∈ Am , let L(t, f ) and �t be the random variables defined on the space of plays by L(t, f ) = {m + t − k ≤ d < t : ad[m] = f }
and �t = |L(t, at[m])| (i.e., lt counts the number of past appearances of the current m-length recall at [m] in its k-recalled 
stages).

For every integer T ≥ 2k and f ∈ Am , |{T − k + m ≤ t ≤ T : 0 ≤ �t < � and at[m] = f }| ≤ �. Therefore, |{T − k + m ≤ t ≤ T :
0 ≤ �t < �}| = | ⋃ f ∈Am {T − k + m ≤ t ≤ T : 0 ≤ �t < � and at[m] = f }| ≤ �|A|m . Therefore, for T ≥ 2k,

T∑
t=T −k+m

P s(�t < �) ≤ �|A|m. (3.2)

We define μ j : Ak → �(A j) as follows. Given an element a = (a1, . . . , ak) ∈ Ak and an element b j ∈ A j , μ j(a)(b j) is 
defined as the fraction of times that the action b j of player j followed an appearance of ak+1[m] in a, i.e., μ j(a)(b j) =

1
�k+1(a)

|{d : m + 1 ≤ d ≤ k, ad(m) = ak+1[m], and a j
d = b j}| if �k+1(a) > 0, and otherwise μ j(a)(b j) is arbitrary, e.g., = 1/|A j |.

As ‖s J (at [m]) −μ J (at[k])‖ = ∑
b J ∈A J

|s J (at[m])(b J ) − μ J (at[k])(b J )|, if ‖s J (at[m]) −μ J (at [k])‖ ≥ δ then there is b J ∈ A J

such that |s J (at[m])(b J ) − μ J (at[k])(b J )| ≥ δ/|A J |. Therefore,

P s
(∥∥s J (at[m]) − μ J (at[k])∥∥ ≥ δ

) ≤
∑

b J ∈A J

P s

(∣∣s J (at[m])(b J ) − μ J (at[k])(b J )∣∣ ≥ δ

|A J |
)

.

Therefore, by inequality (3.1), for any � > 1, δ = |A J |
√

ln �√
�

, and t > k,

P s
(∥∥s J (at[m]) − μ J (at[k])∥∥ ≥ δ

) ≤ |A J |P s(�t < �) + |A J |2|A J |2
δ2

exp

(−2δ2

|A J |2 �

)

= |A J |P s(�t < �) + 2|A J |�
ln�

exp

(
−2 ln �

�
�

)

= |A J |P s(�t < �) + 2|A J |
� ln�

.

As ‖s J (at[m]) − μ J (at[k])‖ ≤ 2, we deduce that

Es
(∥∥s J (at[m]) − μ J (at[k])∥∥) ≤ δ + 2|A J |P s(�t ≤ �) + 4|A J |

� ln�
.

Set � = k2/3|A J |2/|A|2m/3. Then, using k/|A|m ≥ |A J |6,

δ = |A|m/3

k1/3

√
2

3
ln k − 2m

3
ln |A| + 2 ln |A J | ≤ |A|m/3

k1/3

√
ln k − m ln |A|.

Using (3.2), we have

1

k

T∑
t=T −k+m

2|A J |P s(�t ≤ �) ≤ 2|A J |�|A|m
k

= 2|A J |3 |A|m/3

k1/3
.

As |A J | ≥ 2 (w.l.o.g.) and k ≥ |A|m|A J |6,

4|A J |
� ln�

≤ 2|A|2m/3

k2/3
≤ |A|m/3

k1/3
.

We conclude, using D J
s (a1, . . . , at−1) = s J (at[m]), that

1

k

T∑
t=T −k+m

Es
∥∥D J

s (a1, . . . ,at−1) − μ J (at[k])∥∥ ≤ δ + 2|A J |3 |A|m/3

k1/3
+ |A|m/3

k1/3

≤ |A|m/3

k1/3

(√
ln k − m ln |A| + 2|A J |3 + 1

)
.

4. An example of online concealed correlation by “weak” players

Here we present an example of online concealed correlation by weak players, with the help of a stronger one, in a 
specific four-player game. The construction and proof of this instance contains a few of the ideas required for the general 
result, and we hope that it serves as a helpful introduction to the proof of the general result.
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L R
T −1 0
B 0 0

E

L R
T 0 0
B 0 −1

W

Fig. 1. Three-player matching pennies.

4.1. The game and the strategies

Consider the normal-form game in Fig. 1, called “three-player matching pennies,” in which player 1, Rowena, chooses a 
row (Top or Bottom), player 2, Colin, chooses a column (Left or Right), and player 3, Matt, chooses a matrix (East or West). 
The numbers in the matrix are the payoffs of Matt. The payoffs of Rowena and Colin are not specified. The i.r.p. of Matt in 
this (stage) game is − 1

4 .8

Now add a fourth player, Forest, to the game. Forest’s recall will be longer than Matt’s, but he will have no influence 
on the payoffs of the stage game, or, in particular, on Matt’s payoff. Therefore Matt should care only about the actions of 
Rowena and Colin, and his i.r.p. in the stage game remains − 1

4 .
Rowena and Colin will conceal the correlation of their actions from Matt, so as to bring Matt’s payoff down to around − 1

2 , 
which equals Matt’s minmax in correlated actions, i.e., miny∈�(A1×A2) maxx∈A3 r3(y, x) = − 1

2 . The key point is that Forest’s 
sequence of actions assists Rowena and Colin in correlating their own actions, while these “signals” remain unintelligible to 
Matt.

Since we are interested in the asymptotic behavior, let the recall capacities be functions of a parameter n: player i has 
a recall of length mi(n), and ∀i limn→∞ mi(n) = ∞. Still, m1 ≤ m2 ≤ m3 ≤ m4, and the functions mi are assumed to retain 
some relations among themselves, to be specified shortly. Rowena’s, Colin’s, and Forest’s mixed strategies will assure that 
Matt’s maximum expected payoff approaches − 1

2 , as n goes to infinity.
Following is a general description of the scheme. Colin’s play will approximate a long cycle of random i.i.d. actions, 

distributed 1
2 − 1

2 . Forest, who has a relatively large memory, will be able to remember the whole cycle. Forest’s actions will 
be used by Rowena as instructions on how she should play, so that her actions will coincide with Colin’s. However, if these 
instructions were simply the forthcoming actions of Colin, or any deterministic function of them, the correlation would not 
be concealed from Matt: like Rowena, he would be able to foresee Colin’s actions, and play his best response against them. 
Therefore, Rowena chooses a random “dictionary,” each entry of which translates a finite sequence (block) of Forest’s actions 
to a block of her own actions. That is, she randomly chooses her own interpretation of Forest’s instructions, and counts on 
Forest to figure it out. So Forest has the task of finding out which instructions (block of actions) he should play, so that 
Rowena’s interpretation (her own block of actions) matches what is meant (Colin’s block of actions). Forest does not have 
to know the whole dictionary chosen by Rowena – only those entries in the dictionary he actually uses. He will learn each 
such entry simply by consecutively trying different blocks, till he hits upon the right one.

Now we give a more detailed description of the strategies. We require that the following relations hold between the 
recall capacities m1 ≤ m2 ≤ m3 ≤ m4:

m3 
 m4

(
i.e., lim

n→∞
m3(n)

m4(n)
= 0

)
(4.1)

log m3 
 m1,m2
(
m3 is “subexponential” in m1,m2

)
. (4.2)

Actually, instead of (4.2), we can settle for the following two weaker requirements:

(m3)
6 
 2m2 (4.2a)

(m3)
4 
 (m1)

4 · 2m1 , (4.2b)

which are both implied by (4.2).
The available actions for Rowena, Colin, and Matt are A1 = A2 = A3 = {0, 1} (instead of {T , B}, {L, R}, and {E, W }). For 

simplicity, let Forest’s actions be A4 = {0, 1, x}.

Let K (n) = m1(n)

2
− 1 (4.3)

K will be the size of a block (as we consider the asymptotic behavior, we may assume w.l.o.g. that K is an integer). We can 
choose an integer-valued function L(n) s.t. (K + 1) divides L, L = c(K + 1), and

L ≤ m4 − K (4.4)

m3 
 L (4.5)

8 For every pair of mixed actions, (x, 1 − x) for Rowena, and (y, 1 − y) for Colin, either xy ≤ 1
4 or (1 − x)(1 − y) ≤ 1

4 . Thus, by playing either E or W , 
the payoff to Matt is at least − 1

4 . On the other hand, if x = 1
2 and y = 1

2 , the expected payoff to Matt is exactly − 1
4 .



G. Bavly, A. Neyman / Games and Economic Behavior 88 (2014) 71–89 79
L6 
 2m2 (4.6a)

L4 
 (m1)
4 · 2m1 , (4.6b)

namely, L obeys the same magnitude restrictions, compared to m1, m2, as m3 does, but L’s magnitude is larger than m3
(and L is at least somewhat smaller than m4). L will be the length of a cycle.

Let Colin choose at random an L-periodic sequence x1, x2, . . . (xi ∈ {0, 1}), where the distribution of x1, . . . , xL is the 
conditional distribution of an i.i.d. sequence distributed 1

2 − 1
2 , given that

∀s, t s.t. 1 ≤ s < t ≤ L ∃0 ≤ i < m2 s.t. xs+i �= xt+i . (4.7)

Colin’s strategy, σ 2, is to play the chosen sequence (an alternative description of σ 2: choose at random an L-periodic 
sequence x1, x2, . . . that obeys (4.7), with uniform probability over all such sequences; then play this sequence).9

Condition (4.7) means that no identical m2-length memories appear twice within the period. Therefore, any m2 consecu-
tive terms within the period uniquely determine the next term. Hence, playing such a sequence does not require more than 
m2-recall.

Rowena randomly chooses a 1–1 function f : {0, 1}K → {0, 1}K with uniform probability over all such functions. Her play 
depends solely on the past actions of Forest: she plays a block of K actions, as a function of the previous K -block of Forest’s 
actions (Forest’s block is identified by the x he played before the beginning of the block). Before her block, she plays an 
arbitrary action (say 1).

Rowena . . . . . . . . . . . . . . . 1 f (y1 . . . yK ) . . . . . . . . . . . .

Forest . . . . . . . . . . . . . . . x y1 . . . yK . . . . . . . . . . . .

Thus, if Forest’s block was (y1, . . . , yK ), then the block Rowena plays is f (y1, . . . , yK ). Equality (4.3) guarantees that, for 
every f , this will be an m1-recall strategy (Rowena’s strategy, σ 1, is mixed, according to the random choice of f ).

Forest chooses some order R on {0, 1}K . His strategy, σ 4, is to play his blocks for Rowena to interpret, each block 
preceded by an x.

Rowena . . . . . . 1 f (y1 . . . yK ) . . . . . . . . . . . .

Colin . . . . . . ∗ z1 . . . zK . . . . . . . . . . . .

Forest . . . . . . x y1 . . . yK . . . . . . . . . . . . x α1 . . . αK

︸ ︷︷ ︸ ↑
L Current

He finds his own block that is L stages back ((4.4) assures that he can do so) and checks whether that block worked. 
Suppose he played there ȳ = (y1, . . . , yK ). This made Rowena play f ( ȳ) in the next block, and suppose Colin played there 
z̄ = (z1, . . . , zK ). If f ( ȳ) = z̄, then Forest plays the same in the current block, i.e., (α1, . . . , αK ) = ȳ. Otherwise, he plays the 
next block, according to his pre-defined order R, i.e., (α1, . . . , αK ) = “ ȳ + 1”.

Eventually, for every slot of K stages within the cycle of length L, Forest hits upon the right block to play, and plays it 
thereafter. When this process is carried out for all the blocks in the cycle, the play of Rowena, Colin, and Forest enters a 
cycle of this form:

Rowena . . . 1| z1
1 . . . z1

K 1| z2
1 . . . z2

K . . . 1| zc
1 . . . zc

K . . .

Colin . . . ∗| z1
1 . . . z1

K ∗| z2
1 . . . z2

K . . . ∗| zc
1 . . . zc

K . . .

Forest . . . x| f −1(z2
1 . . . z2

K ) x| f −1(z3
1 . . . z3

K ) . . . x| f −1(z1
1 . . . z1

K ) . . .

︸ ︷︷ ︸
L

4.2. The payoff

Now we claim that, given the strategies described above, Matt has no m3-recall strategy that correctly “predicts” this 
pair of actions (i.e., plays the opposite action) more than 1

2 + ε of the time, for n large enough, and therefore Matt’s payoff 
will be ≤ − 1

2 + ε. In other words, let σ−3 = (σ 1, σ 2, σ 4). Then,

lim
n→∞ max

τ∈BR3(m3)

r̄3(τ ,σ−3) = −1

2
. (4.8)

We make two main points in the proof. (1) Along the L-cycle, Colin’s actions (which coincide with Rowena’s actions) 
approximate a random i.i.d. sequence, distributed 1

2 − 1
2 , and Forest’s actions are almost independent of this sequence. 

9 The equivalence of these two descriptions relies on the uniformity of the distribution 1
2 − 1

2 . The first description easily generalizes to nonuniform 
distributions.



80 G. Bavly, A. Neyman / Games and Economic Behavior 88 (2014) 71–89
(2) Due to his bounded recall, Matt is unable, at any stage, to gather too much information about the actual realization 
of Rowena’s and Colin’s strategies. For example, he is unable to learn enough about the realization of the above random 
sequences from the initial phase of the game, before the play of Rowena and Forest stabilizes, i.e., before Forest has learned 
how Rowena wants her instructions.

Colin’s strategy, as described above, is to choose, with uniform probability, any sequence x1, . . . , xL that satisfies (4.7), 
and play it periodically. To verify that the distribution of this sequence is arbitrarily close to an i.i.d. 1

2 − 1
2 sequence, for n

large enough, it suffices to show that the probability that such a sequence obeys (4.7) is arbitrarily close to 1. For this we 
can use the following, more general, claim (see Neyman, 1997, pp. 247–248):

Lemma 4.1. Let l :N →N, and let x1, x2, . . . be an l(n)-periodic i.i.d. sequence, where the support of xi contains at least two elements. 
Then for 0 < α < 1, s.t. for 1 ≤ i �= j ≤ l(n) Pr(xi = x j) ≤ α, we have

Pr
(∃s, t s.t. 1 ≤ s < t ≤ l(n) s.t. ∀0 ≤ i < n xs+i = xt+i

)
< l2(n)α[n/3].

In our case, we may view L as a function of m2, and take α = 1
2 , so that we get

Pr(∃s, t s.t. 1 ≤ s < t ≤ L s.t. ∀0 ≤ i < m2 xs+i = xt+i) <
L2

2[m2/3]
and by (4.6a), this probability converges to 0.

Now, disregarding the beginnings of blocks, examine the sequence ᾱ played by Forest along the L-cycle. A realization of 
ᾱ may be almost any sequence; the only restriction is induced by the fact that f , Rowena’s function, is a 1–1 function; i.e., if 
two distinct K -blocks of Forest’s are identical, then so are Rowena’s, and vice versa. In particular, any sequence in which all 
of Rowena’s blocks are different, and likewise Forest’s, may be realized. But most random sequences are like that: let z̄ be a 
random L-length (more precisely, L minus the beginnings of blocks) 1

2 − 1
2 i.i.d. sequence. Then, Pr(Block i = Block j) = 2−K ; 

hence Pr(z̄ contains two identical blocks) ≤ (c
2

)
2−K , where c = L

K+1 is the number of blocks, and this probability converges 
to 0, by (4.3) and (4.6b). Now, the sequence x1, . . . , xL played by both Rowena and Colin approximates an i.i.d. 1

2 − 1
2

sequence. Combining this with the fact that f is chosen with uniform probability, we get that the distribution of ᾱ is 
arbitrarily close to that of a random 1

2 − 1
2 i.i.d. sequence, which is independent of the sequence x1, . . . , xL .

Thus, if we view the sequences played by Rowena, Colin, and Forest along the cycle as one random variable, then the 
distribution of this random variable is arbitrarily close to the distribution of a random variable of the ideal form (i.e., where 
the actions of Rowena and Colin coincide, they are i.i.d. 1

2 − 1
2 , and Forest’s sequence is independent of theirs). Therefore, 

for any strategy σ 3 of Matt, his expected payoff when playing σ 3 against this ideal sequence is close to his expected payoff 
when playing σ 3 here.

We have disregarded the beginnings of blocks, but as their frequency converges to 0 (since K → ∞), the following claim 
then suffices to prove (4.8):

Claim 4.2. Let σ−3 = (σ 1, σ 2, σ 4) be a tuple of mixed strategies that eventually end up playing a cycle of length L, during which the 
actions x̄ of Rowena and Colin coincide, the actions of Forest ᾱ are independent of x̄, and x̄ is a random i.i.d. 1

2 − 1
2 sequence. Then 

limn→∞ maxσ 3∈BR3(m3) r̄3(σ 3, σ−3) = − 1
2 .

Proof. Let10 B = (t1, . . . , tL) be any sequence of L consecutive stages that occur after the play of Rowena, Colin, and Forest 
stabilizes into playing the cycle. Let τ be any pure strategy (not necessarily SBR) for Matt that begins at the beginning of 
the cycle B; i.e., τ is not contingent on the history prior to B . The random variables at(τ , σ−3) denote the play at stage t , 
induced by τ and σ−3. Since the actions x̄ are independent throughout B (and independent of ᾱ), ∀t ∈ B Eσ−3 (r3(at) |
at1 , . . . , at−1) = − 1

2 (x̄ and ᾱ may very well depend on the history prior to B , but here we are concerned only with their 
a priori distribution). Hence, (r3(at) + 1

2 )t∈B is a sequence of bounded martingale differences; therefore Azuma’s inequality 
(see, e.g., Alon and Spencer, 1992, p. 79) implies that for every ε > 0, there exists C(ε) > 0, s.t.

Prσ−3

(∑
t∈B r3(at(τ ,σ−3))

L
≥ −1

2
+ ε

)
≤ e−C(ε)·L .

Hence, for any finite set Θ of strategies τ as above,

Prσ−3

(
max
τ∈Θ

∑
t∈B r3(at(τ ,σ−3))

L
≥ −1

2
+ ε

)
≤ |Θ| · e−C(ε)·L .

At the beginning of the game, Matt chooses a pure m3-recall strategy σ 3. The subgame strategy following a history h, σ 3 | h, 
depends on h only via Matt’s memory α(= α(h)), i.e., the last m3 stages within h. Hence, we denote σ 3 | h by τ (σ 3, α).

10 The proof is an adaptation of the proof in Neyman (1997, p. 238) of Ben-Porath’s results for finite automata Ben-Porath (1986, 1993).
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In particular, when reaching the beginning of the cycle B , Matt’s subgame strategy, τ (σ 3, α), is completely determined 
by the memory α he may have at this point. Let Θ = Θ(σ 3) be the set of all possible strategies thus determined before B . 
Then,

Prσ−3

(∑
t∈B r3(at(σ

3,σ−3))

L
≥ −1

2
+ ε

)
≤ |Θ| · e−C(ε)·L .

There are no more than |A|m3 possible memories; hence |Θ| ≤ |A|m3 . Therefore, by (4.5), |Θ| · e−C(ε)·L → 0, and the result 
follows. �

An alternative way of looking at the proof is as follows. Matt may choose σ 3 so that along the play it “encodes,” 
through his own actions, information about the realization of σ−3. His information also includes the past m3 actions of his 
adversaries. However, all this information is limited, due to his bounded recall. Thus, even in the best imaginable case for 
him, in which σ 3 arrives at B with optimal memory, and σ 3 also makes optimal use of that memory along B , it will still 
do “well” only against a minor fraction of the realizations of σ−3.

5. Proof of Theorem 2.1

In Section 4 we have proved one specific example, based on the three-player matching pennies stage game. Now we 
show how the result, that the payoff of the third player in the infinitely repeated game is not more than his minmax in 
correlated actions, extends to a general class of four-player games (when the appropriate relations between strength levels 
obtain) in which |A4| ≥ |A1| or |A4| ≥ |A2|.

First, let us point out that in Section 4, the set of actions available to Forest was taken to be A4 = {0, 1, x} just for 
convenience. The extra action, x, was used to designate the beginnings of blocks. The use of this extra action can be 
dispensed with. Suppose Forest has only two actions, w.l.o.g. A4 = {0, 1}. Let p : N → N be some integer-valued function, 
s.t. 2p � K , but still p 
 K (recall that K is the size of a block). Let ξ̄ = ξ1, . . . , ξp (ξi ∈ {0, 1}) be some fixed sequence. To 
designate beginnings of blocks, Forest plays this sequence ξ̄ before the beginning of every block, and Rowena plays some 
arbitrary actions in the corresponding stages. Thus, instead of just one stage being sacrificed before every K -block, p stages 
are sacrificed. Since p 
 K , the effect on the average payoff is negligible; i.e., it approaches 0 as n → ∞.

There is, however, a further sacrifice: if ξ̄ is to designate the beginnings of blocks correctly, Forest must avoid playing 
this sequence at any other time. Recall that Forest’s original strategy consisted of trying at every K -slot all possible {0, 1}K

blocks consecutively, until hitting upon the right one. In Forest’s modified strategy, he will not try any block that contains ξ̄ . 
If, in addition, no prefix of ξ̄ equals a suffix of ξ̄ (for example, choose ξ̄ , so that the first half of it is 1, . . . , 1, and the second 
half, 0, . . . , 0), then Forest will play ξ̄ only between the blocks.

What is the second sacrifice’s effect on the payoff? As we saw in Section 4.2, the sequence played by Forest is distributed 
almost like a random (i.i.d., uniformly distributed) sequence. Since the probability that a random K -block contains ξ̄ is less 
than K · 2−p , we again get, by the choice of p, that the effect on the payoff is negligible.

To prove the result, we begin by assuming that the payoff of Matt (player 3) is independent of Forest’s actions, and prove 
the “moreover” part of the theorem; more precisely, we show that if log m4 
 m3, then

lim inf
n→∞ v3(

−→m) ≥ min
y∈�(A1×A2)

max
x∈A3

r3(y, x).

Let us grant, in advance, perfect correlation of the actions of Rowena and Colin. Furthermore, let Rowena, Colin, and Forest 
be united into one player with a set of actions A1 × A2 × A4, whose recall capacity is m4. As m4 is subexponential in m3, 
then, by Theorem 1 in Lehrer (1988), in the resulting repeated two-player game Matt can guarantee an expected payoff 
approaching his i.r.p. in the two-player stage game. This equals miny∈�(A1×A2) maxx∈A3 r3(y, x); hence the result.

We proceed to prove the first part of the theorem. First, as noted, Forest’s set of actions, A4 , need only be as large as 
Rowena’s, A1, in order for him to instruct her correctly. If, however, it is as large as Colin’s, then Rowena and Colin can 
switch roles: Rowena will play a long random cycle, and Colin will choose his “instruction dictionary,” and be instructed by 
Forest on how to match Rowena’s actions.

The strategies follow an outline similar to the scheme in Section 4.1, but for this general stage game we need to make 
some adjustments. Let ȳ ∈ �(A1 × A2) be a correlated distribution that achieves the minmax in correlated actions (when 
Forest plays according to z), i.e., ȳ ∈ arg miny∈�(A1×A2)[maxx∈A3 r3(y, x, z)]. Let ȳ2 denote the marginal distribution on A2, 
induced by ȳ. For x ∈ A2, let ( ȳ1|x) denote the conditional probability distribution on A1, induced by ȳ, given that the 
outcome in A2 is x.

Rowena chooses a random 1–1 function f : (A4)
K → (A1)

K to use as her instruction dictionary, and plays according to 
Forest’s play and f , as in Section 4.1. Again, Colin chooses a random L-periodic sequence x1, x2, . . . (xi ∈ A2) that satisfies 
(4.7), but here each xi is (almost independently) distributed according to ȳ2.

Forest randomly chooses a function g : (A2)
K → (A1)

K , g(x̄ = x1, . . . , xK ) = (g1(x̄), . . . , gK (x̄)), where gi(x̄) is distributed 
according to ( ȳ1|xi), independently for every x̄ ∈ (A2)

K and for every i. His goal is to instruct Rowena to play the block 
g(x̄) whenever Colin plays a block x̄. As in Section 4.1, Forest tries the blocks consecutively, until he hits upon the right 
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one. Here, the “right block” means the one that made Rowena play g1(x̄), . . . , gK (x̄), when Colin played x̄ = x1, . . . , xK (here 
Forest’s strategy is not pure but mixed according to his random choice of g). Therefore, the play of Rowena and Forest will 
eventually enter an L-cycle, in which Rowena plays blocks that are the function g of Colin’s blocks, and Forest plays blocks 
that are f −1 of Rowena’s next blocks.

Again, by Lemma 4.1, the sequence x1, . . . , xL played by Colin along a cycle is almost i.i.d. And again, since the probability 
of a K -block being repeated twice along an L-cycle is negligible, we conclude that Rowena’s actions along the cycle are 
almost mutually independent, by the construction of g , and that Forest’s sequence is almost independent of Rowena’s (and 
of Colin’s), by the random choice of f (and note that z is indeed the distribution of an action of Forest11). Therefore, Matt 
is practically faced with an L-cycle where, independently at every stage, the action pair of Rowena and Colin is distributed 
according to ȳ, and Forest’s actions convey no information. The appropriate rephrasing of Claim 4.2 completes the proof.

6. Proof of Theorem 2.2

Let D−k be a distribution on A−k with marginals D j on A j and assume that H(D−k) ≥ ∑
j<k H(D j). W.l.o.g. we assume 

that H(D j) > 0 for every player j. Otherwise, if H(D j) = 0 then there is an action a j ∈ A j such that D j(a j) = 1, and by 
player j playing repeatedly the action a j we reduce the problem to one of a game with a set of players N \ { j}.

Let J = {1, . . . , k − 1} and J+ = {k + 1, . . . , |N|}. If J+ = ∅, then 
∑

j∈ J H(D j) ≥ H(D J ) = H(D−k) ≥ ∑
j∈ J H(D j), and 

therefore H(D J ) = ∑
j∈ J H(D j); hence, the distribution D J is a product distribution.

The result in this special case appears implicitly in the proof of Lehrer (1994, Theorem 2); see also Neyman (1997, 
Proposition 6).

Assume that J+ is nonempty. The strategies of players N \ {k} (or simply −k) will be designed so that their play (a−k
t )t≥1

will eventually enter a periodic play. The length of the period will be a product of two integers dL with L = m1/2, mk 

dL 
 mk+1, and log d 
 m1. For example, as (by assumption) mk is subexponential in m1 and mk 
 mk+1, we can select 
mk 
 m̄k+1 ≤ mk+1 that is subexponential in m1, and let d be the largest integer that is ≤ √

m̄k+1mk/m1.
The play will be partitioned into superblocks of length dL. The �-th superblock consists of the play in stages (� − 1)dL +

1, . . . , �dL, and each superblock is partitioned into d blocks; the i-th block (where 1 ≤ i ≤ d) of the �-th superblock consists 
of the play in stages (� − 1)dL + (i − 1)L + 1, . . . , (� − 1)dL + iL.

The condition dL 
 mk+1 guarantees that (for sufficiently large n) player j > k recalls many of the recent completed 
superblocks. The condition L = m1/2 guarantees that each player j < k can recall the play of the last completed block.

The action choices of the strategy of a player j �= k will not rely on the past actions of player k, and those of a strategy 
of a player j < k will depend only on the past actions of the players in J+ .

We choose a sequence ε = (ε(n))∞n=1 such that log dL
L 
 ε2 (where ε2 = (ε2(n))∞n=1) and 0 < ε(n) →n→∞ 0, and let m be 

the largest integer that is ≤ L/(1 + 2ε). For a sequence x = (x1, . . . , xL) we denote by x∗ the (ordered) vector of the first m
elements xs of the sequence where s is not an integer multiple of [εm/2].

The condition that ε(n) →n→∞ 0 guarantees that the play in the last L −m stages of a block has a negligible (as n → ∞) 
impact on the empirical distribution of the block play.

The relation log dL
L 
 ε (which follows from the condition log dL

L 
 ε2 and ε(n) →n→∞ 0) together with the choice of m, 
imply that εm � log d; thus εm − log d →n→∞ ∞, and therefore d2−mε →n→∞ 0.

The relation ε(n)m(n) →n→∞ ∞ (which follows from εm − log d →n→∞ ∞) guarantees that the play in the stages that 
are integer multiples of [εm/2] has a negligible (as n → ∞) impact on the empirical distribution of the block play.

The role of stages m + [εm] + 1, . . . , m + [εm] + �log d� of a block is to enable player k + 1 to signal the index 1 ≤ i ≤ d
of a block within the superblock. The relation log dL

L 
 ε guarantees that L − m − [εm] � than the number �log d� of stages 
that are needed for this.

The role of stages m +[εm] +�log d� + 1, . . . , L is to (enable player k + 1 to) signal the end of the block by a sequence of 
L −m −[εm] −�log d� − 1 repetitions of a fixed action a followed by an action b �= a. The relation log dL

L 
 ε guarantees that 
for sufficiently large n this number of repetitions of the action a is larger than [εm/2] +�log d�; hence, if the play (of player 
k + 1) in stages t ≤ m + [εm] (of a block) that are integer multiples of [εm/2] is the action b, then the specified sequence 
(a, . . . , a, b) will appear only at an end of a block.

Let m∗ be the smallest integer such that there are m positive integers that are ≤ m∗ and are not integer multiples of 
[εm/2]. The relation log dL

L 
 ε2 guarantees that m∗ − m 
 εm. Therefore, the set S+ of all integers m∗ + 1 ≤ s ≤ m + [εm]
that are not integer multiples of [εm/2] has, for sufficiently large n, more than εm/2 elements. Stages s ∈ S+ of a block will 
be used by player k + 1 for additional signaling. As |Ak+1| ≥ 2, we deduce that for sufficiently large n, |A S+

k+1| ≥ 2mε/2.

Let Q be a distribution on A−k such that for every a ∈ A−k , mQ (a) is an integer and |Q (a) − D−k(a)| < 1/m. For every 
subset C ⊂ N \ {k} we denote by Q C the marginal of Q on AC =×j∈C A j . It follows that

H
(

DC ) − O

(
log m

m

)
≤ H

(
Q C ) ≤ H

(
DC ) + O

(
log m

m

)
. (6.1)

11 Actually, we could have replaced z in the theorem by any distribution ζ , provided that H(ζ ) ≥ log2 |A1|, where H signifies the entropy.



G. Bavly, A. Neyman / Games and Economic Behavior 88 (2014) 71–89 83
m + [εm] �log d�︷ ︸︸ ︷ ︷ ︸︸ ︷
. . . . . .b . . . . . .b . . . . . .b . . . . . .b . . . . . .b . . . . . .b ī a . . .ab︸ ︷︷ ︸ ︸ ︷︷ ︸
[εm/2] [εm/2]︸ ︷︷ ︸

L

Fig. 2. Block play of player k + 1.

For a positive integer m and a probability distribution q on a finite set B , Tm(q) denotes all the m-length sequences 
b ∈ Bm with empirical distribution q. In the sequel we use the following estimate (see, for instance, Cover and Thomas, 
1991, Theorem 12.1.13, p. 282) of the number of elements in Tm(q).

2mH(q)

(m + 1)|B| ≤ ∣∣Tm(q)
∣∣ ≤ 2mH(q) if Tm(q) �= ∅. (6.2)

Let Y j be the set of all elements x ∈ AL
j such that x∗ ∈ Tm(Q j) and let Y J be the set of all elements x ∈ AL

J such that 
x∗ ∈ Tm(Q J ).

The size of Y j . As Tm(Q j) is nonempty, (6.2) implies that

|A j|L−m 2mH(Q j)

(m + 1)|A j | ≤ |Y j| ≤ |A j|L−m2mH(Q j). (6.3)

The size of Y J . Similarly,

|A J |L−m 2mH(Q J )

(m + 1)|A J | ≤ |Y J | ≤ |A J |L−m2mH(Q J ). (6.4)

We impose additional properties on the play of player k + 1. These additional properties allow player k + 1 to signal the 
end of a block and its index.

Recall that H(Dk+1) > 0 and therefore |Ak+1| ≥ 2. Let a and b be two distinct actions in Ak+1. Let {ī : 1 ≤ i ≤ d} be 
a set of d distinct elements of {a, b}�log2 d� . Let −→a be a sequence of L − m − [εm] − �log2 d� − 1 repeated actions a. Let 
Xi(k + 1), 1 ≤ i ≤ d, be all elements x in AL

k+1 of the form x = (. . . , ̄i, −→a , b) such that x∗ ∈ Tm(Q k+1) and xs = b for every 
stage 1 ≤ s ≤ m + [εm] that is an integer multiple of [εm/2] (see Fig. 2). Note that for sufficiently large m, the string ( −→a , b)

appears in a sequence x ∈ Xi(k + 1) only once (at the end).
The size of Xi(k + 1). Recall that |Ak+1| ≥ 2 and that for m sufficiently large, |S+| ≥ εm/2. Therefore, for m sufficiently 

large, ∣∣Xi(k + 1)
∣∣ ≥ 2m(H(Q k+1)+ε/2)

(m + 1)|Ak+1| . (6.5)

The sets Xi(k + 1), 1 ≤ i ≤ d, are disjoint and we set X(k + 1) = ⋃
i Xi(k + 1). For every k + 1 ∈ C ⊂ N let γ : AL

C →
{0, 1, . . . , d} be the surjective map defined by γ (x) = i ≥ 1 if xk+1 ∈ Xi(k + 1), and γ (x) = 0 otherwise.

Let C ⊂ N \ {k} be a set of players with k + 1 ∈ C . A play (z1, . . . , zd) of the set C of players, where zi ∈ AL
C , is said to 

be C-correct, if, for every 1 < i ≤ d, the empirical distribution of z∗
i equals Q C , and for every 1 ≤ i ≤ d, zk+1

i ∈ Xi(k + 1). 
A correct play is an N \ {k}-correct play.

The strategy profile σ−k = (σ j) j �=k aims at generating a distribution over plays, such that with probability close to 1, it 
eventually repeats a correct play, and such that all correct plays are equally likely in the eventually repeated superblock play.

This aim is achieved by the description below of the strategy profile σ J+ = (σ j) j∈ J+ of the set of players J+ and of the 
strategy σ j of each player j < k.

The strategy profile σ J+ = (σ j) j∈ J+ tries, in a random order, all the J+-correct plays in a superblock, until it observes 
that the play in a superblock is correct. Thereafter, it repeats its play in the correct superblock at each of the following 
superblocks.

A (k + 1)-correct play marks the end of each block so that the recall of each player j < k enables him to recall the play 
x of the last completed block play. The strategy of player j < k selects for each 0 ≤ i ≤ d a dictionary f j

i : AL
J+ → Y j , where 

each list f j = ( f j
i )1≤i≤d is equally likely, and following a play x of players −k in a block, it plays f j

γ (x)(x) in the following 

block (see Fig. 3). Let f i = ( f j
i ) j<k denote the function f i : AL

J+ → Z := ∏
j<k Y j where f i(x) = ( f j

i (x)) j<k . For completeness 
of the definition of the strategy, we also have to define its play in the first block, as well as its play when it does not 
recognize the last completed block. The strategy of player j < k plays in the first block a random play in AL

j , all equally 
likely. In all other cases it plays a fixed action.

The random order of “trials” of σ J+ and the uniform randomness of the dictionaries f i
j imply that the distribution 

defined by the strategy profile σ−k on plays of the repeated game is such that (conditional to the infinite play entering a 
cycle of a correct play) all correct plays are equally likely.
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L L L︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
Player 1 . . . · f 1

1 (x1) . . . . . . . . . . . . . . . f 1
d−1(xd−1) . . .

.

.

.

Player k − 1 . . . · f k−1
1 (x1) . . . . . . . . . . . . . . . f k−1

d−1 (xd−1) . . .

J+ players . . . x1 x2 . . . . . . . . . . . . . . . xd . . .︸ ︷︷ ︸
dL

Fig. 3. Correct superblock play.

The trials of all the J+-correct plays in a superblock is straightforward in the case where J+ contains a single element, 
namely, J+ = {k + 1}. In this case, player k + 1 selects a random order O of all (k + 1)-correct plays. As the recall mk+1
of player k + 1 is greater than 2dL, player k + 1 has the capacity to recall at every stage the entire last completed play 
of a superblock. If the last completed superblock is correct, he repeats his (k + 1)-correct play of the previous superblock. 
Otherwise, he tries in the following superblock to play the next (according to the order O) (k + 1)-correct play.

We now describe the random trials in the case that J+ � {k + 1}. Set X0(k + 1) = AL
k+1 \ ⋃d

i=1 Xi(k + 1). Let w be the 
smallest integer w that is an integer multiple of d and such that |X0(k + 1)|w is larger than the number of J+-correct plays. 
Note that w = O (d) as n → ∞, and therefore each one of the players j > k recalls the play of the last wL + dL stages. Let 
the set J+ of players agree on a dictionary that maps X0(k + 1)w onto the set of J+-correct plays. Player k + 1 selects a 
random order of all J+-correct plays, and in wL consecutive stages (namely, w blocks) player k + 1 plays an element of 
X0(k + 1)w to signal via the agreed-upon dictionary the J+-correct play of the next trial.

We turn now to the proof that with probability close to 1 there is a play (x1, . . . , xd) ∈ AdL
J+ (where xi ∈ AL

J+ ) such that 
(x1, y1, . . . , xd, yd), where yi+1 = f i(xi) for i < d, is correct. Let Y = Y J , X1 is the set of all x ∈ AL

J+ such that γ (xk+1) = 1, 
and for 1 < i ≤ d and y ∈ Y , Xi is the set of all x ∈ AL

J+ such that xk+1 ∈ Xi(k + 1), and Xi(y) is the set of all x ∈ Xi such 
that (x∗, y∗) ∈ Tm(Q ).

Size of Xi(y).∣∣Xi(y)
∣∣ ≥ 2m(H(Q )−H(Q J )+ε/2−O (

log m
m )). (6.6)

As log m
m 
 ε, ε/2 − O (

log m
m ) ≥ ε/3 for sufficiently large m.

We use the following auxiliary concept. An element x1 ∈ X1 is f -correct if f1(x1) ∈ Y . By induction on 1 < i < d, we say 
that an element (x1, . . . , xi) ∈ ∏

1≤i′≤i Xi′ is f -correct if (x1, . . . , xi−1) is f -correct, xi ∈ Xi( f i−1(xi−1)) and f i(xi) ∈ Y .

By inequalities (6.3) and (6.4), |Y |/|Z | = 2m(H(Q J )−∑
j<k H(Q j)+O (

log m
m )) as m → ∞. Therefore, for sufficiently large m, 

using inequality (6.6), the conditional probability, given that (x1, . . . , xi−1) is f -correct, that there is no xi ∈ Xi(yi), where 
yi = f i(xi−1), such that (x1, . . . , xi) is f -correct, is

≤ (
1 − |Y |/|Z |)|Xi(yi)| ≤ e−2m(H(Q )+ε/2−H(Q J )+H(Q J )−∑

j<k H(Q j )+O (
log m

m ))

≤ e−2εm/3 ≤ 2−εm for m sufficiently large.

Therefore, the probability that there is no (x1, . . . , xd) ∈ AdL
J+ such that (x1, y1, . . . , xd, yd), where yi+1 = f i(xi) for i < d, is 

correct, is ≤ d2−εm →n→∞ 0.
Recall that d, m, and ε are functions of n, with log m

m 
 ε 
 1 
 d. Let ε1 = 2d2−εm . Fix a sufficiently large Tn such that 
for all sufficiently large n and any T ≥ Tn that is an integer multiple of dL,

Pσ−k

((
a−k

T +1, . . . ,a−k
T +dL

)
is a correct play

)
> 1 − ε1.

Note that if the play (a−k
T +1, . . . , a−k

T +dL) is correct, its empirical distribution e(a−k
T +1, . . . , a−k

T +dL) is close to Q ; explicitly, 
‖e(a−k

T +1, . . . , a
−k
T +dL) − Q ‖ ≤ 1

d

∑d
i=1 ‖e(a−k

T +(i−1)L+1, . . . , a
−k
T +iL) − Q ‖ ≤ 2

d +2 L−m
m ≤ 2

d +5ε 
 1. As ‖Q − D−k‖ ≤ O (
log m

m ) 
 ε, 
we conclude that if the play (a−k

T +1, . . . , a−k
T +dL) is correct, then ‖e(a−k

T +1, . . . , a
−k
T +dL) − D−k‖ ≤ 2

d + 6ε 
 1 for n sufficiently 
large. Therefore, for n sufficiently large, Pσ−k (‖e(a−k

T +1, . . . , a
−k
T +dL) − D−k‖ > 2

d + 6ε) < ε1 and therefore

Eσ−k

(
e
(
a−k

T +1, . . . ,a−k
T +dL

)) →n→∞ D−k. (6.7)

By the concavity and continuity of the entropy (as a function of the distribution), (6.7) implies that

lim sup
n→∞

1

dL
H

(
a−k

T +1, . . . ,a−k
T +dL

) ≤ H
(

D−k).
The number of correct plays is ≥2dmH(Q )/(m +1)d|A−k | , and all correct plays are equally likely. Therefore H(a−k

T +1, . . . , a
−k
T +dL) ≥

(1 − ε1)mdH(Q ) − d|A−k| log(m + 1). Using the continuity of the entropy function, H(Q ) →n→∞ H(D−k), and therefore, as 
(1−ε1)mdH(Q )−d|A−k | log(m+1) →n→∞ H(D−k), we deduce that lim infn→∞ 1 H(a−k , . . . , a−k ) ≥ H(D−k). We conclude that
dL dL T +1 T +dL
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1

dL
H

(
a−k

T +1, . . . ,a−k
T +dL

) →n→∞ H
(

D−k). (6.8)

Let σ k be a pure strategy of the opponent. The number of strategies (σ k | h), where h ranges over all plays (z1, . . . ,
zT ) ∈ AT , is bounded by |A|mk .

Following Neyman (2008), for every q ∈ �(A−k) and α > 0 we define v(q, α) as the maximum of E Q rk(a), where 
the maximum ranges over all distributions Q on A such that its marginal Q −k on A−k equals q and H(Q −k) +
H(Q k) − H(Q ) ≤ α. It follows that v(q, α) → maxak∈Ak

rk(D−k, ak) as (q, α) → (D−k, 0). Therefore, as (1) mk log |A|
dL →n→∞ 0, 

(2) Eσ−k (e(a−k
T +1, . . . , a

−k
T +dL)) →n→∞ D−k , and (3) 1

dL H(a−k
T +1, . . . , a

−k
T +dL) →n→∞ H(D−k), we deduce from Neyman (2008, 

Proposition 2) that inequality (2.4) holds.

7. Equilibrium payoffs

A classical “folk theorem” characterizes the set of equilibrium payoffs in the infinitely repeated game by means of the 
data of the stage game. Other “folk theorems” characterize the asymptotic behavior of the equilibrium payoffs of game 
models that “approximate” the undiscounted infinitely repeated game model. Such approximations may involve variations on 
the duration (e.g., a long finitely repeated game), or discounted games with patient players, or repeated games with bounded 
rationality (e.g., repeated games with finite automata or with bounded recall), or any combination of such approximations. 
The present section focuses on the folk theorems for repeated games with bounded recall.

Recall that for −→m = (
−→m(n))n∈N , where −→m(n) = (mi(n))i∈N , G∞(

−→m) denotes the infinitely repeated game, where player i uses 
an mi(n)-recall strategy. A bounded-recall folk theorem here is a characterization of the asymptotic behavior of NE(G∞(

−→m)), 
the set of Nash equilibrium payoffs of the game G∞(

−→m).
The existence of the limit, as n → ∞, of NE(G∞(

−→m)) depends obviously on the asymptotic properties of the sequence −→m
of the players’ recall. In some cases, where the existence of a limit is not known, information about the asymptotic behavior 
of NE(G∞(

−→m)) is provided by exhibiting upper and lower bounds for NE(G∞(
−→m)). Obviously, the smaller the upper bound 

and the larger the lower bound, the more informative such results are.
The asymptotic behavior of NE(G∞(

−→m)) in the case of two-player games (N = {1, 2}), where each player’s length of 
recall is subexponential in the other player’s length of recall (i.e., mi � log m j) and the length of recall mi(n) goes to 
infinity as n goes to infinity, is characterized in Lehrer (1988).12 For more than two players, the issue is wide open; existing 
theorems (e.g., Lehrer, 1994, Neyman, 1997) give upper and lower bounds for NE(G∞(

−→m)). The asymptotic analysis of this 
set essentially boils down to the asymptotic analysis of the i.r.p.s of the players, (v̄ i(

−→m))i∈N . To find these i.r.p.s, we need 
to account for the possibilities of concealed correlation. Therefore, our main results contribute to the asymptotic analysis of 
NE(G∞(

−→m)).
Given a stage game G = (N, A, r), we denote by F = F (G) the convex hull of all points r(a), a ∈ A (then F is the set 

of feasible payoffs in the infinitely repeated (undiscounted) game), and ui = ui(G) denote player i’s minmax in correlated 
actions in G , i.e., ui(G) = miny∈�(A−i) maxai∈Ai

ri(y, ai) (= maxxi∈�(Ai)
minb−i∈A−i

ri(x, b−i)).

Theorem 7.1. Let G be a (k + 1)-player game, where (1) player k + 1 has sufficiently many stage actions, e.g., |Ak+1| ≥ |A S | for every 
S ⊂ {1, . . . , k} with |S| ≤ k − 2, (2) rk+1 is constant, and (3) ri is independent of the actions of player k + 1, and there exists a vector 
payoff v ∈ F (G) such that for every player 1 ≤ i ≤ k, vi > ui(G). Let −→m be a sequence of recall lengths mi(n) that satisfy assumptions 
(A1), (A2), and (A3). Then,

lim inf
n→∞ NE

(
G∞(

−→m)
) ⊃ {

v ∈ F (G) : vi ≥ ui(G)
}
. (7.1)

If, in addition, logmk+1 
 m1 , then

lim
n→∞ NE

(
G∞(

−→m)
) = {

v ∈ F (G) : vi ≥ ui(G)
}
. (7.2)

The theorem follows from the following observations. First, for any player 1 ≤ i ≤ k and D S ∈ �(A S ), where S =
{1, . . . , k} \ {i}, if z is the uniform distribution on Ak+1 and p ∈ S , then H(D S ⊗ z) = H(D S ) + H(z) ≥ H(D p) + log |Ak+1| ≥
H(D p) + log |A S\{p}| ≥ ∑

j∈S H(D j). Therefore, by Theorem 2.2, players S ∪ {k + 1} can conceal the distribution D S ⊗ z from 
player i. Therefore, lim supn→∞ v̄ i(

−→m) ≤ ui(G), and the classical pattern of proving a folk theorem – a plan with punish-
ments – yields (7.1). Second, the condition log mk+1 
 m1 implies that each player i can conceal from the other players any 
distribution Di on Ai . Therefore, lim infn→∞ vi(

−→m) ≥ ui(G) which, together with (7.1), implies (7.2).
Interpreting player k + 1 in Theorem 7.1 as a mechanism designer, rather than a participant, yields a folk theorem for 

repeated games with bounded recall and a mechanism designer. In Eq. (7.2), the set of equilibrium payoffs of players 1, . . . , k
converges to the set of correlated equilibrium payoffs in a classical k-player repeated game, without any rationality bounds 
(this is the “Correlated Folk Theorem”).

12 The analogous (and related) result in the model of repeated games with finite automata appears in Ben-Porath (1986, 1993).
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When player k + 1 is a participant in the game, rather than a mechanism designer, Theorem 2.2 specifies a set of 
distributions that can be concealed from a player in the repeated game with bounded recall. As a corollary, this narrows 
the gap between the known upper and lower bounds for the equilibrium payoffs in these games.

When the lengths of the players’ recalls satisfy assumption (A1), namely, mi+1(n) ≥ mi(n) →n→∞ ∞, and mk � |A|mk−1 , 
then Theorem 2.3 yields a lower bound on lim inf vk(

−→m):

lim inf vk(
−→m) ≥ min

a∈A<k

max
b∈Ak

min
c∈A>k

rk(a,b, c),

where < k, respectively > k, is the set of all players i with i < k, respectively with i > k.

8. Remarks

8.1. Concealed distributions

A profile of mixed SBR (or finite automata) strategies σ = (σ 1, . . . , σ n) induces a probability distribution over periodic 
plays of the repeated game, thereby inducing the average limiting frequency of any action profile a = (a1, . . . , an) ∈ A (the 
average “empirical” probability of a). Thus, σ induces the average empirical distribution Dσ ∈ �(A). For K ⊂ N let AK =×k∈K Ak and let Dσ | AK denote the marginal distribution of Dσ on AK (the average empirical distribution over AK ).

We now define a notion of strategic concealment that is independent of payoff. Let J ⊂ N be a group of players, let 
D J ∈ �(A J ) be a given distribution over their actions, let player i /∈ J be the opponent, and let C i be a class of strategies 
of i. We would say that the strategy tuple σ−i of players N \ i conceals the distribution (over the actions of the members 
of J ) D J against C i , if the following holds: for every σ i ∈ C i and every action ai ∈ Ai whose average empirical distribution 
is nonnegligible, the average empirical conditional distribution over A J , given that i plays ai , is close to D J .

This notion may be formally and succinctly defined using information-theoretic terminology as follows. We use the 
notion of the Relative Entropy of a distribution p with respect to a distribution q, D(p ‖ q) (see, e.g., Cover and Thomas, 
1991), to measure how much p differs from q. (This choice is quite immaterial for our purposes; other notions, e.g., the 
bounded variation norm, would serve just as well.)

First we define the notion of implementation. Fix a player i ∈ N and let J ⊂ N \ {i}.

Definition 8.1. σ−i ε-implements D J against C i iff ∀σ i ∈ C i D((Dσ−i ,σ i | A J ) ‖ D J ) ≤ ε.

Let x j be the projection from A onto A j , x = (x j) j∈N , and for a subset J ⊂ N , x J = (x j) j∈ J . Let Hσ denote the entropy 
operator according to the distribution Dσ . Thus, for example, Hσ (x J ) is the entropy of the A J -valued random variable x J

that is distributed according to Dσ |A J , and Hσ (x J | xi) is the conditional entropy of x J given the Ai -valued random variable 
xi where x is distributed according to Dσ .

Definition 8.2. σ−i ε-conceals D J against C i iff σ−i ε-implements D J against C i and ∀σ i ∈ C i Hσ−i ,σ i (x J ) − Hσ−i ,σ i (x J | xi) ≤ ε.

The conclusion of Theorem 2.2 can be stated using this (payoff independent) concept of concealment. Explicitly, under 
the assumptions of Theorem 2.2, there is a profile σ−k = (σ j) j �=k of m j(n)-recall strategies such that for every ε > 0, for n
sufficiently large the strategy profile σ−k ε-conceals D−k against BRk(mk).

8.2. Alternative bounded recall models

The general class BR j(m) of bounded m-recall strategies does not impose any constraints on its action choices in the 
first m stages. A classical subclass of BR j(m) is that of the initialized bounded m-recall strategies BR j∗(m), which does 
impose restrictions on the action choices in stages t = 1, . . . , m. A strategy σ j ∈ BR j∗(m) is defined by a pair (e j, f j), where 
f j : Am → A j and e j ∈ Am . The first item, f j , determines j’s action at any stage t > m, as a function of (at−m, . . . , at−1) ∈ Am . 
(The string (at−m, . . . , at−1) can be viewed as player j’s memory before stage t .) The role of e j is simply to pad j’s memory 
up to length m at the early stages of the game, before there is an actual history of length m.

Therefore, the action prescribed by the strategy σ j ∈ BR j∗(m), after any history of length t − 1, is

σ j(a1, . . . ,at−1) =
{

f j(at−m, . . . ,at−1) if t > m

f j(e j
t , . . . , e j

m,a1, . . . ,at−1) if t ≤ m.

The main results remain intact if we restrict the minimization to initialized bounded-recall strategies.
Note that a strategy in BR j(m) (or BR j∗(m)) may allow a player to rely on the past actions of all players, including 

himself. A bounded recall strategy whose action choice is independent of its own past actions is called an exact bounded 
recall strategy, and the corresponding classes are denoted EBR j(m) and EBR j∗(m).
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0 1
0 −1 + ε 0
1 0 0

Matrix 0

0 1
0 0 0
1 0 −1 − ε

Matrix 1

Fig. 4. The game Gε.

For a finite set N = {1, . . . , k, k + 1, . . .} of players with J+ �= ∅, the main results remain intact if in the minimization at 
least one of the players j > k is allowed to use a strategy σ j ∈ �(BR j∗(m j)) and all the other minimizers are restricted to 
strategies σ j ∈ �(EBR j∗(m j)).

A pure time-dependent m-recall strategy of player k is a strategy σ k of player k such that σ k(a1, . . . , at−1) is a function 
of the stage t and the last m action profiles (at−m, . . . , at−1). The main result remains intact if we allow player k to maximize 
over all his time-dependent m-recall strategies.

8.3. Concealing correlation without a strong player

Here we give, in the exact bounded recall model, a simple example of a successful online concealed correlation by two 
players whose opponent is as strong as they are, with no other players in the game.

The stage game Gε, depicted in Fig. 4, is a slight modification of the three-player matching pennies game. For sufficiently 
small ε > 0, Matt’s i.r.p. in the stage game is > − 1

4 . We will see that Matt’s i.r.p. in the repeated game where all three 
players use 1-EBR strategies is smaller than his i.r.p. in the stage game.

The mixed strategies of Rowena and Colin, σ 1 and σ 2, are both the same: a mixture of two pure strategies, sI and sO , 
each with probability 1

2 . The pure strategy sI always imitates the last action of the other, and at the first stage it plays 0. The 
pure strategy sO always plays the action opposite to what the other has played, and at the first stage it plays 1. (σ 1, σ 2)

induce four possible plays of Rowena and Colin, each with probability = 1
4 (periodic plays are indicated in bold):

Play Pure profile t = 1 t = 2 t = 3 t = 4 t = 5 . . . . . .

A (sI , sI ) (0,0) (0,0) (0,0) (0,0) (0,0) . . . . . .

B (sI , sO ) (0,1) (1,1) (1,0) (0,0) (0,1) . . . . . .

C (sO , sI ) (1,0) (1,1) (0,1) (0,0) (1,0) . . . . . .

D (sO , sO ) (1,1) (0,0) (1,1) (0,0) (1,1) . . . . . .

We compute Matt’s best 1-EBR strategy response against σ = (σ 1, σ 2), by computing his best action for every contin-
gency (= a pair of actions of Rowena and Colin played at some (unknown) point in time).

Suppose Matt saw (0, 0). Let xA denote the pure strategy profile corresponding to the play A. The frequency of α = (0, 0)

in this play, DxA (α), is 1. Similarly, DxB (α) = 1
4 , DxC (α) = 1

4 , and DxD (α) = 1
2 . Hence the average frequency is

Dσ (α) =
xD∑

y=xA

σ [y] · D y(α) = 1

4

xD∑
y=xA

D y(α) = 1

4

(
1 + 1

4
+ 1

4
+ 1

2

)
= 1

2
.

Therefore, after seeing α, the probability of the play being A is

(σ | α)[xA] = σ [xA] · DxA (α)

Dσ (α)
=

1
4 · 1

1
2

= 1

2
.

Similarly,

(σ | α)[xB ] =
1
4 · 1

4
1
2

= 1

8
; (σ | α)[xC ] =

1
4 · 1

4
1
2

= 1

8
; (σ | α)[xD ] =

1
4 · 1

2
1
2

= 1

4
.

This induces the following probability over the forthcoming pair of actions (because if the play is A then after (0, 0) it 
will follow (0, 0), etc.).

0 1
0 1/2 1/8
1 1/8 1/4

Therefore,13 for ε small enough, Matt’s best action in this case is 1.

13 σ 1 and σ 2 are not contingent on Matt’s play; and since Matt’s EBR strategy cannot rely on his own actions either, the action he will take at this given 
stage has no effect on future play.



88 G. Bavly, A. Neyman / Games and Economic Behavior 88 (2014) 71–89
For the other possible pairs of actions, the same computation gives the distributions after observing (0, 1), (1, 0), and 
(1, 1):

1/2 0
0 1/2

After (0,1)

1/2 0
0 1/2

After (1,0)

1/2 1/4
1/4 0

After (1,1)

and Matt’s best actions are 0, 0, and 1, respectively.
Thus we have defined σ 3, Matt’s best 1-EBR response against (σ 1, σ 2). Now, the play A will yield an average payoff of 0 

for Matt, since he will always play 1 (at least from the second stage on). In the play B , Matt gets (−1 + ε) at stages where 
Rowena and Colin play (0, 0), since he also plays 0 there (since Rowena and Colin played (1, 0) at the previous stage), and 
he gets 0 at the other stages; hence, his average payoff is −1+ε

4 . Similarly, the play C also yields an average payoff of −1+ε
4 , 

and D yields −1−ε
2 . Therefore, Matt’s expected payoff is r̄3(σ 1, σ 2, σ 3) = (−1+ε

4 + −1+ε
4 + −1−ε

2 )/4 = − 1
4 ; thus (σ 1, σ 2)

indeed guaranteed that Matt’s expected payoff in the 1-EBR infinitely repeated game will be no more than − 1
4 .

8.4. Online concealed correlation by finite automata

Here we demonstrate that the same type of online concealed correlation achieved in our results, where the players were 
restricted to SBR strategies, is also achievable in another model in which the players are restricted to strategies induced 
by finite automata, when analogous relations hold between the strength levels of the players. The adaptation to finite 
automata is done in a straightforward manner, using the same setup of strategies that was used for the SBR model. It seems 
conceivable that, for the finite automata model, the same result could perhaps be achieved under weaker assumptions, by 
some modification of these strategies.

A finite automaton for player i (in a repetition of a game G = (N, A, r)) is a tuple A = 〈S, q1, f , g〉, where S is a finite 
state space, q1 ∈ S is the initial state, f : S → Ai is the action function prescribing an action to play at any given state, and 
g : S × A−i → S is the transition function.

Such an automaton A defines a strategy in the repeated game as follows. At any stage, the action taken by A is deter-
mined by the current state of A, according to the action function f , while the current state along the stages is determined 
by the transition function g . Thus, let zt denote the state of A at stage t . At stage 1, z1 = q1. At stage t + 1, zt+1 = g(zt , a−i

t ), 
where a−i

t denotes the actions taken by the other players at stage t . The action ai
t taken by the automaton at stage t is 

f (zt).
The number of states |S| is called the size of the automaton. We denote by Σ i(s) all strategies defined by some automa-

ton of size s. Let σ i ∈ BRi∗(m) be an m-recall strategy. Such a strategy is equivalent to a strategy induced by an automaton 
of size |A|m (see, e.g., Neyman, 1997, p. 247). Or, to put it in symbols (and identifying a strategy with its equivalence class), 
BRi∗(m) ⊂ Σ i(|A|m). Similarly, BRi(m) ⊂ Σ i(

∑m
t=0 |A|t).

The proof of Theorem 2.2 implies the following result in repeated games with finite automata. Let G = (N, A, r) be a 
finite stage game with N = {1, . . . , k, . . . , |N|}. Let D−k be a distribution on A−k with H(D−k) ≥ ∑

1≤ j<k H(D j), and let the 
automata sizes s j(n), j ∈ N and n ∈ N, satisfy

(A4) s j+1(n) ≥ s j(n) →n→∞ ∞,
(A5) log sk 
 log sk+1, and
(A6) log log sk 
 log s1.

Then

lim sup
n→∞

min
σ−k∈×j �=k �(Σ j(s j))

max
τ∈Σk(sk)

r̄
(
σ−k, τ

) ≤ min
x∈Ak

r
(

D−k, x
)
.

By setting m j = log s j
log |A| , BRi∗(m j) ⊂ Σ j(s j); hence, it suffices to prove that

lim sup
n→∞

min
σ−k∈×j �=k �(BR j∗(m j))

max
τ∈Σk(sk)

r̄
(
σ−k, τ

) ≤ min
x∈Ak

r
(

D−k, x
)
.

In deriving this inequality for the maximization over τ ∈ BRk(mk), the only property of such a strategy τ that was used 
is that the number of distinct strategies it defines on subgames is bounded by |A|mk , a property that holds also for any 
τ ∈ Σk(sk).

A time-dependent automaton is a machine whose action choices may depend both on t and on the current state. The 
main results remain intact also when allowing player k to maximize over all his time-dependent automata with sk states. 
Moreover, we can allow the maximizer to maximize over all time-dependent automata with mixed actions and mixed 
transitions.
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8.5. Other comments

1. In Lehrer (1994) it is stated implicitly (see Lehrer, 1994, Theorem 1) that in the model of repeated games with bounded 
recall, if the recall of player k is larger than that of each player j in a subset J of players, then the marginal on A J of a 
distribution D−k on A−k that can be concealed from player k is a product distribution. However, our example in Section 4
(or the general result) disproves Theorem 1 in Lehrer (1994), due to the possibility of concealed correlation.

2. We have discussed only infinitely repeated games where the payoff is the limiting average payoff. Note, however, 
that in the main result the play of the concealing group enters a cycle at some point, and the time it takes to enter that 
cycle does not depend upon the payoff function. The limiting average payoff equals the average along that cycle, and the 
discounted payoff converges to this average as the discount factor approaches 1. Therefore, our results apply also to games 
with discounted payoffs, provided the discount factor is close enough to 1; and likewise to finitely repeated games, provided 
the number of repetitions is sufficiently long.

3. We may wonder whether in a classical repeated game, without any rationality bounds, a non-product distribution 
can be ε-concealed (see Definition 8.2). Of course, the question makes sense only when the opponent has more than one 
available action. As it turns out, when the opponent has at least two actions, the distributions that can be ε-concealed for 
any ε > 0 are only the product distributions.

4. Apart from Section 8.3, we have not discussed the quantification and the feasibility of concealed correlation against an 
opponent who is the strongest in the field. Recently Peretz (2013) proved interesting results for this case. For a treatment 
of this problem in a different model of bounded rationality, where strategies are implemented by polynomial-time Turing 
machines, see Gossner (1999, 2000). For concealed correlation in the model of repeated games with signals, see Gossner 
and Tomala (2007).

5. In economic situations where “the rules of the game” forbid direct coordination among players (e.g., anti-cartel regula-
tions, or various types of multistage auctions), the technique exhibited here may be used by the participants as a loophole, 
enabling them to circumvent these rules. Hence, the supervisor of the game may have to be able to identify and forbid this 
type of concealed correlation.

6. Additional related results and comments are in Bavly and Neyman (2003).
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