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CONTINUOUS VALUES ARE DIAGONAL *t

ABRAHAM NEYMAN

Cornell University

It is. proved that every continuous value is. diagonal, which in particular implies that every
value on a closed reproducing space is diagonaL We deduce als.o that there are noncontinuous
values.

1. Introduction. The axiomatic definition of the value of a nonatomic game was
introduced by R. J. Aumann and L. S. Shapley in their book, Values of Non-Atomic
Games [1]. [1, Chapter 7] discusses the diagonal property, which appears to be basic in
the study of values. An the values examined there enjoy the diagonal property, and
the authors raised the problem as to whether or not this property is a consequence of
the axioms defining the value. This question was answered by A. Neyman and Y.
Tauman [4] in the negative, by means of a counterexample. As a result of the
counterexample, new problems arise: Can one formulate an additional "natural"
axiom that will guarantee the diagonality of the value, or alternatively can one point
to a class of spaces on which any value is diagonal. Regarding the second question, Y.
Tal.1man[5] has shown that even on reproducing spaces there exist nondiagonal
values.

In this paper we shall show that any continuous value is diagonal, which in
particular implies that any value on a closed reproducing space is diagonaL thus
solving these open problems. It is worth mentioning that the proofs do not make use
of the efficiency axiom. Thus, the results remain valid for semivalues, i.e., linear
symmetric positive operators from set functions to additive set functions.

Besides the wish to understand the diagonality of all the values occurring in [1],
there is another strong reason to consider diagonal values. As nonatomic games are
models for games with large masses of players, in which no individual player can
affect the overall outcome, it is desirable to consider values that are limits of values of
such finite games. Using the known formula for the unique value of a finite game
together with some probability arguments, one can show that whenever a value of a
nonatomic game is a limit of a sequence of values of finite games that approximate
the nonatomic one, then this value is diagonal.

Definitions and statement of results.' All the definitions and notations are as in

.
:::"

2.

[1).
Let (1, e) be the measurable space ([0, 1], gJ) where ~J is the a-field of Borel sets

in [0, 1]. A set function is a real-valued function v on e such that v«;Z»)= O. The
members of I are palled players, the members of e coalitions, and the set functions
games. A game v~rsmonotonic if for each S, TEe, S c T~ v(S) ,;;;v(T). If Q is a
set of games, Q + denotes the subset of monotonic games in Q. A game v is of
bounded variation if it is the difference between two monotonic games. The variation
norm of v is defined by

Ilvll = inf(u(I) + w(I)),
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where the inf ranges over all monotonic set functions u and }\,'such that t; = u - w.
The space of all games of bounded variation is called B V. The subspace of B V
consisting of all bounded, finitely additive set functions is denoted FA.

Let Q be any subspace of BV. A mapping of Q into BV is positive if it maps Q +

into B V +. Q is reproducing if Q = Q + - Q + .
Let <3 be the group of automorphisms of (1, ~') (i.e., one to one mappings of I onto

itself that are measurable in both directions). Each 0 E ~ induces a linear mapping 0*
of BV onto itself, defined by (O*v)(S) = v(OS) for all s E (?

Let Q be a symmetric subspace of BV A value on Q is a positive linear mapping q;
from Q into FA that satisfies:

cp is symmetric, i.e., cpO* = O*<p for all 0 E <3 . (2.1 )

cpis efficient, i.e., <pv(1) = v(1) for all v E Q. (2.2)

Define DIAG to be the set of all vE B V satisfying:
There exists a positive integer k, a k-dimensional vector ~, of nonatomic probabilizv

measures, and a neighborhood U in EK of the diagonaJ [0, g(l») such that if ~(S) E U
then v(5) = O. .

Note that DIAG is a symmetric subspace of BV. Let Q be a symmetric subspace of
BV, y a value on Q. We shall say that the pair (Q, y) enjoys the diagonal property, and
that 'I is a diagonal value, if we have 'Iv = 0 for all v E'Q n DIAG. We might
paraphrase this by saying that if v vanishes in a neighborhood of some "diagonal",
then its value also vanishes.

The main result of the present paper is the following:

MAIN THEOREM. Any continuous value is diagonal.

From this we obtain the following:

MAIN COROLLARY. Any value on a closed reproducing space is diagonal.
- .

PROOF. This is an immediate consequence of the main theorem and [1, proposition
4. 15}, which asserts that any positive linear operator from a closed reproducing
subspace of BV into BV is continuous.

-
It was proven in [1] that the unique value on bvt NA, the asymptotic value on

ASYMP and the mixing value on MIX are all diagonal [1, propositions 43.1, 43.2 and
43.t1). Since ~ll those values are continuous it now follows-immediately from the main
theorem that they are all diagonal. The main theorem enables us also to sharpen
proposition 43.13 of [1] to the following one.

PROPOSITION. There is a unique continuous value on pNAD,

Another direct in:t1?lication: of the main theorem (in view of either [4] or [5]) is the
existence of noncontinuous values.

3. Proof of the main theorem. The idea of .the proof is as follows: We assume
that cpis a continuous value on Q and v E Q n DrAG. Then we shall show that there
exist an automorphism r of the measurable space and a constant K such that for any
nand ai with jail ~ 1 we have

11

L ai( 1'i)*V ~ K.
i=l

(*)
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On the other hand, as <pvE FA we shall see that for any automorphism T there exists.
a constant K2 such that for each n there exist constants bi with Ibil< 1, such that.

II

L bi(Ti)*<pV > K2.ntll<pvll.
i= 1

. (**)

Then, as <pis linear and symmetric, by looking at games of the form L7-1 bi( Ti)~V, (*)
and (**) contradict the continuity of <p,unless <pv= O.

.

Let <pbe a continuous value on Q and let v E DIAG. v E DIAG implies that there
exist an integer k, nonatomic probability measures P,I' . . . , P,kand a positive constant
t > 0 such that if

I
fLieS) - p,/S)!< ( for each'i,) = 1, - . ., k then DeS) ==O. Denote

by p, the scalar measure L7= 1P,i and by j; the Radon Nikodym derivative of J.Liwith
respect to fL. (Note that.t: E LI( p,).)

..

Let T be an automorphism of the measurable space (1, e) that is p,-m~asure
preserving and p,-mixing, i.e.,

J.L(TS)= p,(S) for each SEe. (3~1)

p,(A)- p,(B)
p,(B n T IIA) ~ . .

(l)
.

11->00 P,
for all measurable sets A, B. (3.2)

The automorphism T induces a positive isometry P of LI defined by Pf = f- T.
Condition (3.2) implies that for each f E L? (i.e., f E L( and if ==0) pmf converge
weakly to O.The Bluin.Hanson theorem [3] (for further. references see A. Bellow [2])
asserts that in such a case

II

for each 1 E L?, 1- 2: pkj converges strongly (to 0) in L1,for every
II I

sequence of integers kl, 0 < k1 < k2 < - .. .

(3.3)

Let 1 ELf, then (3.3) implies the existence of constants K/S) (S > 0) such that

for each g E Loo(p,) with IIgl1< l#{m : l<p'J,.g>1 > S} < K/S) (3.4)

(where for 1 ELI andg E L~ we denote by <1, g) the integral flgdp,; and # means
the cardinality of).

Otherwise we ,can construct by, induction a sequen:;e of finite sets Kn of po~itive
integers- satisfying: if n < m, i E::KII and) E Km then i <) and # Kn > n(#Kn-l)
where Km = Ur=l Ki and: .

#~ ( ,L (/f,g» >8 for some gELoo with Ilgll <.;;1.
/I tEKn

(3.5)

Therefore

~
( L P1) > ~ L PJ - - L p 1

#Kn 'iEKn
.

#KII iEKn #KII iEKn-l

II I>-8--'1111111+1 1+11
(3.6)

and by looking on the sequence of increasing positive integers determined by U KII'
(3.6) contradicts (3.3) and thus the proof 0£(3.4) is complete.
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Now we shall show that there exists a constant K such that for any sequence ai with
jail < 1 and any positive integer n, (*) holds.

Let ~ be the k-dimensional vector of measures ILl' . . . ,fLk' For 8 > o denote by
U(~, 8) the set of all SEe such that IfLieS) - fLj(S)! < 8 for each i,j = 1, . . . , k.
For any i,j = 1, . . . ,k, let Ki./8) be the constant Kf(8) given by (3.4) where
f = j; - iJ.

For any positive integer m and any SEe we have

p.;(Tms) - fLj(Tms) = (pm(f - h)' Xs) (3.7)

where Xs is the characteristic function of S.
Denote K(8) = L:L=I Ki,/o). Then, as Xs E Loo with IIXsll < 1 for any S E C:~,

(3.4) and (3.7) imply that

#{m: TmS rt U(~, 8)} < K(8). (3.8)

Observe that if fL(S/1 T) < 11(/1 denotes the symmetric difference) then Tms E U(~, 8)
implies that TmT E U(~,o + 7]). Thus for any SEe

#{m: there exist TEe with fL(T/1S) < 7] and (3.9)

rmT rt U(t 8 + 1])} < K(8).
Let Q be a chain, 0= So C Sl C . . . C SL = I. Then the variation of u E BV over

. Q is
L

Ilull~ = 2 lu(Si) - U(Si-I)I,
i=1

(3.10)

and it is known that Ilull = supllull~, where the sup is taken over all chains Q [1,

proposition 4.1). Thus to prove (*) it is enough to show that

n

2 ai(T")*C < K.
i=l ~

(3.11)

For given 7] > 0, the positivity of fLand the fact that fL(I) = k yield the existence of
indices iI, .. ., iNwith N < k/7] + 1 and o <

~ < L such that for each /, 1= 1, . , . , L
there exists), 1 < j < N such that fL(S,/1S;) < 7].

D)note by M the set of all positive int~gers m for which there exists /, 1 < I < L,
with Tms, tf:-U(~, 8 + 7]).The last argument and (3.9) yield

#M < N'K(8) «k/7]+ I)'K(8). (3.12)

If 8 and 7] are chosen so that 8 + 1]< �, then i tF-M implies that c( TiS,) = 0 for each
I = I, . . . , L and thus II(ri)*vllu = O. Therefore

,

n ff n

2 ai( ri)*e < 2 Ilai(ri)*ell~ < 2 lieri)*ell~
i= I ~ i= I i=]

«~+I)'K(8)'!leli.

As this holds for any chain Q, this completes the proof of (*).
Assume now that qJe oF O. We shall show that there exists a constant Kl such that

for each n there exists a selection of signs {i = ::!:1 with

n
- I

2 �i(ri)*qJt: > K1'n21i<pe1l.
i= I

(3.13 )

------
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Let nand 0 > 0 be given. As (r i)* epv E FA there exists a chain Q :' (j) == So c S I
C . . . C S", = 1 such that '

II(ri)*epvllll> 11(1i)*<pvll(I- 8) = Ilepcll(I - 8) (3.14)

for each i = 1, . . . , n.

Note that if Ti = Si\Sj-I' i = 1,..., m, then for each uE FA Ilulln=2:7'=I lu(TJI.
Thus, for a given selection of signs (EI' . . . , «:11)'

11' m 11 m 11 I
2: Ei(Ti)*epV = 2: 2: Ej«Ti)*<pG)(~')= 2: 2: Ejaij

l
;=1 II )=1 ;=1 )=1 ;=1

(3.15)

where aij==(T')*epG(7j), i = 1, .. ., n, j = 1, . . . , m.
Therefore, using first, Khinchin's inequality [6, p. 213 (8:-5)] and then Schwarz's

inequality, we find that if we IetE = «<:
I'

. . . , EI1)range over all selections of signs, then

111m
1

11

2"
Z f" Z E;aij == Z .211 L L Eiaij

� )=1 ;=1 )=1 � i=1

m

(

n'

)

t 111

(

11

)

!

(

n"

(
1

)

2

)

!
> K2. Z ,L at ==K2 ° 2: ,L at ,,2: -

,
"

j=l r=1 J=I 1=1 1=1";;

I m n n m

> K2 'n<i. Z zlaijl= K2'n-L L L laijl
)=1;=1 ;=1)=1

n

= K2 .n-Lz II(ri)*epvlb> K2 'n- Lnollepvll(l-o).
j=1

(3.16)

Therefore «3.15) and (3.16» there exists a selection of signs E = (EI' . 0 .
°

En) Ej = ::!::1
willi '

n 11

Z EI(1'i)*epV > Z Ei(Ti)*epV > K2. n L [[epvll(l- 8)
i";" I i= I II

(3.17)

:and as this holds for any 8 > 0; (**) is proved. This completes the proof of the
:theorem.
i
i
i
i Acknowledgment. The author wishes to thank Prof. Robert Aumann and Prof.
I

':Michael Lin for helpful discussions.

References
i

1[1] 'Aumann, R, J. and Shapley, L. S. (1974). Values of Non-Atomic Games. Princeton, Princeton University,

I Press.'
,

i[2] Bellow, A. (1976). A Problem in LP-spaces, In Measure. Theory, Edited by A. Bellow and D. Kolzow.

I

Springer-Verlag, Berlin-Heidelberg-New York.
.

![3] Blum, J. R. and Hanson, D. L. (1960). On the Mean Ergodic Theorem for Subsequences. Bull. Amer.

i Math, Soc. 66 308-311.

\[4] Neyman, A. and Tauman; Y. (1976). The Existence of Nondiagonal Axiomatic Values, Math; Oper.

I Res. 1 246-250.
[[5] Tauman, Y. (1977). A Nondiagonal Value on a Reproducing Space. Math. Oper. Res. 2 331-337.

1[6] Zygmund, A. (1959), Trigonometric Series, 2d. Ed. Cambridge University Press. '

I DEPARTMENT OF OPERATION RESEARCH, CORNELL UNIVERSITY, ITHACA, NEW
IYORK 14853.
I
!


