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A. Neyman Valuations of infinite utility streams

1. Introduction

In many decision problems a decision maker must choose between

different possible streams of payoffs. The decision maker can be an

individual, a firm, or a community of individuals. The stream of payoffs

can be a stream of equal payoffs (called a perpetuity) or of payoffs that

vary over time.

The first objective of this paper is to characterize all preferences, over

bounded streams of payoffs, that satisfy a few plausible assumptions.

The starting assumption is that any stream is equivalent to a perpe-

tuity and the higher the perpetuity’s (constant) payoff, the better. A

preference on bounded streams of payoffs that satisfies this assumption

is represented by a unique ordinal utility function that assigns to each

stream of bounded payoffs its equivalent perpetuity’s payoff.

The second assumption is that the preference obeys the time value

of money principle. The time value of money principle reflects the

preference of expediting the receipt of positive payoffs: the faster the

accumulation of payoffs, the better. In other words, this principle states

that a unit payoff in a given period is preferable to its being spread out

over future periods. This principle is natural when saving is costless.

The third assumption is additivity. The additivity property states

that if the streams A and B are equivalent to the perpetuities C and

D, respectively, then the sum of the streams A and B is equivalent to

the sum of the perpetuities C and D.

The unique ordinal utility function that represents a preference that

satisfies these three assumption and assigns to each stream its equiva-

lent perpetuity’s payoff is called a valuation.

A valuation is impatient if the contribution of payoffs in the distant

future is negligible. It is patient if it is neutral to the timing of payoffs.

We characterize the impatient valuations, the patient valuations, and

the set of all valuations.

The characterization shows that (1) any impatient valuation is a

weighted average of the periods’ payoffs with averaging weights that

are nonincreasing in time, (2) any patient valuation is a linear function
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A. Neyman Valuations of infinite utility streams

that assigns to each stream a value that is between the limit inferior and

the limit superior of the averages of the first n payoffs in the stream,

and (3) any valuation is a weighted average of an impatient one and a

patient one.

Two classic examples of impatient valuations are the n-th Cesàro av-

erage valuation, which is denoted by un, and the r-discounted valuation

(0 < r ≤ 1), which is denoted by ur: for a stream f = (f1, f2, . . .),

un(f) =
f1 + . . .+ fn

n
and ur(f) =

∞∑
t=1

r(1− r)t−1ft.

The t-th period’s averaging weight of un is 1/n if t ≤ n and is 0 if

t > n, and the t-th period’s averaging weight of ur is r(1− r)t−1.
We now turn to our second topic: optimization that is robust to a

small imprecision in the specification of the preference.

As there is a one-to-one correspondence between the preferences

(that satisfy our assumptions) and the valuations, it suffices to study

optimization that is robust to a small imprecision in the specification

of the valuation.

Optimization that is robust to small changes in the valuation is com-

mon in a bank’s selection of its portfolio. A few considerations in se-

lecting the portfolio are discussed as an illustration of the importance

of robust optimization in selecting a proper feasible stream of payoffs.

A bank’s portfolio includes assets that are composed mainly of a col-

lection of loans, each with a different maturity and a different payment

schedule, and liabilities that are composed of customers’ (including

other banks’) deposits, bonds issued by the bank, etc.

The economic value of the bank is the present value of the stream of

its portfolio payoffs. It is a function of the yield curve, which specifies

the interest rate as a function of time.

The bank’s set of feasible portfolios depends on market and com-

petitive conditions, as well as on regulatory constraints. One of the

regulatory constraints, as well as an important consideration in the
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A. Neyman Valuations of infinite utility streams

bank’s selection of its portfolio, is the sensitivity of its economic value

to changes in the yield curve.1

The objective of maximizing the value of the bank’s portfolio while

ensuring that the losses due to given changes in the yield curve remain

within prescribed limits is essentially an approximate optimization that

is robust to given imprecision in the specification of the valuation.

The yield curve, and hence also the valuation, changes over time.

Therefore, an additional desired property of the bank’s portfolio is

that it can be modified gradually as the yield curve changes.

We now continue with the introduction of the formal concept of a

robust optimizer in a set F of streams of payoffs.

For any valuation v, the maximum (or more precisely, the supremum)

of v(g) over all streams g in F is called the v-optimal value of F and

is denoted by v(F ).

An imprecise specification of a valuation is modeled as a set U of

valuations. The maximum (or more precisely, the supremum) of u(g)

over all streams g in F and valuation u in U is called the U-optimal

value of F and is denoted by U(F ).

Fix a nonnegative number ε ≥ 0, a valuation v, a set of valuations

U , a set of streams of payoffs F , and a stream f in F .

The stream f ∈ F is an ε-optimizer for v with respect to F if v(f)

(which is at most the v-optimal value of F ) is within ε of the v-optimal

value of F (i.e., v(f) ≥ v(g)− ε for any g ∈ F ).

The stream f ∈ F is an ε-optimizer for U with respect to F if for

any valuation u in U u(f) (which is at most the U -optimal value of F )

is within ε of the U -optimal value of F (i.e., u(f) ≥ w(g) − ε for any

valuation w in U and any stream g in F ). Note that an ε-optimizer

for U with respect to F is, for any u ∈ U , an ε-optimizer for u with

respect to F .

It follows that if the set F of streams of payoffs has an ε-optimizer

for a set of valuations U , then the oscillation of the u-optimal value of

F , where u ranges over all valuations in U , is at most ε.

1Obviously, there are other important sensitivity issues. We mention the sensitivity
to the yield curve as the yield curve specifies the valuation.
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An imprecision in the specification of a valuation is often expressed

by stating that a fixed valuation v is a good proxy for the “true”

valuation. Such an imprecise specification of the valuation u is modeled

as the set of all valuations that are sufficiently similar to the fixed

valuation v. This leads to the following important concept of robust

optimization.

The stream f ∈ F is a robust ε-optimizer at v with respect to F if

there is a neighborhood2 W of v such that f is an ε-optimizer for W

with respect to F .

It follows that if the set F of streams of payoffs has, for every ε >

0, a robust ε-optimizer at a valuation v, then the u-optimal value is

continuous at v.

A neighborhood of a patient valuation contains, for all sufficiently

large n and all sufficiently small r, the n-th Cesàro average valuation

un and the r-discounted valuation ur. Therefore, if f ∈ F is a robust

ε-optimizer at a patient valuation v with respect to F , then, for all

sufficiently large n and all sufficiently small r, f ∈ F is an ε-optimizer

for un and for ur with respect to F and the oscillation of the ur-optimal

and the un-optimal value of F is at most ε.

Therefore, the notion of robustness at a patient valuation provides

a unifying view of earlier studies of robust optimization of a patient

decision maker. Here we study robust optimization at any valuation,

namely, at any mixture of an impatient valuation and a patient one.

The ability to select a robust ε-optimizer at v (with respect to F )

that can be changed gradually as the valuation v changes corresponds

to the existence of a robust ε-optimizer at v (with respect to F ) that

varies continuously as a function of the valuation v. Theorem 4 shows

that if F is convex and has, for any valuation v, a robust ε-optimizer

at v with respect to F , then there is a robust ε-optimizer at v with

respect to F that depends continuously on v.

2The formal definition of a neighborhood depends on the topology on the space of
valuation, which is defined in Section 3.1. This topology is defined by the semi-
metric d, where d(u, v) is the max norm of the difference between the averaging
weights of u and v.
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A. Neyman Valuations of infinite utility streams

One may argue that impatience is a natural assumption of a prefer-

ence over streams of payoffs and that it is therefore sufficient to confine

the analysis to impatient valuations.

However, in order to model the imprecision in the specification of

the impatient valuation, it may be advantageous to fix a non-impatient

valuation, and then consider all the impatient valuations in its neigh-

borhood.

For example, consider the imprecise specification of an impatient

valuation that is obtained by specifying that its averaging weights are

sufficiently small, e.g., less than one hundredth. This can be modeled

as the set U of all impatient valuations that are one hundredth close

to a patient valuation v.

We illustrate the importance of approximate optimizers and the

advantage of patient valuations by considering the set F of feasible

streams of payoffs that consists of the perpetuity 1, with a constant

payoff 1, and the streams fk, k ≥ 0, where the payoff is 2 in the first

period and in each of the first k even periods, and the payoff is 0 in all

other periods.

If our objective is to select the best stream in F , given that the im-

patient valuation places a very small weight on each individual period,

then it seems intuitive that we should select the perpetuity 1. But

while for any patient valuation 1 is the unique optimizer and no other

stream in F is even a 0.99-optimizer for3 U with respect to F , 1 is not

an optimizer for any specific impatient valuation but is a 0.02-optimizer

for any4 u ∈ U with respect to F .

Other examples that illustrate the importance of approximate op-

timization and the use of non-impatient valuation arise in modeling

a preference of an impatient decision maker who has a pretty good

idea of the “interest rate” between successive points in time, as long

3For any patient valuation v, v(1) = 1 and v(fk) = 0 for all k (since the limit of
the average of the first n payoffs is 1 or 0, respectively.
4By the time value of money principle, a stream of alternating 0’s and 2’s is worth
at most as much as a constant stream of 1’s. For a valuation u ∈ U , the extra 2 in
the first period contributes at most 2/100; hence, we have u(fk) ≤ u(1) + 0.02.
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A. Neyman Valuations of infinite utility streams

as these are not too distant; however, as regards the very distant fu-

ture, he cannot tell much beyond the fact that the interest rates remain

nonnegative; furthermore, he wants to give the very distant future a

non-zero weight, say 30%. Such preferences arise naturally in decision

problems that involve pollution, global warming, etc.

The advantage of using valuations that are not impatient in describ-

ing a small imprecision in the specification of an impatient valuation

is analogous to the advantage of using boundary points of a square in

describing a small imprecision in the specification of an interior point,

e.g., an interior point that is sufficiently close to a fixed boundary point.

We now turn to our third topic: existence of robust optimization in

a Markov decision process (MDP); see Section 4.1.

In many decision problems, e.g., in a MDP, the decision maker faces

stochastic randomness. Thus a choice of a policy does not determine a

single stream of payoffs but rather a distribution over streams of pay-

offs. The decision problem, then, is to choose from a set of distributions

over a bounded set of streams of payoffs.

By assigning to each distribution the stream of expected periods’

payoffs, we can transform a decision problem where the choice is from

a set of distributions to one where the choice is from a set of streams

of payoffs.

This assignment, along with the earlier introduced concept of robust

optimization, enables us to analyze robust optimization in the model

of a MDP.

A policy π in a MDP determines a distribution Pπ on the streams

of payoffs. The distribution Pπ determines the stream of expected

(periods’) payoffs P̂π.

The set of feasible streams of payoffs in a MDP is the set of all

streams P̂π, where π ranges over all policies of the decision maker.

A policy π in a MDP is an ε-optimal policy for v, respectively, a

robust ε-optimal policy at v, if P̂π is an ε-optimizer for v with respect

to {P̂π : π a policy}, respectively, a robust ε-optimizer at v with respect

to {P̂π : π a policy}.
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A. Neyman Valuations of infinite utility streams

Theorem 5 shows that any finite MDP has, for every ε > 0 and every

valuation v, a robust ε-optimal policy at v.

Theorem 6 states that a finite MDP has, for every ε > 0 and every

valuation v, a robust ε-optimal policy at v that satisfies a stringent

robustness property.

2. Characterization of Valuations

This section defines formally the concepts of impatient valuation,

patient valuation, and a valuation, and states the theorems that char-

acterize each of them in turn.

2.1. Streams of payoffs. A stream of payoffs is a sequence g =

(g1, g2, . . .) of real numbers. It is bounded if ‖g‖ := supt |gt| < ∞.

The linear space of all bounded streams of payoffs is denoted by `∞.

For g, h ∈ `∞ and a ∈ R, g + h is the element (g1 + h1, g2 + h2, . . .)

of `∞, i.e., the t-th coordinate of g+ h is gt + ht, and ag is the element

(ag1, ag2, . . .) of `∞, i.e., the t-th coordinate of ag is agt.

2.2. Linearity. The t-th coordinate, gt, of the stream g is often in-

terpreted as the utility of consumption at stage t, and several classical

sets of axioms (see [2, 7]) lead to a presentation of a utility over infinite

streams of consumption that is a linear function of the stream g.

A real-valued function u that is defined on `∞ is additive if for every

g, h ∈ `∞, u(g + h) = u(g) + u(h). As 0 + 0 = 0, where 0 = (0, 0, . . .),

an additive u satisfies u(0) = 0.

A real-valued function u that is defined on `∞ is linear if it is additive

and u(ag) = au(g) for every g ∈ `∞ and a ∈ R.

2.3. The time value of money principle. This principle captures

two desirable properties of a real-valued function u : `∞ → R that

represents a preference over streams of payoffs.

The first is monotonicity: the higher the stage payoffs the better.

For an additive u, monotonicity is equivalent to the property that a

stream of nonnegative payoffs is at least as desirable as the stream of

zero payoffs.
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A. Neyman Valuations of infinite utility streams

The second desirable property of u expresses the fact that the earlier

the payments the better: a unit payoff in a given period is at least as

desirable as its spread over later periods. This implies the positive time

weak preference5 property: u(et) ≥ u(et+1) for all t, where et is the t-th

unit vector in `∞.

An additive u satisfies the positive time weak preference property

(i.e., u(et) ≥ u(et+1) for all t) iff for any two streams g and h that differ

only in finitely many periods of nonzero payoffs and obey
∑s

t=1 gt ≥∑s
t=1 ht ∀s, we have u(g) ≥ u(h).

The time value of money principle, which is defined formally below,

is a generalization of the positive time weak preference and is a key

principle in the characterization of valuations.

Definition 1. A real-valued function u that is defined on `∞ satisfies

the time value of money principle if:

For every two streams g and h such that
∑s

t=1 gt ≥
∑s

t=1 ht ∀s, we

have u(g) ≥ u(h).

Remark 1. A function u : `∞ → R that satisfies the time value of

money principle is monotonic, i.e., u(g) ≥ u(h) whenever gt ≥ ht ∀t,
and satisfies u(et) ≥ u(et+1) for all t.

Remark 2. An additive and monotonic function u : `∞ → R satisfies

u(et) ≥ 0 and
∑∞

t=1 u(et) < ∞, and therefore u(et) goes to zero as t

goes to infinity.

2.4. Valuations.

Definition 2. A real-valued function u : `∞ → R is normalized if:

u(1) = 1, where 1 = (1, 1, . . .).

Definition 3. A normalized additive real-valued function u : `∞ → R
that satisfies the time value of money principle is called a valuation.

Recall that two classic examples of impatient valuations are the n-th

Cesàro average valuation, which is denoted by un, and the r-discounted

5For theoretical, empirical, or historical accounts of time preference properties see,
e.g., [19, 17, 18, 8, 5, 10, 6] and the references therein.
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A. Neyman Valuations of infinite utility streams

valuation (0 < r ≤ 1), which is denoted by ur: for a stream g =

(g1, g2, . . .),

un(g) =
g1 + . . .+ gn

n
and ur(g) =

∞∑
t=1

r(1− r)t−1gt.

2.5. Preferences and valuations. Many writers, e.g., [2, 3, 11, 13,

4, 7, 12, 17, 8, 14], studied the implications of various axioms on pref-

erences over product sets, e.g., on sequences of consumptions or on

streams of payoffs, and the representation of the preferences by ordinal

utilities.

In this section we present a list of axioms (on preferences over bounded

streams of payoffs) such that a preference over bounded streams of pay-

offs satisfies the axioms iff it is represented by a valuation.

A preference relation % on `∞ satisfies the time value of money prin-

ciple if g % h whenever g and h are two streams in `∞ such that∑s
t=1 gt ≥

∑s
t=1 ht ∀s; it is additive if for every α, β ∈ R, (g + h) %

(α + β)1 ≡ (α + β, α + β, . . .) whenever g % α1 and h % β1; it is

non-trivial if there are g, h ∈ `∞ such that g � h, i.e., g % h and not

h % g; it is complete if for every g and h either g % h or h % g; it is

transitive if f % h whenever f % g and g % h.

The next result states properties of a preference relation that are

sufficient for it being represented by a valuation.

Proposition 1. For every non-trivial preference relation % on `∞ that

is complete (alternatively, transitive), additive, and satisfies the time

value of money principle, and such that for every stream g there is

α ∈ R such that g ∼ α1, i.e., g % α1 and a1 % g, there exists a unique

valuation v such that v represents % as an ordinal utility, i.e., g % h

iff v(g) ≥ v(h).

2.6. Impatient valuations. Let 1>n be the stream of payoffs g =

(g1, g2, . . .) with gt = 1 ∀t > n and gt = 0 ∀t ≤ n.

Definition 4. An impatient valuation is a valuation u such that

u(1>n)→n→∞ 0.
9
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Remark 3. If u is an impatient valuation then u(g1, g2, . . . , gn, 0, 0, . . .)

converges to u(g) as n goes to infinity, where (g1, g2, . . . , gn, 0, 0, . . .)

stands for the stream whose t-coordinate equals gt if t≤n and equals 0

if t > n.

Moreover, if u is an impatient valuation then u(g1, . . . , gn, hn+1, . . .),

where g, h ∈ `∞ and (g1, . . . , gn, hn+1, . . .) stands for the stream whose

t-coordinate equals gt if t ≤ n and equals ht if t > n, converges to u(g)

as n goes to infinity.

The last property of a function u : `∞ → R is Fishburn’s convergence

axiom [7].

A normalized, impatient, and additive u : `∞ → R that obeys

u(et) ≥ u(et+1) for all t satisfies the time value of money principle.

See Lemma 1.

Therefore, a real-valued function that is defined on `∞ is an impatient

valuation iff it is normalized, linear, u(1<n) →n→∞ 0, and u(et) ≥
u(et+1) for all t.

The first result characterizes all impatient valuations.

Theorem 1. A real-valued function u that is defined on `∞ is an im-

patient valuation iff there are weights ωt, where t ≥ 1 ranges over the

positive integers, with ωt ≥ ωt+1 ≥ 0 and
∑∞

t=1 ωt = 1, such that

u(g) =
∞∑
t=1

ωtgt.

The r-discounted valuation and the n-th Cesàro average valuations

are impatient valuations. The weights representing the r-discounted

valuation ur are ωt = r(1− r)t, and those representing the k-th Cesàro

average valuation uk are ωt = 1/k if t ≤ k and ωt = 0 if t > k.

2.7. Convergence of impatient valuations. Next, we define con-

vergence of a sequence of impatient valuations.

Definition 5. A sequence uk of impatient valuations converges if for

every positive integer t the sequence uk(et) converges as k →∞.
10
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The subspace of `∞ of all converging sequences g ∈ `∞, i.e., the

limit of gt exists as t goes to infinity, is denoted by c. An equivalent

definition of convergence of a sequence of impatient valuations follows.

Remark 4. A sequence vk of impatient valuations converges iff vk(g)

converges for every g ∈ c.

It follows that the limit of a converging sequence of impatient valu-

ations defines a real-valued function on c. On this restricted domain,

the “limit” v satisfies the following properties of a valuation: linearity,

v(1) = 1, and the time value of money principle.

Examples of converging sequences of impatient valuations are the k-

th Cesàro average valuations, uk, which converge as k goes to infinity,

and the r-discounted valuations, ur, which converge as r > 0 goes to

zero.

The “limit” v of a sequence of impatient valuations need not coincide

with the restriction of an impatient valuation to the domain c. For

example, if v is the “limit” of uk, then, for every fixed n, the sequence

uk(1>n) converges to 1 as k goes to infinity, and therefore v(1>n) = 1;

hence, v is not impatient.

2.8. Patient valuations.

Definition 6. A patient valuation is a valuation u such that

u(1>n) = 1.

The second result characterizes the patient valuations.

Theorem 2. A real-valued function u that is defined on `∞ is a patient

valuation iff it is a linear function on the bounded streams of payoffs

such that

(4) lim inf
n→∞

gn ≤ u(g) ≤ lim sup
n→∞

gn.

The lower and upper bounds in (4), lim infn→∞ gn and lim supn→∞ gn,

are tight. The tightness follows from Lemma 2, which shows that for

any stream g ∈ `∞ there are patient valuations v and w such that

v(g) = lim infn→∞ gn and w(g) = lim supn→∞ gn.
11
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In the characterization of patient valuations it is impossible to re-

place the time value of money principle with the condition that u(et) ≥
u(et+1) for all t: there are normalized, monotonic, and linear functions

u : `∞ → R that satisfy u(et) ≥ u(et+1) for all t, but do not satisfy the

time value of money principle. See Lemma 3.

A patient valuation can be viewed informally as a limit of the k-th

Cesàro average valuation as k goes to infinity and of the r-discounted

valuations as 0 < r < 1 goes to zero. This informal view will be made

formal at a later stage.

2.9. Characterization of valuations. There are other possible in-

formal limits of impatient valuations. For example, a weighted average

βv+(1−β)w, 0 ≤ β < 1, of an impatient valuation w and a patient one

v is the informal limit, as k goes to infinity, of the impatient valuations

βuk + (1− β)w.

The next result characterizes all valuations by showing that the

weighted averages of an impatient valuation and a patient one are all

the valuations.

Theorem 3. A real-valued function u that is defined on `∞ is a val-

uation iff it is a convex combination of an impatient valuation and a

patient one.

3. Robust Optimization

This section starts with the definition of a compact topology on the

set of valuations. The topology is used in defining robust optimization.

The section includes implications of the existence of robust optimiza-

tion.

3.1. The topology on the set of valuations. In order to define

nearby valuations, as well as the proximity of one valuation to another

one, we need to define a topology on the set V of valuations.

The coarser the topology, the larger are the neighborhoods of a point.

The topology that we define is the minimal topology T such that

for every g ∈ c, the function v 7→ v(g) on the set V of valuations is
12
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continuous. This topology is the minimal topology such that the denu-

merably many functions v 7→ v(et), t ≥ 1, are continuous. Therefore,

V is a pseudometric (semi-metric) space.

Namely, there is a function d : V × V → R+, e.g., d(u, v) =

maxt≥1 |v(et)−u(et)|, such that (i) d(u, v)+d(v, w) ≥ d(u,w) ∀u, v, w ∈
V , (ii) for every neighborhood U of a valuation u there is ε > 0 such

that any valuation v with d(v, u) < ε is in U , and (iii) for every valua-

tion v and a positive ε > 0, {u : d(u, v) < ε} ∈ T .

By defining the equivalence relation ∼ on V by u ∼ v if and only if

v(et) = u(et) ∀t, the space of equivalence classes V/∼ is a metrizable

space.

Remark 5. The topological space (V, T ) is compact.

The impatient valuations are dense in V .

A sequence vk of valuations converges iff the sequence vk(et) converges

∀t.
For any two distinct impatient valuations v, u ∈ V , there is a converg-

ing sequence g ∈ c s.t. v(g) 6= u(g).

For any two patient valuations v, u ∈ V , and for any converging se-

quence g ∈ c, we have v(g) = u(g). Therefore, any neighborhood of a

patient valuation includes all patient valuations.

Note that for any neighborhood W of a patient valuation there is a

positive integer k0 and a positive 0 < r0 < 1 such that for all k ≥ k0

and 0 < r ≤ r0 the impatient valuations ur and uk are in W .

3.2. Local robust optimization. Let F be a set of bounded streams

of payoffs and v a valuation.

Recall that the v-optimal value of F , v(F ), is defined by

v(F ) = sup
f∈F

v(F ),

and that

Definition 7. An element f ∈ F is a robust ε-optimizer at v with

respect to F , ε ≥ 0, if there is δ > 0 such that

(5) u(f) ≥ w(F )− ε for all valuations u,w that are δ−close to v;
13
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equivalently, if there is a neighborhood U of v such that f is an ε-

optimizer for U with respect to F , i.e.,

(6) u(f) ≥ w(F )− ε ∀u,w ∈ U.

A related robustness property of an element f ∈ F is the existence

of a neighborhood U of v such that f is an ε-optimizer for any u ∈ U
with respect to F , i.e.,

(7) u(f) ≥ u(F )− ε ∀u ∈ U.

If F is bounded and v is an impatient valuation, then for every ε > 0

there is δ > 0 such that u(F ) > w(F )− ε for any two valuations u and

w that are δ-close to v. Therefore, the related robustness property at

v is closely related to our robustness property at v whenever v is an

impatient valuation.

The next remark shows that if v is an impatient valuation (and hence

there are no other valuations that are 0-close to v) and v(f) ≥ v(F )−ε,
then f is a robust ε′-optimizer at v with respect to F for any ε′ > ε.

However, this is not the case if v is not an impatient valuation.

Remark 6. If inequality (5) holds for any u that is 0-close to v, then,

for every ε′ > ε, f is a robust ε′-optimizer at v with respect to F .

The following example demonstrates that the continuity of the opti-

mal value of F is insufficient for the existence of a robust ε-optimizer

at a non-impatient valuation v.

Example 1. Let F3 be the set of all streams f = (f1, f2, . . .) with

ft ∈ {−1, 1}, lim inft→∞ f t = −1, and lim supt→∞ f t = 1.

For any valuation v the v-optimal value of F3, v(F3), equals 1; see

Section 6.2. Therefore, the function v 7→ v(F3) is a constant function

and thus continuous. However, if v is a non-impatient valuation, then

F3 does not have a robust ε-optimizer at v with respect to F for some

ε > 0.

The next example demonstrates that the existence of a u-optimizer

at any valuation u is insufficient for continuity of the optimal value at

any non-impatient valuation v.
14
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Example 2. Let F1 be a set that consists of a single stream of payoffs

g such that lim infn→∞ gn + 2ε < lim supn→∞ gn, where ε > 0.

The set F1 consists of a single element. Therefore, it has, for every

valuation u, a (unique) u-optimizer. However, it does not have a robust

ε-optimizer at any patient valuation v. Moreover, if v = (1−β)w+βu

where u is a patient valuation, β > 0, and w is a valuation, then F1

does not have a robust βε-optimizer at v.

The next example demonstrates the (obvious) need to consider ap-

proximate optimization (rather than exact optimization) in the study

of robust optimization.

Example 3. Let F2 be the set that consists of the stream f = (0, 2, 0, 2, . . .),

i.e., a payoff of zero in the odd periods and a payoff of two in the even

periods, and of the streams (0, 2, . . . , 0, 2, 1, 0, 0, . . .), i.e., with the same

pattern up to some even period, followed by a payoff of one in the fol-

lowing period, and thereafter the periods’ payoffs are zero.

For any 1 > ε > 0 and a patient valuation v, the stream f is the

unique ε-optimizer for v with respect to F . Moreover, it is a robust

ε-optimizer at v with respect to F . Note that if un is the n-th Cesàro

average valuation, then the stream f is not a un-optimizer in F if n is

odd. Since the n-th Cesàro average valuation converges, as n goes to

infinity, to the patient valuation v, there is no robust 0-v-optimizer in

F .

The following proposition provides a “minmax=maxmin”-type con-

dition on a set F that is equivalent to F having a robust ε-optimizer

at v for every ε > 0.

Proposition 2. F has a robust ε-optimizer at v for every ε > 0, if

and only if

sup
f∈F,W∈N (v)

inf
u∈W

u(f) = inf
W∈N (v)

sup
h∈F,u∈W

u(h),

where N (v) denotes the set of all neighborhoods of a valuation v.

The next proposition is a simple corollary of the definition of a robust

ε-optimizer at a valuation v.
15
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Proposition 3. If the set F of feasible streams of bounded payoffs has

a robust ε-optimizer at every fixed valuation v and every ε > 0, then

the function u 7→ u(F ) is continuous at v.

The following proposition shows that a bounded set of streams of

payoffs F admits robust optimization at every impatient valuation v.

Proposition 4. Let F be a bounded set of streams of payoffs and let

v be an impatient valuation. If f is an ε-optimizer for v with respect

to F , then, for every ε′ > ε ≥ 0, f is a robust ε′-optimizer at v with

respect to F . Therefore, F has, for every ε > 0, a robust ε-optimizer

at v.

3.3. Global robust optimization. In this section we state the im-

plications of a bounded set of streams of payoffs F having a robust

ε-optimizer at every valuation v.

Theorem 4. Assume that the set F of feasible streams of bounded

payoffs has a robust ε-optimizer at every valuation v. Then, there is a

finite list f 1, f 2, . . . , fk in F such that

a) for every valuation v there is an index 1 ≤ i ≤ k such that f i

is a robust ε-optimizer at v with respect to F , and

b) there is a continuous function v 7→ f v with values in the convex

hull of {f 1, . . . , fk} such that every valuation v has a neighbor-

hood U such that u(f v) ≥ w(F ) − ε ∀u,w ∈ U ; hence, if f v is

in F then f v is a robust ε-optimizer at v with respect to F .

The next proposition demonstrates that the condition that F has a

robust ε-optimizer at every valuation v is essential for the conclusions

of Theorem 4 and Proposition 3.

Proposition 5. For every non-impatient valuation u and a neighbor-

hood U of u, there is a bounded set of streams of payoffs F ⊂ c such

that:

(1) The optimal value of F is not continuous at u. Moreover, there

is a sequence of impatient valuations vn that converges to u such
16
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that the sequence vn(F ) does not converge.

(2) The optimal value of F is continuous at any valuation v /∈ U .

(3) ∃η > 0 such that for every finite subset G ⊂ F there is an im-

patient valuation w such that w(F )−η > 1+η > maxg∈G w(g).

4. Robust optimization in a Markov decision process

4.1. Markov decision process (MDP). In a discrete-time finite

Markov decision process (MDP), play proceeds in stages. At each

stage, the process is in one of finitely many states, and the decision

maker chooses an action from a finite set of possible actions. The ac-

tion and the state jointly determine a payoff to the decision maker and

transition probabilities to the succeeding state.

Before making the choice, the decision maker observes the current

state.

A finite MDP is defined by the list Γ = (S,A, r, p), where S is the

finite set of states, A is the finite set of actions, r : S × A → R is

the payoff function, and p : S × A → ∆(S) is the transition function.

If action a ∈ A is taken at stage t and the state in stage t is s ∈ S,

then the payoff at stage t is r(s, a) and the (conditional) probability

distribution of the state at stage t+ 1 is p(s, a).

A pure (respectively, behavioral) policy π of the decision maker spec-

ifies the action (respectively, the probability distribution over actions)

at stage t as a function of the current state and past states and actions.

Namely, π : ∪t≥1(St × At−1)→ A (respectively, → ∆(A)).

Given an initial state s1 = s, a policy π defines a probability dis-

tribution P s
π over the sequences s1, a1, . . . of states and actions. The

expectation w.r.t. P s
π is denoted by Es

π. For simplicity, we use the same

symbol P s
π to denote also the distribution over the streams of payoffs

gt = r(st, at).

The set F s of feasible distributions over streams of payoffs, as a func-

tion of the initial state s, is defined by F s = {P s
π : π a behavioral policy}.

It equals the convex hull of the sets {P s
π : π a pure policy}.

17
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The expectation with respect to the probability distribution P s
π is

denoted by Es
π. The set F̂ s of feasible streams of payoffs, as a function

of the initial state s, is the set of streams of payoffs P̂ s
π = gs,π, where

gs,πt = Es
πr(st, at) and π ranges over all policies in the finite MDP. It

equals the convex hull of the sets {P̂ s
π : π a pure policy}.

Theorem 5. Let Γ = (S,A, r, p) be a finite MDP. For every probability

distribution q ∈ ∆(S), the set
∑

s∈S q(s)F̂
s has, for every ε > 0 and ev-

ery valuation v, a robust ε-optimizer at v with respect to
∑

s∈S q(s)F̂
s.

In fact, we prove a stronger result. In order to state this stronger

result we introduce the following notation. For a valuation u and a

stream of payoffs g we denote by u(g), respectively, by u(g), the infi-

mum, respectively, the supremum, of u′(g) over all valuations u′ that

are 0-close to u.

Note that as u(g) need not be measurable in g and therefore the

expectation of u(g) with respect to the probability P s
π (where π is a

policy) need not exist. However, u(g) and u(g) are measurable in g

and therefore the expectation of u(g) and u(g) with respect to the

probability P s
π exists.

As u(P̂ s
π) ≥ Es

πu(g) and u(P̂ s
π) ≤ Es

πu(g), the next theorem implies

Theorem 5.

Theorem 6. For every finite MDP, a valuation v, and ε > 0, there

is a policy π and δ > 0, such that for all valuations u and w that are

δ-close to v and any policy σ,

Es
πu(g) ≥ Es

σw(g)− ε.

The proof of Theorem 6 proves also the following stronger property

of a finite MDP. The normed space of all sequences ω = (ω1, ω2, . . .)

with ‖ω‖1 :=
∑∞

t=1 |ωt| <∞ is denoted by `1.

Theorem 7. For every finite MDP, ω ∈ `1, a patient valuation v,

and ε > 0, there is a policy π and δ > 0, such that for all impatient

valuations u and w that are δ-close to v, any policy σ, and any ω′ ∈ `1
18
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with ‖ω − ω′‖1 < δ,

Es
π(
∞∑
t=1

ωtgt + u(g)) ≥ Es
σ(
∞∑
t=1

ω′tgt + w(g))− ε.

5. Proofs of the theorems

Note that an additive function u : `∞ → R that is monotonic is

(by classical arguments) linear. Indeed, by the additivity of u, we

have u(−g) = −u(g) and u(αg) = αu(g) for every rational α. By the

additivity and monotonicity of u, for every g, h ∈ `∞, |u(g) − u(h)| ≤
‖g − h‖u(1) and therefore u(αg), α ∈ R, is continuous in α; thus

u(αg) = αu(g) ∀α ∈ R.

5.1. Proof of Theorem 1.

Assume that u is an impatient valuation. Define ωt = u(et).

By the additivity of u, we have u(0) + u(0) = u(0) and hence,

u(0) = 0. The time value of money principle of a valuation along the

definition of ωt implies that u(0) = 0 ≤ ωt = u(et) ≥ u(et+1) = ωt+1.

Note that −‖g‖1>n ≤ g −
∑n

t=1 gtet ≤ ‖g‖1>n and, therefore, using

the linearity of u, the definition of ωt, monotonicity (which follows from

the time value of money principle ), and the impatience of u, we have

|u(g)−
n∑
t=1

ωtgt| = |u(g)− u(
n∑
t=1

gtet)| ≤ u(‖g‖1>n)→n→∞ 0.

Therefore, u(g) =
∑∞

t=1 ωtgt. In particular, using the normalization

assumption u(1) = 1, we have u(1) =
∑∞

t=1 ωt = 1. This completes

the proof of the “only if” part of the theorem.

Assume that u(g) =
∑∞

t=1 ωtgt with ωt − ωt+1 ≥ 0 and
∑∞

t=1 ωt = 1.

Then u is a normalized linear real-valued function on the space `∞

with u(1>n) =
∑

t>n ωt →n→∞ 0. Since u(g) =
∑∞

t=1 ωtgt =
∑∞

t=1(ωt−
ωt+1)tgt, it follows that if gt ≥ ht ∀t then u(g) ≥ u(h). This completes

the proof of the “if” part of the theorem. �

5.2. Proof of Theorem 2. Let u be a patient valuation.

Note that if u is a patient valuation then u(et) = 0. Indeed, by

additivity we have u(0) = 0, and by the monotonicity of a valuation
19
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we have u(et) ≥ 0. As u is a patient valuation, 1 = u(1) = u(
∑n

t=1 et+

1>n) =
∑n

t=1 u(et) + 1. Therefore, u(et) = 0 ∀t.
For g ∈ `∞ we set g := lim supk→∞ gk and g := lim infk→∞ gk.

Let u be a patient valuation and g ∈ `∞. Fix ε > 0 and let n be

sufficiently large so that g − ε < gk < g + ε ∀k ≥ n.

Let h be defined by h =
∑n

t=1(‖g‖ + ε)et + (g + ε)1>n. Note that

for every positive integer s, we have hs ≥ gs and therefore, by the time

value of money principle , u(h) ≥ u(g).

By the linearity and patience of u, u(h) = (g + ε)u(1) = g + ε.

Therefore, u(g) ≤ g + ε. As this last inequality holds for every ε > 0

we deduce that the right-hand inequality of (4) holds for every patient

valuation u and every g ∈ `∞.

Note that the left-hand inequality of (4) holds for g ∈ `∞ if (and

only if) the right-hand inequality of (4) holds for −g. Indeed, −u(g) =

u(−g) ≤ lim supn→∞−gn = − lim infn→∞ gn. Therefore, g ≤ u(g) for

every g ∈ `∞.

Assume that u is a linear function that is defined on `∞ and satisfies

(4). Obviously, u(1) = 1; thus u is normalized. It remains to show that

u satisfies the time value of money principle . Assume that g, h ∈ `∞
with

∑n
t=1 gt ≥

∑n
t=1 ht ∀n. Then, g − h ≥ 0 and therefore u(g−h) ≥ 0

by the left-hand inequality of (4), and therefore, as u is linear, u(g) =

u(g − h) + u(h) ≥ u(h). �

5.3. Proof of Theorem 3. Obviously, a convex combination of valu-

ations is a valuation. This proves the straightforward “if” part of the

theorem. We proceed in proving the “only if” part.

Let u be a valuation, and let ωt := u(et). As u is a valuation,

ωt ≥ ωt+1 ≥ 0 ∀t.
As u is additive, u(0) = 0. As u is additive, normalized, and mono-

tonic, u(1>n) is nonincreasing in n and 0 ≤ u(1>n) ≤ 1.

Let β be the limit of the nonincreasing sequence u(1>n) = u(1) −∑n
t=1 ωt. As 0 ≤ u(1>n) = 1 −

∑n
t=1 ωt ≤ u(1) = 1, we have 0 ≤ β =

1−
∑∞

t=1 ωt ≤ 1.

If β = 0 then u is an impatient valuation.
20
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If β = 1 then u is a patient valuation.

Assume that 0 < β < 1. Define w : `∞ → R by w(g) =
∑∞

t=1
ωt

1−βgt,

and define the function v : `∞ → R by v(g) := 1
β
(u(g)−

∑∞
t=1 ωtgt).

As ωt ≥ ωt+1 ≥ 0 and
∑∞

t=1 ωt = 1− β, w is an impatient valuation.

Obviously, u = (1− β)w+ βv. Therefore, it remains to prove that v

is an impatient valuation.

As u(1)−
∑∞

t=1 ωt = β, we have v(1) = 1. Therefore, the function v

is normalized.

By the linearity of the function g 7→ u(g) −
∑∞

t=1 ωtgt, the function

v is linear.

As v(1>n) = 1
β
(u(1>n)−

∑
t>n ωt)→n→∞ 1, the function v is patient.

Therefore, the function v : `∞ → R is normalized, linear, and patient.

In order to prove that v is a patient valuation, it remains to prove

that v satisfies the time value of money principle.

By the linearity of v it suffices to prove that if g ∈ `∞ with
∑s

1 gt ≥ 0

∀s, then v(g) ≥ 0.

For g ∈ `∞ and an integer n we denote by g>n the element of `∞

whose t-th coordinate equals gt if t > n and equals 0 if t ≤ n.

Assume that
∑s

1 gt ≥ 0 ∀s. Fix ε > 0. As ωt ≥ 0 and
∑∞

t=1 ωt <∞,

there is a positive integer k such that (kωk +
∑∞

t=k+1 ωt)‖g‖ < ε.

As v is patient, v(g) = v(g>k) = v(
∑k

t=1 gtek + g>k). Using the defi-

nition of v along with the time value of money principle of u, we have

βv(
∑k

t=1 gtek+g>k) = u(
∑k

t=1 gtek+g>k)−(
∑k

t=1 gtωk+
∑∞

t=k+1 gtωt) ≥
0− ε ≥ −ε.

As the inequality βv(g) ≥ −ε holds for every ε > 0, and β > 0, we

conclude that v(g) ≥ 0. �

5.4. Proof of Theorem 4. Let F ⊂ `∞ be a set of feasible streams

of bounded payoffs and ε > 0.

Assume that for every valuation v there is a stream gv in F that

is a robust ε-optimizer at v with respect to F . Let Wv ∈ N (v) be a

neighborhood of v such that

(8) u(gv) ≥ w(F )− ε ∀u,w ∈ Wv.
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As the topological space V of all valuations is compact and the set

of neighborhoods Wv covers V (i.e., ∪v∈VWv = V ), there is a finite

subcover. Namely, there are finitely many distinct valuations v1, . . . , vk

such that ∪ki=1Wvi = V . Set f i = gvi and let v be a valuation. As

∪ki=1Wvi = V , there is an index 1 ≤ i ≤ k such that v ∈ Wvi .

By setting v = vi and gv = f i in inequality (8), we deduce that f i is

a robust ε-optimizer at v with respect to F .

This completes the proof of the first part of the theorem.

Let αi : V → R+ be a continuous function such that αi(v) = 0 iff

v /∈ Wvi . The existence of such a function αi follows from the fact

that V is a semi-metrizable space. (E.g., αi(v) can be the distance

of v from the complement of Wvi .) Note that for every v ∈ V there

is 1 ≤ i ≤ k such that v ∈ Wvi and thus αi(v) > 0. Therefore∑k
i=1 αi(v) > 0 ∀v ∈ V .

Next, we define the stream f v in F by

f v =

∑k
i=1 αi(v)f i∑k
i=1 αi(v)

.

As the functions αi are continuous and
∑k

i=1 αi(v) > 0, the function

v 7→ f v is continuous.

Let U be the neighborhood of v consisting of all valuations u such

that for all 1 ≤ i ≤ k, αi(u) > 0 iff αi(v) > 0. I.e., U = ∩i:αi(v)>0Wvi =

∩i:u∈Wvi
Wvi .

Let u and w be two valuations in U . For any 1 ≤ i ≤ k such that

αi(v) > 0, we have u(f i) ≥ w(F ) − ε ∀u,w ∈ Wvi ; hence, u(f i) ≥
w(F ) − ε ∀u,w ∈ U ⊂ Wvi . As u is a linear function of the stream of

payoffs, we deduce that u(f v) ≥ w(F )− ε ∀u,w ∈ U .

This completes the proof of Theorem 4.

5.5. Proof of Theorem 6. Let Γ = (S,A, r, p) be a discrete-time

finite MDP and let v(s), s ∈ S, be the undiscounted value of the MDP

with initial state s.

Set gt = r(st, at) and gn = 1
n

∑n
t=1 gt.
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Let π be a stationary uniformly optimal policy6 of the decision maker

in Γ. Thus,7 for every state s ∈ S and every policy η,

(9) Es
π lim inf

n→∞
gn ≥ v(s) ≥ Es

η lim sup
n→∞

gn,

and for every ε > 0 there is nε such that for every state s ∈ S, every

n ≥ nε, and every policy η,

(10) ε+ Es
π gn ≥ v(s) ≥ Es

η gn − ε.

Fix a valuation u and let ωt = u(et), t ≥ 1, be the weights of the

valuation u.

In order to prove the theorem, it suffices to define, for every ε > 0, a

neighborhood U of u and a policy τ , such that for every policy η and

every u∗ ∈ U ,

(11) 7ε+ u∗(P s
τ ) ≥ v(s) ≥ u∗(P s

η )− 7ε.

Recall that
∑∞

t=1 ωt ≤ 1. Set ω∞ = 1 −
∑∞

t=1 ωt, and let tε be

a sufficiently large positive integer such that (1 + ‖r‖)
∑∞

t=tε
ωt < ε,

where ‖r‖ = maxs,a |r(s, a)|.
Fix ε > 0.

Let Γ∗ be the multi-stage decision problem (N,Σ, r∗), where the set

of policies Σ coincides with the set of policies of the MDP and the

payoff function r∗, as a function of the initial state s and the policy σ,

is defined by

r∗(s, σ) = Es
σ

∑
1≤t<tε

ωtgt + (1−
∑

1≤t<tε

ωt)E
s
σv(stε).

The payoff r∗ depends only on finitely many coordinates of the play

of Γ. Therefore, Γ∗ is equivalent to a decision problem with finitely

many pure policies; thus Γ∗ has an optimal pure policy.

6A uniformly optimal policy is a policy π that is optimal in every discounted MDP
with a sufficiently small discount rate. The existence of a stationary uniformly
optimal policy in a finite MDP is due to [1].
7Properties (9) and (10) are easily derived from the fact that π is a stationary
uniformly optimal policy. Alternatively, by the construction of an ε-optimal policy
in [15] it follows that the policy π is, for every ε > 0, an ε-optimal policy in the
undiscounted MDP. Alternatively, see [16, part 4) of Proposition 3].
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Let σ be an optimal policy of Γ∗ with payoff vector v∗. Namely,

(12) r∗(s, σ) = Es
σ

∑
1≤t<tε

ωtgt + (1−
∑

1≤t<tε

ωt)E
s
σv(ztε) = v∗(s),

and for every policy η,

(13) r∗(s, η) = Es
η

∑
1≤t<tε

ωtgt + (1−
∑

1≤t<tε

ωt)E
s
ηv(stε) ≤ v∗(s).

Define the policy τ as follows. At stage t < tε, τt(s1, a1, . . . , st) =

σ(s1, a1, . . . , st) and at stage t ≥ tε, τt(s1, a1, . . . , stε , . . . , st) = π(st).

The definition of the policy τ along inequality (9) implies that

(14) Es
τ lim inf

n→∞
gn ≥ Es

τv(stε) = Es
σv(stε).

Let U be the set of all valuations u∗ whose valuation weights ω∗t :=

u∗(et) are such that

(15) ‖r‖
tε+nε∑
t=1

|ω∗t − ωt| < ε.

Note that U is a neighborhood of u.

Fix a valuation u∗ ∈ U . By the choice of tε, we have ‖r‖
∑tε+nε

t=tε
wt <

ε, and therefore inequality (15) implies that

(16)
tε+nε∑
t=tε

ω∗t ‖r‖ < 2ε.

By equality (12), the definition of τ , the inequality ω∗t gt ≥ ωtgt −
‖r‖ |ω∗t − ωt|, and inequality (15), we have

Es
τ

∑
1≤t<tε

ω∗t gt = Es
τ

∑
1≤t<tε

ω∗t gt = Es
σ

∑
1≤t<tε

ω∗t gt

≥ Es
σ

∑
1≤t<tε

ωtgt − ‖r‖
∑

1≤t<tε

|ωt − ω∗t |

≥ v∗(s)− (1−
∑

1≤t<tε

ωt)E
s
σv(stε)− ε.(17)
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Let t ≥ tε + nε. Then, using inequality (10) and the definition of τ ,

we have

(18) Eτ (gtε + . . .+ gt | Htε) ≥ (t− tε + 1)(v(stε)− ε),

where Ht is the algebra (of subsets of plays) that is generated by

s1, a1, . . . , st.

By summation by parts, and using the inequality ω∗t ≥ ω∗t+1 ∀t ≥ tε,

we have

(19)
∞∑
t=tε

ω∗t gt =
∞∑
t=tε

(ω∗t − ω∗t+1)
t∑

s=tε

gs

and

(20)
∞∑
t=tε

ω∗t =
∞∑
t=tε

(ω∗t − ω∗t+1)(t− tε + 1).

Therefore, using (19), the triangle inequality, (16), (10), and (20), we

have

Eτ (
∞∑
t=tε

ω∗t gt | Htε) = Eτ (
∞∑
t=tε

(ω∗t − ω∗t+1)
t∑

s=tε

gs | Htε)

≥ Eτ (
∞∑

t=tε+nε

(ω∗t − ω∗t+1)
t∑

s=tε

gs | Htε)−
tε+nε−1∑
t=tε

ω∗t ‖r‖

≥
∞∑

t=tε+nε

(ω∗t − ω∗t+1)(t− tε + 1)(v(stε)− ε)− 2ε

≥
∞∑
t=tε

(ω∗t − ω∗t+1)(t− tε + 1)(v(stε)− ε)− 4ε

=
∞∑
t=tε

ω∗t (v(stε)− ε)− 4ε ≥
∞∑
t=tε

ω∗t v(stε)− 5ε.

By taking the expectation, we deduce that

(21) Es
τ

∞∑
t=tε

ω∗t gt ≥
∞∑
t=tε

ω∗tE
s
τv(stε)− 5ε.
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Multiplying inequality (9) by ω∗∞ := 1−
∑∞

t=1 ω
∗
t and adding inequal-

ity (21), we have

Es
τ ω
∗
∞ lim inf

n→∞
gn + Es

τ

∞∑
t=tε

ω∗t gt ≥ (ω∗∞ +
∞∑
t=tε

ω∗t )E
s
τv(stε)− 5ε(22)

= (1−
∑

1≤t<tε

ω∗t )E
s
τv(stε)− 5ε ≥ (1−

∑
1≤t<tε

ωt)E
s
τv(stε)− 6ε.

By summing inequalities (17) and (22), we have

Es
τ ω
∗
∞ lim inf

n→∞
gn + Es

τ

∞∑
t=1

ω∗t gt ≥ v∗(s)− 7ε.

For any stream of bounded payoffs g, we have u∗(g) ≥ ω∗∞ lim infn→∞ gn+∑∞
t=1 ω

∗
t gt by the characterization of valuations (Theorems 1, 2, and 3),

and the map g 7→ ω∗∞ lim infn→∞ gn +
∑∞

t=1 ω
∗
t gt is measurable. There-

fore,

u∗(P s
τ ) ≥ Es

τ ω
∗
∞ lim inf

n→∞
gn + Es

τ

∞∑
t=1

ω∗t gt ≥ v∗(s)− 7ε,

which proves the left-hand inequality of (11).

Fix a policy η of the decision maker. By replacing, in the above

equations and inequalities, Es
τ by Es

η, = and ≥ by ≤, ε by −ε, and

lim inf by lim sup, we have

u∗(P s
η ) ≤ Es

ηω
∗
∞ lim sup

n→∞
gn +

∞∑
t=1

ω∗t g
s,η
t ≤ v∗(s) + 7ε,

which proves the right-hand inequality of (11).

Explicitly, using inequalities (15), (13), and ω∗t gt ≤ ωtgt + ‖g‖ |ω∗t −
ωt|, we have

(23) Es
η

∑
1≤t<tε

ω∗t gt = Es
η

∑
1≤t<tε

ω∗t gt ≤ v∗(s)− (1−
∞∑
t=1

ωt)E
s
ηv(stε) + ε.
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By using (19), the triangle inequality, the right-hand inequality of

(9), and (20), we have

Eη(
∞∑
t=tε

ω∗t gt | Htε)

= Eη(
∞∑
t=tε

(ω∗t − ω∗t+1)
t∑

s=tε

gs | Htε)

≤ Eη(
∞∑

t=tε+nε

(ω∗t − ω∗t+1)
t∑

s=tε

gs | Htε) +
tε+nε−1∑
t=tε

‖r‖ω∗t

≤
∞∑

t=tε+nε

(ω∗t − ω∗t+1)(t− tε + 1)(v(stε) + ε) + 2ε

≤
∞∑
t=tε

(ω∗t − ω∗t+1)(t− tε + 1)(v(stε) + ε) + 4ε

=
∞∑
t=tε

ω∗t (v(stε) + ε) + ε ≤
∞∑
t=tε

ω∗t v(stε) + 5ε.

By taking the expectation, we deduce that

(24) Es
η

∞∑
t=tε

ω∗t gt ≤
∞∑
t=tε

ω∗tE
s
ηv(stε) + 5ε.

The uniform optimality of π implies that for every policy η,

(25) Es
η lim sup

n→∞
gn ≤ Es

ηv(stε).

Multiplying inequality (25) by ω∗∞ = 1 −
∑∞

t=1 ω
∗
t and adding in-

equality (24), we have

Es
ηω
∗
∞ lim inf

n→∞
gn + Es

η

∞∑
t=tε

ω∗t gt ≤ (ω∗∞ +
∞∑
t=tε

ω∗t )E
s
ηv(stε) + 5ε(26)

= (1−
∑

1≤t<tε

ω∗t )E
s
ηv(stε) + 5ε ≤ (1−

∑
1≤t<tε

ωt)E
s
ηv(stε) + 6ε.

Inequalities (23) and (26) imply that

u∗(P s
η ) ≤ (1−

∞∑
t=1

ω∗t ) lim sup
n→∞

g s,ηn +
∞∑
t=1

ω∗t g
s,η
t ≤ v∗(s) + 7ε,
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which proves the right-hand inequality of (11). �

Any valuation u is a mixture of a patient valuation v and an im-

patient valuation w. If w is impatient then for any policy π we have

w(gs,π) = w(P s
π). If v is a patient valuation then for any policy π we

have v(P s
π) ≤ v(gs,π) ≤ v(P s

π). Therefore, for any valuation u we have

u(P s
π) ≤ u(gs,π) ≤ u(P s

π).

Therefore, Theorem 6 implies Theorem 5, i.e., that the set {gs,π :

π a policy } has, for every ε > 0 and valuation v, a robust ε-optimizer

at v.

Note that the inequalities ωt ≥ ωt+1 ≥ 0, 1 ≤ t < tε, were not used

in the proof. Therefore, the proof demonstrates that for every finite

MDP and a finite sequence of real numbers ω1, . . . , ωN , there is a policy

π and neighborhoods Uε, ε > 0, of the patient valuations such that for

any policy η,

Es
π

N∑
t=1

ωtgt + Es
π lim inf

t→∞
gt ≥ Es

η

N∑
t=1

ωtgt + Es
η lim sup

t→∞
gt,

and for every u ∈ Uε,

Es
π

N∑
t=1

ωtgt + Eπu(gs,π) ≥ Es
η

N∑
t=1

ωtgt + Eηu(gs,π)− ε.

6. Proofs of the propositions

6.1. Properties of the set F1 in Example 2. Let u be a non-

impatient valuation. Then, u = (1−β)w+βv, where w is an impatient

valuation, v is a patient one, and β > 0.

The impatient valuations (1−β)w+βun, where un is the n-th Cesàro

average valuation, converge, as n→∞, to the valuation u.

Recall that F1 = {f} and lim infn→∞ fn + 2ε = lim inf un(f) + 2ε <

lim supn→∞ fn = lim supun(f).

Then, lim infn→∞((1−β)w+βun)(f) = (1−β)w(f)+β lim infn→∞ fn <

(1−β)w(f)+β lim supn→∞ fn−2βε = lim supn→∞((1−β)w+βun)(f)−
2βε. Therefore, f is not a robust βε-v-optimizer in F1. �
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6.2. Properties of the set F3 in Example 1. Let v be a patient

valuation. We will prove8 that v(F3) = 1.

Let nk > 0, k ≥ 0, be an increasing sequence of positive integers such

that limnk/nk+1 = 0. Let j be a positive integer and let f i, 0 ≤ i < j,

be the stream of payoffs with f it = 1 if nk < t ≤ nk+1 and k = i mod j,

and f it = 0 otherwise.

Note that
∑

0≤i<j f
i = 1>n0 , 1−2f i ∈ F3, and v(f i) ≥ 0. Therefore,

as v(
∑

0≤i<j f
i) = v(1>n0) = 1, there is i such that v(f i) ≤ 1/j and

therefore v(1− 2f i) ≥ 1− 2/j. Hence, v(F3) = 1.

Obviously, by the definitions of the n-th Cesáro average un and the

set F3, for any f ∈ F3 we have lim infn→∞ un(f) = lim infn→∞ fn = −1.

Therefore, no f ∈ F3 is a robust 1-v-optimizer.

Similarly, if v is a non-impatient valuation, then, by choosing n0

sufficiently large, we deduce that v(F3) = 1, and that F3 does not have

a robust ε-optimizer at v whenever ε < limn→∞ v(1>n).

6.3. Proof of Proposition 2. First, we derive an inequality that does

not depend on F having a robust ε-optimizer at v.

Note that for every neighborhood W of v, infu∈W u(F ) ≤ v(F ) ≤
supu∈W u(F ). Therefore,

sup
W∈N (v)

inf
u∈W

u(F ) ≤ v(F ) ≤ inf
W∈N (v)

sup
u∈W

u(F ).

As

sup
h∈F,W∈N (v)

inf
u∈W

u(h) ≤ sup
W∈N (v)

inf
u∈W

u(F ),

we conclude that

sup
h∈F,W∈N (v)

inf
u∈W

u(h) ≤ v(F ) ≤ inf
W∈N (v)

sup
u∈W

u(F ) = inf
W∈N (v)

sup
h∈F, u∈W

u(h).

Second, assume that f is a robust ε-optimizer at v with respect to

F . Then, there is a neighborhood U of v such that for every u ∈ U

we have u(f) ≥ u(F ) − ε and |u(f) − v(F )| ≤ ε (and thus u(F ) ≤

8We thank Bruno Ziliotto for the proof.
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u(f) + ε≤v(F ) + 2ε). Therefore,

v(F )− ε ≤ inf
u∈U

u(f) ≤ sup
h∈F,W∈N (v)

inf
u∈W

u(h).

Also,

inf
W∈N (v)

sup
h∈F, u∈W

u(h) ≤ sup
h∈F, u∈U

u(h) ≤ sup
u∈U

u(F ) ≤ v(F ) + 2ε.

Therefore,

v(F )− ε ≤ sup
h∈F,W∈N (v)

inf
u∈W

u(h) ≤ inf
W∈N (v)

sup
h∈F, u∈W

u(h) ≤ v(F ) + 2ε.

If F has a robust ε-optimizer at v for every ε > 0 we conclude that

sup
h∈F,W∈N (v)

inf
u∈W

u(h) = v(F ) = inf
W∈N (v)

sup
h∈F, u∈W

u(h).

In the other direction, assume that

sup
h∈F,W∈N (v)

inf
u∈W

u(h) = a = inf
W∈N (v)

sup
h∈F, u∈W

u(h).

The left-hand equality implies that for every ε > 0 there are f ∈ F
and neighborhoods U ∈ N (v) such that u(f) ≥ a−ε/2 for every u ∈ U .

In particular, v(F ) ≥ a− ε/2.

The right-hand equality implies that for every ε > 0 there is a neigh-

borhood W ∈ N (v) such that u(F ) ≤ a + ε/2 for every u ∈ U . In

particular, v(F ) ≤ a+ ε/2.

Therefore, v(F ) = a, and for every u ∈ U ∩W ,

v(F ) + ε/2 ≥ u(F ) ≥ u(f) ≥ v(F )− ε/2 ≥ u(F )− ε,

and thus f is a robust ε-optimizer at v with respect to F . �

6.4. Proof of Proposition 4. Assume that v is an impatient valua-

tion with v(g) =
∑∞

t=1 ωtgt, where ωt ≥ 0 and
∑∞

t=1 ωt = 1.

Fix ε > 0 and gε ∈ F with v(gε) > v(F )− ε. We will prove that gε

is a robust 10ε-v-optimizer in F .

Fix n sufficiently large such that
∑

t>n ωt‖F‖ < ε, where ‖F‖ =

supf∈F ‖f‖. Let W be the neighborhood of v of all valuations u such

that |u(et)− ωt|‖F‖ < ε/n ∀t ≤ n.
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Then, for every h ∈ F and u ∈ W , u(h) ≤ u(
∑n

t=1 htet+‖F‖1>n) ≤∑n
t=1 ωtht + ε + ‖F‖(1 −

∑n
t=1 u(et)) ≤

∑n
t=1 ωtht + 3ε ≤ v(h) + 4ε.

Therefore, u(F ) ≤ v(F ) + 5ε.

Similarly, u(gε) ≥ u(
∑n

t=1 g
ε
tet−‖F‖1>n) ≥

∑n
t=1 ωtht−ε−‖F‖(1−∑n

t=1 u(et)) ≥
∑n

t=1 ωtg
ε
t − 3ε ≥ v(gε)− 4ε ≥ v(F )− 5ε.

Therefore, for any u ∈ W , |u(gε) − v(F )| ≤ 5ε and u(gε) ≥ v(F ) −
5ε ≥ u(F )− 10ε. Therefore, gε is a robust 10ε-v-optimizer in F . �

6.5. Proof of Proposition 5. Fix a non-impatient valuation u and a

neighborhood U of u.

Let u⊥1 denote the set of all g ∈ c with ‖g‖ = 1 and u(g) = 0.

For every v ∈ V \ U , supg∈u⊥1 v(g) > 0. For every ε > 0 set Uε =

{v ∈ V : supg∈u⊥1 v(g) > ε} = ∪g∈u⊥1 {v ∈ V : v(g) > ε}. As a union

of open sets, Uε is an open set. Note that Uε′ ⊇ Uε if ε′ < ε and

∪ε>0Uε ⊇ V \ U . Therefore, there is ε > 0 such that Uε′ ⊇ V \ U for

every ε′ ≤ ε.

Let ε < 1 be sufficiently small so that Uε ⊇ V \ U . For every v ∈ Uε
there is an element gv ∈ u⊥1 and a neighborhood Uε(v) of v such that

for every w ∈ Uε(v), we have w(gv) > ε. As ∪v∈UεUε(v) ⊇ V \U , there

is a finite list v1, . . . , vk such that ∪1≤i≤kUε(vi) ⊇ V \ U .

Let Fε(u) be the finite set {gvi : 1 ≤ i ≤ k}.
Let h ∈ `∞ be a stream of payoffs with ‖h‖ = ε, lim supt→∞ ht = ε,

and lim inft→∞ ht = −ε.
Define ut = u(et) if t ≥ 1 and u0 = 1 −

∑∞
t=1 ut. As u is a non-

impatient valuation, 0 < u0 ≤ 1.

Let nε be sufficiently large so that
∑

t>nε
|ut| < u0ε/4.

Let H be the set of all streams of payoffs hn, n > nε, where hnt = ht

if nε < t ≤ n and hnt = 0 otherwise.

Let g be the stream of payoffs where gt = ut/
∑∞

t=0 u
2
t if t ≤ nε and

gt = (u0 −
∑∞

t=n+1 ut)/
∑∞

t=0 u
2
t if t > nε.

Let F = (g +H) ∪ (g + Fε(u)).

In order to prove (1), (2), and (3), it suffices to construct a sequence

of impatient valuations wn that converges to u and a positive number
31



A. Neyman Valuations of infinite utility streams

η > 0, such that for any finite subsetG of F , lim supn→∞ supf∈F ωn(f) >

η + lim supn→∞maxg∈G ωn(g).

As u is a non-impatient valuation, u = (1 − u0)w + u0v, where v is

a patient valuation. Therefore, the sequence of impatient valuations

wn := (1− u0)w + u0γn, where γn(g) = gn, converges to u.

By the definition of g, it follows that

1 ≥ u(g) =
n∑
t=0

u2t/

∞∑
t=0

u2t − (
∞∑

t=n+1

ut)
2/

∞∑
t=0

u2t > 1− u0ε/16.

By the properties of h, there are sequences of integers nm that con-

verge to infinity such that limm→∞wnm(g+ hnm) = u(g) + u0ε. There-

fore, wnm(g + hnm) ≥ 1 + u0ε/2 for all sufficiently large m.

For every n1 ∈ N and f ∈ Fε(u), we have limn→∞wn(g + hn1) =

u(g+hn1) ≤ 1+u0ε/4 and limn→∞wn(g+f) ≤ 1. Therefore, for every

finite subset G of F , lim supn→∞maxg∈Gwn(g) ≤ 1 + u0ε/4. This

completes the proof of properties (1) and (3) of the set F .

Let v ∈ Uε. Define α(F, v) := v(g) + maxf∈Fε(u) v(f). By the defi-

nitions of Uε and of the finite set Fε(u), there is f ∗ ∈ Fε(u) such that

α(F, v) = v(g + f ∗) > v(g) + ε ≥ v(g + h) ∀h ∈ H.

Fix 0 < η < v(f ∗)− ε. Let U(v) be the set of all valuations w such

that |w(g)− v(g)|+ |w(f)− v(f)| < η for all f ∈ Fε(u). As Fε(u) is a

finite subset of c and g is a fixed element of c, U(v) is a neighborhood

of v.

The definitions of U(v) and f ∗ imply that if w ∈ U(v), then, w(g +

f) ≤ v(g + f ∗) + η = α(F, v) + η for all f ∈ Fε(u).

As ‖h‖ ≤ ε for every h ∈ H, the properties of f ∗ and η imply that

w(g + h) ≤ w(g) + ε ≤ v(g) + ε+ η < α(F, v) for all h ∈ H.

The definitions of F , U(v), and f ∗ imply that w(F ) ≥ w(g + f ∗) ≥
v(g + f ∗)− η = α(F, v)− η.

As F is the union of g+H and g+Fε(u), and g+f ∗ ∈ F , we conclude

that α(F, v))− η ≤ w(F ) ≤ α(F, v)) + η. This completes the proof of

property (2) of the set F . �
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Appendix A. Properties of valuation

In this appendix we relate various properties of valuations to sev-

eral postulates and axioms that were used in the study of preference

relations on the set of consumption programs, i.e., points in an infinite

product set9 ×∞i=1Xi, and to evaluations of streams of payoffs.

A preference relation % on a set S defines a strict preference relation

� on S: x � y iff x % y and not y % x, and an indifference relation ∼:

x ∼ y iff x % y and y % x. A valuation v defines a preference % on `∞

by f % g iff v(f) ≥ v(g).

A.1. Debreu’s independent and essential factors [3, Definition

4]. Given a preference relation % on a product set ×i∈NXi, the factors

of ×i∈NXi are independent if for every subset I of N and elements

xi ∈ Xi, the preference relation induced by % on ×i/∈IXi given (xi)i∈I

is independent of (xi)i∈I , and the factor Xi is essential if for some

(xj)j 6=i not all elements of Xi are indifferent for the preference relation

given (xj)j 6=i.

Any preference % on `∞ that is defined by a valuation satisfies De-

breu’s independent factor property [3, Definition 4], and the i-th factor

is essential [3, Definition 4] iff wt(v) := v(ei) > 0.

A.2. Diamond’s continuity axioms [4, (PSC) and (PPC)] and

Fishburn’s convergence axiom[7, (UC)]. Diamond [4] studies pref-

erences over the set of [0, 1]-valued streams of payoffs. Two versions

of his continuity axioms are the continuity of the preference w.r.t. the

product topology10 and the continuity of the preference w.r.t. the sup

topology11.

9An element in a product set ×∞i=1Xi is identified with a sequence (x1, x2, . . .),
where xi is an element of Xi, and an element in a product set ×i∈NXi is a list
(xi)i∈N , where xi is an element of Xi.
10In the product topology a sequence g(n) of elements in `∞ converges to g iff
gt(n)→ gt as n→∞.
11In the sup topology a sequence g(n) in `∞ converges to g iff sup∞t=1 |gt(n)−gt| → 0
as n→∞.
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Any preference % that is defined by a valuation v obeys Diamond’s

continuity axiom [4, (PSC)], i.e.,

∀g ∈ `∞, {g′ : g′ � g} and {g′ : and g � g′} are closed(PSC)

in the sup (norm) topology,

and it obeys Diamond’s continuity axiom [4, (PPC)], i.e.,

∀g ∈ `∞, {g′ : g′ � g} and {g′ : and g � g′} are closed(PPC)

in the product topology,

iff v is an impatient valuation.

The valuation v obeys Fishburn’s convergence axiom [7, (UC)], i.e.,

(UC) ∀x, y ∈ `∞, lim
n→∞

v(x1, . . . , xn, yn+1, yn+2, . . .) = v(x),

iff v is an impatient valuation.

A.3. Diamond’s sensitivity properties [4, (S1) and (S2)]. Dia-

mond’s sensitivity properties are versions of monotonicity, which states

that more is better. Recall that weak monotonicity of a valuation is

implied by the time value of money principle.

Diamond’s sensitivity property [4, (S1)] is composed of two proper-

ties:

(S11) g′ ≥ g =⇒ g′ % g, and

(S12) g′t > gt ∀t =⇒ g′ � g,

and Diamond’s sensitivity property [4, (S2)] is

(S2) (g′ ≥ g and g 6= g′) =⇒ g′ � g.

Any preference that is defined by a valuation v obeys (S11). It obeys

(S12) iff
∑∞

t=1wt(v) > 0, and it obeys (S2) iff wt(v) > 0 ∀t.

A.4. Koopman’s recursivity [11, Equation (11)]. [11, 13] study some

implications of a set of postulates on a a utility function U on consump-

tion programs, henceforth programs, for an infinite horizon. The set

of these programs is the Cartesian product ×∞i=1Xi where the set Xi of
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feasible consumptions in period i is a convex and bounded subset X of

a Euclidean space (and therefore Xi is independent of i).

The postulates of continuity, Koopman’s sensitivity, limited noncom-

plementarity, and stationarity (which are defined and discussed in the

following sections) are shown to imply the existence of a real-valued

function u that is defined on single-period consumption and a real-

valued function V that is defined on R2, such that

(27) U(x1, x2, . . .) = V (u(x1), U(x2, x3, . . .)).

Accordingly, we say that a real-valued function v that is defined on

`∞ obeys Koopman’s stationary recursiveness if there is a function V

that is defined on R2 such that v(g1, g2, . . .) = V (g1, v(g2, g3, . . .)) for

all g = (g1, g2, . . .) ∈ `∞.

A valuation v obeys Koopman’s recursiveness iff v is either a patient

valuation (and then V (a, b) = b) or v is the discounted valuation ur

(and then V (a, b) = a+ (1− r)b).

A.4.1. Koopman’s sensitivity postulate [11, Postulate 2]. This postu-

late assumes that there exist first-period consumptions x1 and x′1 and

a program 2x = (x2, x3, . . .) from the second-period on, such that

U(x1,2x) > U(x′1,2x).

Accordingly, we say that a real-valued function v that is defined on `∞

obeys Koopman’s sensitivity if there exist x1 and x′1 in R and g ∈ `∞
such that v(x1, g) = v(x1, g1, g2, . . .) > v(x′1, g).

A valuation v obeys Koopman’s sensitivity iff v is not a patient

valuation. Therefore, a valuation v obeys Koopman’s stationary re-

cursiveness and Koopman’s sensitivity postulate iff it is a discounted

valuation ur, 0 < r ≤ 1.

A.4.2. Koopman’s aggregation by period postulates [11, Section 5]. The

aggregation by period postulates [11, (P3a) and (P3b)], equivalently

the limited complementarity postulates [13, (P3a) and (P3b)], assume

that for all first period consumptions x1, x
′
1 and all programs 2x, 2x

′
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from the second period on, we have (P3a) U(x1,2 x) ≥ U(x′1,2 x) im-

plies U(x1,2 x
′) ≥ U(x′1,2 x

′), and (P3b) U(x1,2 x) ≥ U(x1,2 x
′) implies

U(x′1,2 x) ≥ U(x1,2 x
′).

Accordingly, a real-valued function v that is defined on `∞ obeys

Koopman’s aggregation by period postulates iff for all x, x′ ∈ R and

all g, g′ ∈ `∞, we have v(x, g) ≥ v(x′, g) implies v(x, g′) ≥ v(x′, g′) and

v(x′, g) ≥ v(x′, g′) implies v(x, g) ≥ v(x, g′).

Any valuation v obeys Koopman’s aggregation by period postulates.

A.4.3. Koopman’s stationarity postulate [11, Postulate 4]. A function

U that is defined on the set of programs is stationary if for some first-

period consumption x1, for all consumptions from the second period

on, 2x and 2x
′, we have U(x1,2x) ≥ U(x1,2x

′) iff U(2x) ≥ U(2x
′).

Accordingly, a real-valued function v that is defined on `∞ is sta-

tionary if for some x ∈ R, for all g, g′ ∈ `∞ we have, v(x, g) ≥ v(x, g′)

iff v(g) ≥ v(g′).

A valuation v is stationary iff it is a mixture of a patient valuation

and a discounted valuation ur for some 0 < r < 1.

A.4.4. Koopman’s continuity postulate [11, Section 3]. This postulate

assumes that the utility U is continuous for the sup metric, i.e., for any

seuence of programs x(n) = (x1(n), x2(n), . . .), if sup∞i=1 ‖xi(n)−xi‖ →
0 then U(x(n))→n→∞ U(x1, x2, . . .).

Accordingly, a real-valued function v that is defined on `∞ is con-

tinuous if it is continuous where R and `∞ are equipped with the sup

norm/distance. It is easy to see that any valuation is continuous, and

any real-valued function v that is defined on `∞ that obeys the time

value of money principle and v(α1) = α is continuous.

A.5. Diamond’s Equal treatment [4, (C)]. In order to state Dia-

mond’s equal treatment axiom, we denote by gt the stream g where its t-

th period payoff is exchanged with its first one; i.e., gt = (gt, g2, . . . , gt−1, g1, gt+1, . . .).

(ET) g ∼ gt ∀g ∈ `∞ and ∀t = 1, 2, . . . .
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It is easy to see that the (ET) axiom is equivalent to g ∼ πg for

every permutation π of the positive integers with only finitely many t

with π(t) 6= t, where πg is the stream of payoffs whose i-period payoff

is gπ(i).

A preference that is defined by a valuation v obeys property (ET)

iff v is a patient valuation. However, a normalized, monotonic, linear

functional v : `∞ → R that satisfies the (ET) axiom need not satisfy

the time value of money principle,and therefore need not be a patient

valuation; see Lemma 3.

Forges [9] labels a linear functional v on `∞ as “time-neutral” if v

satisfies (4), i.e., iff v is a patient valuation (Theorem 2), and Lauwers

[14] proves that a linear functional u on `∞ is time-neutral iff it is

monotonic, u(1) = 1, and u(g) = u(πg) for every permutation π such

that limn π(n)/n = 1 (where (πg) is defined by (πg)t = gπ(t)).

A.6. The time value of money principle and impatience.

Lemma 1. A monotonic, impatient, and additive function u : `∞ → R
that obeys u(et) ≥ u(et+1) satisfies the time value of money principle.

Proof. Assume that g, h ∈ `∞ with
∑s

t=1 ht ≥
∑s

t=1 gt ∀s and let

u : `∞ → R be a monotonic, impatient, and additive function that

obeys wt := u(et) ≥ u(et+1). Then, as in the proof of Theorem 1,

u(g) =
∑∞

t=1wtgt =
∑∞

t=1(wt − wt+1)tgt ≤
∑∞

t=1(wt − wt+1)tht =∑∞
t=1 htwt = u(h). �

A.7. Properties of patient valuations. The next result shows that

the lower and upper bounds in Theorem 2 are tight.

Lemma 2. For every bounded g there are patient valuations u and v

such that v(g) = g (:= lim infn→∞ gn) and u(g) = g (:= lim supn→∞ gn).

Proof. Fix g ∈ `∞.

Let U be the one-dimensional subspace of `∞ that is spanned by

g. Let ϕ be the linear functional on U that obey ϕ(g) = g; hence,

ϕ(θg) = θg ∀θ ∈ R.
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Define the function p : `∞ → R by the equality p(h) = h. Then,

p is sublinear (i.e., p(g + h) ≤ p(g) + p(h) and p(θg) = θp(g) for all

g, h ∈ `∞, θ ∈ R+) and ϕ(h) ≤ p(h) = h for all h ∈ U .

Therefore, by the Hann–Banach theorem, there is a linear functional

u on `∞ such that u(h) ≤ p(h) = h ∀h ∈ `∞ and u(g) = ϕ(g) = g.

It remains to show that h ≤ u(h) for all h ∈ `∞, which follows

from h = lim infn→∞ hn = − lim supn→∞−hn = − lim supn→∞ (−h)n =

−p(−h) ≤ −u(−h) = u(h).

Applying the above-proved part to the element −g of `∞ shows that

there is a linear functional v on `∞ such that v(−g) = lim supn→∞−gn;

thus v(g) = lim infn→∞ gn, and v(−h) ≥ lim infn→∞−hn; thus v(h) ≤
h ∀h ∈ `∞ and v(h) = −v(−h) ≥ −(−h) = h. �

Lemma 3. There is a normalized linear function w : `∞ → R that is

monotonic and satisfies w(et) = 0 ∀t, thus w satisfies the (ET) axiom

and w(et) ≥ w(et+1), but does not satisfy the time value of money

principle.

Proof. Define the following two linear operators on `∞. The linear

operator O : `∞ → `∞ is defined by the equality Oh = (h1, h3, h5, . . .),

i.e., (Oh)t = h2t−1, and the linear operator E : `∞ → `∞ is defined by

the equality Eh = (h2, h4, h6, . . .), i.e., (Eh)t = h2t.

Let 0 ≤ g ∈ `∞ with g < g. Let u and v be two patient valuations

such that u(g) = g and v(g) = g.

Therefore, u(g)− v(g) < 0 and u(et) = v(et) = 0 ∀t.
Define the function w : `∞ → R by w(h) = u(Oh)/2 + u(Eh)/2. We

claim that w is normalized, linear, monotonic, and satisfies w(et) ≥
w(et+1), but w does not satisfy the time value of money principle.

First, note that u◦O and u◦E are normalized, linear, and monotonic,

and, therefore, so is their average w. As w(et) = 0 ∀t, 0 = w(et) ≥
w(et+1) = 0 ∀t.

Next, define h byOh = g and Eh = −g, i.e., h = (g1,−g1, g2,−g2, . . .).
Note that

∑2n
t=1 ht = 0 and that

∑2n−1
t=1 ht = gn ≥ 0. But, 2w(h) =

u(Oh) + u(Eh) = u(g) − v(g) < 0. Therefore, w does not satisfy the

time value of money principle. �
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Appendix B. Impatient robust optimization

Confining the theory of robust optimization to impatient valuations

leads to the following modification of the definition of a robust opti-

mizer.

For any set U we denote by U∗ the set of all impatient valuations in

U . Let v be a valuation and ε ≥ 0. A small imprecision in the spec-

ification of an impatient valuation is modeled as the set of impatient

valuations in a small neighborhood of a valuation v, and v need not be

an impatient valuation.

A stream f in F is an impatient-robust ε-optimizer at v with respect

to F if there is a neighborhood U of v such that

u(f) ≥ w(F )− ε ∀u,w ∈ U∗.

A robust ε-optimizer at v with respect to F is obviously an impatient-

robust ε-optimizer at v with respect to F . We now show that the

converse holds as well.

Fix a stream f and a neighborhood U of a valuation v. The infimum

of u(f) over all u ∈ U∗ equals the infimum of u(f) over all u ∈ U , and

the supremum of w(f) over all w ∈ U∗ equals the supremum of w(f)

over all w ∈ U . Therefore, if f is an impatient-robust ε-optimizer at v

with respect to F , then u(f) ≥ w(F ) − ε for all u,w ∈ U ; hence, f is

a robust ε-optimizer at v with respect to F .

In the robustness result for a finite MDP we alluded to stringent ro-

bustness conditions that are called for when the decision maker chooses

between different possible distributions over streams of payoffs. We in-

troduce the formal definition.

Let P be a set of distributions P over streams of payoffs. For every

valuation u and distribution P we denote by u(P ) the expectation of

u(f) with respect to the distribution P , and we denote by u(P ) the

expectation of u(f) with respect to the distribution P . The supremum

of u(P ) over all P ∈ P is denoted by u(P). Let v be a valuation.
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A distribution P in P is a robust ε-optimizer at v with respect to P
if there is a neighborhood U of v such that

u(P ) ≥ w(P)− ε ∀u,w ∈ U.

A distribution P in P is an impatient-robust ε-optimizer at v with

respect to P if there is a neighborhood U of v such that

u(P ) ≥ w(P)− ε ∀u,w ∈ U∗.

A robust ε-optimizer at v with respect to P is obviously an impatient-

robust ε-optimizer at v with respect to P . The converse need not hold.

For example, let g be a stream of payoffs with lim infn→∞ gn = −1 <

lim supn→∞ gn = 1. Let P be the set consisting of the single distri-

bution P with P (g) = 1/2 = P (−g). For any impatient valuation u,

u(P ) = 0 = u(P ). Therefore P is a V ∗-robust ε-optimizer in P . In

particular, for any valuation v, P is an impatient-robust v-ε-optimizer

in P . However, if w is a patient valuation then w(P ) = 1. Therefore,

if v is a patient valuation, P is not a robust v-ε-optimizer P in P .

Appendix C. The continuous-time theory

In the continuous-time theory a bounded stream of payoffs is a

bounded measurable function [0,∞) 3 t 7→ gt ∈ R. The linear space of

bounded streams of payoffs is denoted by L∞, and 1≤T is the stream g

with gt = 1 if t ≤ T and gt = 0 if t > T . Similarly, one defines 1 and

1>T in analogy to the definitions in the discrete-time case.

A valuation is an additive function v : L∞ → R that is normal-

ized, i.e., v(1) = 1, and satisfies the time value of money principle: if∫ T
0
gt dt ≥

∫ T
0
ht dt ∀T ≥ 0, then v(g) ≥ v(h). A valuation v is impa-

tient if v(1>T ) →T→∞ 0; it is patient if v(1>T ) = 1 ∀T (equivalently,

v(1>T )→T→∞ 1).

The characterizations of impatient valuations, patient valuations,

and valuations are analogous to those in the discrete-time case.

A real-valued function u that is defined on L∞ is an impatient val-

uation iff there is a function [0,∞) 3 t → wt ∈ R, with
∫∞
0
wt dt = 1,
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that is nonincreasing on (0,∞) and such that

u(g) =

∫ ∞
0

gtwt dt.

A real-valued function u that is defined on L∞ is a patient valuation

iff it is a linear function on L∞ such that

lim inf
T→∞

1

T

∫ T

0

gt dt ≤ u(g) ≤ lim sup
T→∞

1

T

∫ T

0

gt dt.

A real-valued function u that is defined on L∞ is a valuation iff it is

a convex combination of an impatient valuation and a patient one.

Similarly, the analogous results of the other theorems and proposi-

tions hold also in the continuous-time case.

The topology on the valuation in the continuous-time case is the

minimal one where for every g ∈ C, where C consists of all elements

g ∈ L∞ such that the limit limt→∞ gt exists, the function v 7→ v(g) is

continuous.

References

[1] D. Blackwell. Discrete dynamic programming. Annals of Mathematical Statis-

tics, 2:724–738, 1962.

[2] G. Debreu. Topological methods in cardinal utility theory. Cowles Founda-

tion Discussion Paper 76, Cowles Foundation for Research in Economics, Yale

University, 1959.

[3] G. Debreu. Topological methods in cardinal utility theory. In K. J. Arrow,

S. Karlin, and P. Suppes, editors, Mathematical Methods in the Social Sciences,

pages 16–26. Stanford University Press, Stanford, 1960.

[4] P. A. Diamond. The evaluation of infinite utility streams. Econometrica,

33:170–77, 1965.

[5] J. R. Doyle. Survey of time preference, delay discounting models. Judgment

and Decision Making, 8(2):116–135, 2013.

[6] A. Falk, A. Becker, T. Dohmen, B. Enke, D. Huffman, and U. Sunde.

Global evidence on economic preferences. The Quarterly Journal of Economics,

133:1645–1692, 2018.

[7] P. C. Fishburn. Additivity in utility with denumerable product sets. Econo-

metrica, 34:500–503, 1966.

[8] P. C. Fishburn and W. Edwards. Discount-neutral utility models for denumer-

able time streams. Theory and Decision, 43:139–166, 1997.

41



A. Neyman Valuations of infinite utility streams

[9] F. Forges. Correlated equilibria in repeated games with lack of information

on one side: A model with verifiable types. International Journal of Game

Theory, 15:65–82, 1986.
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