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It is well known that the set of all zonoids (integrals of line segments) in R" (n>2) is a closed
and nowhere defise subset in the space of all compact, convex and centrally symmetric subsets of
R". We generalize this result to sets which are the integral of k-dimensional convex sets, k <n.

1. Introduction

It has been argued in the literature, most explicitly by Johansen (1972),
that in many applications the range of factor and/or product substitutions at
the level of individual production uI1its (plants, machines) is very limited
after investment has taken place - that is to say, at a stage where capital
equipments have taken form and can be considered as fixed irl.the short run
(possibly together with other factors of production). In other words, ex post
production possibility sets on the micro level are quite restricted. In the
extreme case where ex post no substitutions are possible, the production
possibility set of an individual production unit may be described by a
segment [0, y] in the commodity space where the length of the segment is
determined by the limited capacity of the production unit due to fixed capital
equipments. A case might even be conceivable in which not every point on
the segment [0, y] would represent a feasible production plan, for example,
where the production unit can be carried out at full (normal) capacity or not
carried out at all. In this extreme case the production possibility set is given
by the two vectors {O,y}.

An industry is generally composed of many production units with different
production possibility sets. Indeed, the existing production units at a given
time period are, in general, of different vintages and use different techniques
of production. If we exclude external effects among these production units
then the total production set for the industry is obtained as the sum of the
individual production sets. Thus in a model of production as explained
above, i.e., fixed input-output coefficients on the level of individual
production units, one is led to study the sum or more general, the integral of
segments, i.e., one-dimensional convex and compact subsets in Rn

. Convex
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sets which are obtained in this way are called zonoids and have been studied
in geometry [for a survey on the theory of zonoids we refer to Bolker
(1969)]. The theory of zonoids has recently been applied by Hildenbrand
(1981) in order to study the structure of short-run industry production
functions. It has been shown that the production functions which are
frequently used as illustrations in textbooks or in empirical studies (e.g. the
Cobb-Douglas or CES production function) cannot be derived within the
above model of production. In somewhat imprecise terms there are relatively
'few' production functions in the space of all production functions which can
be derived in the fixed input-output coefficient model of production. Indeed
it is known that the set of all zonoids in Rn (n>2), Le., integrals of
I-dimensional convex compact sets, is a closed and nowhere dense subset in
the space of all compact, convex and centrally symmetric subsets of Rn where
the distance of two subsets in Rn is measured by the Hausdorff distance.1

In this paper we want to examine the question whether it is decisive for this
result that the summands are i-dimensional. For example is it possible that
every convex and compact subset in R3 can be obtained as an integral of
two-dimensional compact and convex sets ? We shall show that this again is
not possible. The class of sets obtainable in this way is again closed and
nowhere dense in the space of all ~~mpact and convex subsets of R3

•

The study of the integral of k-dimensional convex compact subsets in R",
where k < n, is obviously motivated. by applications to production theory.
Even ex post, there might be some possibility of substitution on the micro
level but a restricted one compared to an ex ante consideration. This
motivates to consider individual production sets which are of lower
dimension that the dimension of the commodity space. In section 2 a precise
formulation of the main result is given. Section 3 contains the proof, and in
section 4 the result is formulated in terms of production functions instead of
production sets. This necessitates a consideration of the special case where
there is only one output.

2. Definitions and the main result

Let X denote the set of compact and convex subsets of the n-dimensional
Euclidian space R". We endow X with the Hausdorff distance d,

where Be(K) denotes the a-neighborhood of K.
For K E X we define dimK as the dimension of the minimal vector

subspace of R" containingK-K. For 12:1c;~n, let Xk={KExldimK2:k}.

1It is easily shown that the set of all zonoids in R2 is equal to the set of all compact, convex
and centrally symmetric subsets in R2•
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We denote by f£.'ff the set of Borel-measurable functions h: % ~Rn such
that h(K) EK for every K E %. Such selections always exist [e.g. see
Hildenbrand (1974, lemma 1, p. 55)].

Let AI(%k) denote the set of positive and bounded measures fl on (the
Borel field of) % which are supported on %k [i.e., fl(%)=fl(%k)J and have
the property that every functions h of f£:f{" is fl-integrable. We define for
every f.1 E AI(% k)'

Z (fJ-) = { J h dfll hE f£ :f{"}'

It is known that Z (fl) E % [the convexity is obvious and the compactness
follows, for example, from Hildenbrand (1974, proposition 7, p. 73)].

Let

Clearly,

Theorem. For every k with 1~ k <n t~e set fl' k is closed and nowhere dense
in fl' k+ 1.

Hence, in particular, the set of compact and convex sets in Rn which cannot
be obtained as an integral of compact and convex sets of dimension less than
n is an open and dense subset in %. Note that sets in fl'1 are centrally
symmetric. Therefore the conclusion of the theorem is very weak for k = 1.
One can show however that for n >2 the set of centrally symmetric sets in
fl' k is closed and nowhere dense in the set of centrally symmetric sets in
fl' k+ l' In view of the applications to production theory we do not restrict the
sets to be centrally symmetric.

Remark. Let (A,d,'T) be a measure space of cp,a measurable compact- and
convex-valued correspondence of A in Rn which is integrable in the sense
that every measurable selection of cp is fl-integrable. If dim cp(a) ~ k 'T-a.e.
then the integral of the correspondence cp, which is defined as the set {J f d'T}
where f varies over all measurable selections of <p, belongs to fl' k,

Sometimes it is more convenient to describe sets in fl' k in this way than by a
measure fl in At(%k)'
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Consider a continuum of production units, i.e., an atomless measure space
(A, d,!) and an integrable correspondence Y of T in Rn. If every individual
production set is compact but not necessarily convex, e.g. discrete, and if
dim Y~ k then it follows [e.g. Hildenbrand (1974, theorem 4, p. 64)] that
S co Yd!= S Yd!. Hence

As an application consider a continuum of production units where the
production set Y(a) of every production unit consists only of finitely many
production plans, say two vectors (aa, 0, ~3' ... , ~~) and (0,pa, 113,... , 11~). Such
production models with discrete choice have recently been studied by
McFadden (1980). Whatever will be the distribution of the input coefficients
ex and p the mean production set belongs to ~ 2' Thus not every convex
production set can be obtained by aggregation of discrete production sets.

3. Proof of the theorem

3.1 .. First we shall show that fYk is a closed subset in yc. The idea of the
proof is simple; let (Z(J1n))n=l .. :. be a sequence in ~k [i.e., J1nE.A'(Jf'k)]
which converges to K in Jf'. We shall show that there is a subsequence of
(J1n)which 'converges' to a measure J1\with Z(J1) E fl' k' Then we show that the
set Z( .) depends 'continuously' on its defining measure. Hence we conclude
that K = Z (J1). In making these arguments precise we encounter a technical
difficulty since the space Jf' k is not compact. However, there is a compact
subset ~k of Jf', which we define below, such that to every measure J1 in
At(Jf'k) corresponds a measure v on ~k such that Z(J1)=Z(v)+x(J1). Now
we can use the well-known result that a set of bounded measures on the
compact space ~k is weakly relative compact.

We denote by p(K) the maximal radius of K E Jf', i.e.,

p(K) =max Ilxli.
xeK

Let

~={KEJf'lp(K)=1 and OEK},

and

~k={K E~ I dimK~k}.

It is not difficult to show that:

(1) ~ is a compact subset of Jf' and ~k is closed in £0.
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Let At(E&) denote the set of positive and bounded measures on (the Borel
subsets of) the compact space qg. We endow .kt(qg) with the topology of weak
convergence.

The following result shows that it suffices to consider measures on the
compact space ~k in order to describe the sets in fl'k:

(2) For every ZEfl'k there is a measure v on ~k and a vector XEZ such that

Z =x+Z(v).

Let Z Efl'k. Thus there is a measure }.lEAt(ffk) such that every selection
hE.!l'./f" is integrable and Z=Z(J-l)={Jhdp,I hE.!l'./f"}.

Let fE.!l'./f" and define r(K)=p(K-f(K)). It follows that S./f"r(K)p,(dK)
< 00. Denote by 1'1the measure on ff which is defined by 1](B) = SBrdp,.

Let ff: ={K Effk I r(K»O}. Then clearly ff: supports the measure 1].

Denote by G the mapping of ff: into ~k defined by

1
G(K)=-

(
-
)

(K -f(K)).
rK .

We now define the measure v on ~k as the image measure of 1] with respect
to the mapping G, i.e., v= 1] . G- 1. We no'w claim that

Z=X+Z(v) where x=Sfdp,.

Indeed,

K ={Jh dP,1 hE£> ./f"}

= JfdJ-l+{J (h -f)dP,1 hE.!l'./f"}

=x+ L~ -r(~-) (h(K)-f(K))· T/(dK) I hE5ex}

=x+ W g(-r(~-) (K -f(K) )T/(dK) I gE5e2lJk}

=x +{l
k

gdJ-l1 g E.!l' g)k}

=x +Z(v).
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The following result shows that a family {VaLeA of measures on E0 is
bounded [i.e., sup A va(E0) < CDJ if and only if the corresponding family
{Z(van of subsets in R" is bounded:

(3) There is a constant Q depending only on the dimension oj Rn such that
Jar every V on f!&,

p(Z(v))~v(f!&)~Q' p(Z(v)).

The result is well-known [or zonoids, i.e., integrals of line segments, that is
to say measures v which are defined on E0) [see e.g. Bolker (1969, theorem
4.2)]. Clearly every set L'(v), contains a zonoid. Indeed choose a measurable
selection f:f!&~R" with J(K)EK and IIJ(K)II=l for every KEE0. Then
J [O,f(K)Jv(dK)· is a zonoid which is contained in Z(v). This proves the
second inequality.

To prove the first, let I/J(K,q)=maxxeK(x,q),KEX, qERn. Thus I/J(K, .) is
the support Junction of K. Since maximization and integration can be
interchanged [see e.g. Hildenbrand (1974, proposition 6, p. 63)J we obtain

V/(Z (v), q) = J I/J(K, q )v(dK) ~ v(.@) 'lIqll,
for every

qERn
•

Then it follows that p(Z(v)) ~ v(f!&).

Next we show:

(4) The mapping VHZ(V) of AI(f!&) into K is continuous.

Let (vn) be a sequence converging weakly to v in .4t('2lJ).
We have to show that the sequence (Z(VII)) converges in the Hausdorff

distance to Z (v).
Since VII(f!&)~V(f!&) it follows from (3) that the sequence (p(Z(vn))) is

bounded. By a well-known result (often called Blaschke's selection theorem)
there exists a subsequence of (Z(vn)) converging to a set ZE'JC. Thus we
may assume that Z(vn)~Z, One easily verifies that this implies I/J(Z(vII),q)
~1/J(Z,q)for every qERn. For every qERn, I/J(-,q): E0~R is a bounded
continuous function. Hence

I/J(Z(vn), q) = S I/J(K, q)vlI(dK)~ S I/J(K, q)v(dK)

=1/J(Z(v),q) for every qER?
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Thus it follows that !/f(Z,q)=!/f(Z(v),q) for every qERn
, which implies that

Z=Z(v).

Finally we shall show that:

(5) tzk is closed in :£.

Let (Zn) be a sequence in tzk converging to ZE:£. By (2) there are XnEZn
and measures Vn on !?2k such that Zn=xn+Z(vn), Since the sequence (xn) is
bounded we can assume without loss of generality that (xn)~x, Thus Z(vn)
=Zn -Xn converges ',to K -x. Hence (p(Z(vn))) is bounded and consequently
by (3) the sequence (vn(!?2k)) is bounded. Since !?2k is compact there exists a
subsequence of (vn) converging weakly to a measure v on !?2k- By the
continuity of VI-+Z(v) it follows that Z=x+Z(v). Since v is a measure on!?2k
we obtain Z E~k'

3.2. In this section we shall show that:

(6) If n ~ 3 and k <n then for every Z E tz k there is a (k + 1)-dimensional
simplex LI such that Z +aLl ¢ tzk for every a> O.

Since Z +aLl E tzk+ 1 this clearly implies that tzk is nowhere dense in tzk+ 1.

A compact convex subset K of Rn is called indecomposable if for. any
decomposition of the form K=Kl +Kz with KiE:£ (i=1,2) there are x1,XZ

in R" and [31,[3Z in R+ such that Ki=xi+[3)«(i=1,2). For example, every k-
dimensional simplex is indecomposable [Griinbaum (1967, p. 318)].

We shall need the following result which we shall prove in section 3.3:

Proposition 1. If the integral S'P d'T of a compact- and convex-valued
measurable correpondence cp of the measure space (T,.?T,.) into Rn is
indecomposable, then there are integrable functions x: T~Rn and [3: T~R+
such that

cp(t)=x(t)+[3(t)·SCPd •• -a.e.,

and

S [3d. = 1.

Lemma 1. If the face F(Z,q) OfZE~k with normal q is indecomposable and
dimF(Z, q)= k then the face F(Z, q) is a summand .of Z.
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Proof. Since ZE:?Lk there is a measure space (T, fJ,7') and an integrable
correspondence ep of T into ff with dim ep(t) ~ k such that Z = S epdff. It is
known that the face of an integral of a correspondence is equal to the
integral of the faces of the correspondence [e.g. Hildenbrand (1974, p. 65)].
Thus

F(Z, q) =S F(ep(t),q)'r(dt).

Since the face F (Z, q) is indecomposable there are by Proposition 1
integrable functions x: T-tRn and {3: T-tR+ with S {3dt= 1 such that '[-a.e.,

F(<p(t), q)=x(t) + {3(t)F(Z, q).
i

Let Tt={tETI{3(t»O}. Then for '[-a.e. tin Tt F(ep(t),q) is a translate of
F(Z,q). Since dim<p(t);;:;;k and dimF(Z,q)=k we conclude that for '[-a.e. in
Tt,

ep(t) =F(ep(t), q).

<p{Td = S F(ep(t), q)'[(dt) =x{Td +F(Z, q).
TI

Thus F(Z, q) is a summand of Z since

Z= S epd'[+x{Tt}+F(Z,q). Q.E.D.
1\1'1

Lemma 2. If the face F(K,q) of KE'J{ with normal q is a summand of K,
then F(K,q) is a summand of the face F(K, -q) with normal -q. Hence

dimF(K, -q)~dimF(K, q).

Proof One easily verifies that

F(F(K, q), -q)=F(K, q).

Then we obtain for K=Q+F(K,q) that

F(K, -q)=F(Q+F(K,q), -q)

=F(Q, -q)+F(F(K,q), -q)

=F(Q, -q)+F(K,q).
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Thus F(K,q) is a summand of F(K, -q): Q.E.D.
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We now proceed to proof assertion (6):

Let k<n and Z EZk•

There exists qERn, q=l=O,such that the face F(Z,q) of Z with normal q and
the face F(Z, -q) of Z with normal -q consists of one point each, i.e.,

dimF(Z,q)=dimF(Z, -q)=O.

Indeed, let q=X2 -Xl' where Xl and x2 are defined by

Further there is a (k + 1)-dimensional simplex LIsuch that for every ex>0 the
face F(exLl, q) is a k-dimensional simplex while the face F(exLl, - q) contains just
one point, i.e., dimF(exLl, -q)=O. Indeed, choose Xo= -q, Xt"",Xk to be
orthogonal vectors, and let LIbe the convex hull of {xo,···, Xk}'

Let K=Z+a.1. We shall show that K¢.if1k• Assume to the contrary that
K E f!Zk' By definition of the vector q and the simplex LI it follows that
dimF(K, -q)=O and that F(K,q) is a tianslate of the k-dimensional simplex
exr(J,q).

But every k-dimensional simplex is indecomposable, and therefore by
Lemma 1 it follows that F (K, q) is' a summand of K. But then we obtain by
Lemma 2 that

O=dimF(K, -q)~dimF(K,q)= k;

a contradiction.

3.3. In order to prove Proposition 1, we shall first prove the following:

Lemma 3. Let 'P be a compact- and convex-valued measurable
correspondence of (T, §", '!:) into Rn• Let K E:f{ and assume that for every
SE§",

S qJd'!: = cxK for some ex ~ O.
s

Then there is a measurable function f3: T-R+ such that qJ(t)=f3(t)K '!:-a.e.
and S f3d'!:= 1 whenever dimK ~ 1.
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The case dimK =0 is a standard result. If dimK ~ 1 there is q E Rn with
Ij;(K, q) = 1. Define the function {J by

f3(t) = t/t(cp(t), q).

To = {t E T I t/t(cp(t), y) = f3(t )t/t(K, y)},

T+ = {t E T I t/t(cp(t), y) > {J(y )t/t(K, y)},

L = {tE TI t/t(cp(t),y) < f3(t)t/t(K, y)}.

If 't(T(y, t)) >0, then

, = S t/t(cp(t),q)t/t(K,Y)'t(dt)
T+

'~ \

= t/t(K,y)' t/t(J+ (cp d't, q).
which leads to a contradiction with the assumption h+<pdT=aK. Thus T(T+)
= O.Analogously one shows that 't(L)= O.Hence, for any given Y ERn,

t/t(cp(t),y)= {J(t)· t/t(K, y) 't-a.e.

Let {yJ i= 1, ... be a dense countable subset of Rn. Then, 't-a.e.,

Ij;(cp(t), Yi) = {J(t)Ij;(K, yJ, i=l, ....

Using the continuity of the support function we conclude that for 't-a.e. t,

t/t(cp(t),y)=f3(t)t/t(K,y) for every YERn,

which implies that

cp(t)= f3(t)K 't-a.e.

Proof of Proposition 1. For K in 'J{ let s(K);;;;K denote the Steiner point of
K [for a definition see, e.g., Grunbaum (1967, ch: 14)]. Recall if cp is a
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compact- and convex-valued measurable correspondence, then
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Thus, if K=S<Pd-r, then K=Sc,Od-r where K=K-s(K) and c,O(t)=<p(t)
- s (<p ( t )).

If K is indecomposable and if Kl is a summand of K with s(K)=s(K1)=O,
then Kl =aK for some a~O. Since for SeT the integral Ssc,Od-r is a
summand of K, and since

s(I c,Od-r) = I S(<p(t) - s( <p(t ))-r(dt) = 0 = s(K),

we conclude from Lemma 1 that there is a function 13: T-R+ with J f3d-r= 1
such that

c,O(t)=f3(t)K -r-a.e.

Hence

<p(t)-s(<p(t))=f3(t)(K -s(K)) -r-a.e.

Let x(t)=s(<p(t))-f3(t)s(K). Thus the functions 13 and x have the desired
properties.

4. Production functions

To every compact and convex subset Y of Rn we associate a concave
function F y.

Let Dy denote the projection of Yon the space of the first n -1 coordinates
of Rn, i.e.,

The function F y: Dy - R is defined by

If the first n -1 coordinates are interpreted as inputs and the nth
coordinate as output then we call F y the efficient production function
associated to the production set Y.

Let D be an open and G a compact subset in Rn-1 with Dc G. For every
k with l:;;::;k:;;::;n we denote by ;]frk (D, G) the class- of all production functions
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Fz: D~R which are associated with some set ZE::lk with OEZ and
DcprojR"-J ZcG.

Clearly Fn(D, G) = ff(D, G) equals the set of all bounded concave functions
defined on D with F (0) = O. For n = 2 one easily. verifies that ff 1(D, G)
=ff(D, G).

Theorem. If n>2 and k<n, then ffk(D,G) is closed and nowhere dense in
F(D, G) with respect to both the point-wise and uniform convergence
topolo gies.

This result does not follow directly from the theorem in section 2 but it can
be proven with similar techniques.
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