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The paper presents a characterization of continuous cooperative games (set
functions) which are monotonic functions of countably. additive non-atomic
measures. The characterization is done through a natural desirablity relation
defined on the set of coalitions of players. A coalition S is at least as desirable as
a coalition T (with respect to a given game v (in colational form)), if for each coali-
tion U that is disjoint from S u T, v( S u U) ?: v( T u V). The characterization
asserts, that a game v is of the form v = fo j.L, where j.L is a non-atomic signed

measure and f is a monotonic and continuous function on the range of j.L,if, and
only if, it is in pN A I (i.e., it is a uniform limit of polynomials in non-atomic measures
or equivalently it is uniformly continuous function in the NA-topology) and has
a complete desirability relatio:p.. Journal of Economic Literature Classification
Number: 026. @ 1989AcademicPress,Inc.

1. INTRODUCTION

A coalitional game is a function v defined on a cr-algebra C of subsets of
a set I, and satisfying v(0) = O.The elements of C are called coalitions and
I represents the set of players. For a coalition S and a coalitional game v,
v(S) is called the worth of the colation S. Coalitional games are the cor-
nerstone in cooperative game theory and they also arise in various other
social science models. In a production economic model with one output,
v(S) stands for the maximal production that the group S of agents can
produce, or alternatively, I represents the set of raw materials and v(S) is
the maximum output that can be produced from the set S of raw materials.

1 ,dual interpretation views the coalitions as sets of projects or outputs and
"u{S) represents the cost of performing (or producing) all elements in S.
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370 EINY AND NEYMAN

Coalitional games arise also in non-additive expected utility theory (see
[7] and the motivation section and the reference there).

Every coalitional game v: C -+ [Rinduces a desirability relation on C: a
coalition S is at least as desirable as a co'alition T, if for each coalition U
that is disjoint from S u T (i.e., Un (S u T) = 0) we have v(S u U) ~
v(Tu V), or equivalently, v(S u U) - v( U) ~ v(Tu U) - v( V). Thus, the
desirability relation is a basic binary relation on coalitions reflecting their
marginal contributions. The desirability relation for coalitions in a coali-
tional game with finitely many players was first introduced in [9]. It
generalizes the relation of desirability for players that was defined in [11].
The relation was used in [15, 16J to develop a theory of coalition forma-
tion in finite simple games.

The desirability relation is complete if for every pair of coalitions Sand
T, either S is at least as desirable as T or T is at least as desirable as S.
For many games the induced desirability relation is not complete. One
class of games for which the desirability relation is complete are the scalar
measure games of the form fa /1, where /1 is a measure on C and f is a
monotonic non-decreasing function. In that case the inequality /1(S) ~ /1(T)
implies that S is at least as desirable as T. One spacial subclass of these
games are the monotonic weighted majority games; here /1 is a probability
measure and f is a monotonic function from the closed interval [0, 1] to
the set {O,1}.

The desirability relation (induced by a game v) will be denoted by ~.
The desirability relation ~ induces a strict desirability relation >- by S>- T
if and only if S ~ T but T? S. Another property of the scalar measure
game fa fl with f monotonic, is that their desirability relation is. acyclic,
i.e., there does not exist a finite sequence S 1, ..., Sk of coalitions with
SI>-S2>- ... >-Sk>-Sl'

Thus, the games of the form fa /1, where /1 is a measure on the players
space and f is a monotonic function, have a complete and acyclic
desirability relation. A natural inquiry that arises is whether it is possible
to characterize these scalar measure games (where f'is monotonic) by
means of properties of the desirability' relation. In particular, a natural
question that arises is whether or not any game that has a complete and
acyclic desirability relation has the form fa /1, where /1 is a measure and f
is a monotonic function, or for what classes of games one could deduce
that if their desirability relation is complete and acyclic then they have such
a form. Peleg conjectured that all monotonic simple games, with finitely
many players that have a complete and acyclic desirability relation. are
weighted majority games, i.e., games of the form fa /1, where fl is a prob-
ability measure and f is a monotonic function.f: [0, 1] -+ {O, I}. A coun-
terexample to Peleg's conjecture was given by Einy [5]. The present paper
shows that an even stronger version of this co]Jjecture in games with
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2.

3.

SRT, if and only if (S u U) R(Tu U) whenever (S u T) (\ U = 0;
SR0 and 01<1.

A probability measure P on (I, C) is said to agree with R if for all events
A and B, P(A) ~ P(B) if and only if ARB. Savage [18] studied conditions
on the qualitative probability probability which guarantees the existence of
a probability measure P that agrees with R. We will draw now the analogy
between Savage's program and our development.

Given a game v we can define the relation R( v) on C by SR( v) T if, and
only if v(S) ~ v(T). Then R(v) is obviously a simple ordering and if we
further assume that for all coalitions S, 0 ~ v(S) and v(I) > 0 we also have
SR(v)0 and 0ft.(v)I. If we assume that for all coalitions S, T, and U,
SR( v) T if and only if (S u U) R( v)( T u U) whenever (S u T) (\ U = 0, then
the desirability relation of v is complete but the converse is not necessarily
true. In Savage's development one assumes additional monotonicity and
continuity assumptions on the qualitative probability R that assert the
existence of a non-atomic probability measure P that agrees with R. In our
paper the continuity assumption is embodied in the fact that v is in pHA'
and we do not have a monotonicity assumption. Our conclusion is that if
the desirability relation of v in pNA' is complete then v is of the form fa f-l,

where /1 is a non-atomic (countably additive) measure and f is monotonic
on the range of f-l.Assuming monotonicity of v (or equivalently, of R(v))
we would conclude that v is of the form fa f-l, where f-l is a non-atomic
probability measure that is uniquely determined by v.

In view of the above analogy between Savage's program and our
contribution, it is of interest to establish conditions on a binary relation R
on C for which there is a real valued function v on C that belongs to pNA'
and realizes the relation, i.e., R = R( v).

In Section 2 we present the basic definitions and notations that are
relevant to our paper. In Section 3 we state and prove our main theorem.
In Section 4 we discuss some examples, and present some corollaries of the
main theorem.

2. PRELIMINARIES

Most of the definitions and notations in this section are according to
[1]. Let (I, C) be a measurable space. The members of I are called players,
the members of C coalitions. A game is a function v: C ~ [R such that
v(0) = O. A game v is monotonic if v(S) ~ v(T) for each S, T such that
S ~ T. The space of all games on (I, C) that are the difference of two
monotonic games is denoted by BV A nondecreasing sequence of sets in C
of the form Q: So c S1 C ... C Sn is called a chain. Let v E BV, the variation
of v over a chain Q is defined by IlvIIQ=L~I=llv(S;)-V(Si-l)l. The varia-
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lion norm of a game vEBVis defined by IlvIIEv=sup{llvIID I Q is a chain}.
It is well known that (BV, II IIEv) is a Banach space (see Proposition 4.3 in
[1 J). Denote by NAthe set of all non-atomic measures on (I, C), and by
NA + the subset of NA consisting of non-negative measures. By pNA we

.

denote the closed linear subspace of BV spanned by all powers of NA +

measures. Let BS be the Banach space of all bounded games with the
supremum norm. By pNA' we denote the closed linear subspace of BS
spanned by all power of NA + measures. It is clear that pNA c pNA'. Let
B(I, C) be the Banach space of all bounded and measurable real valued
functions on (1, C) (measurable with respect to the Q"-field C and the Q"-field
of Borel subsets of IR) with the supremum norm. Denote ~y B1(1, C) the
subset of B(1, C) consisting of all functions from 1 to [0, 1]. Each member
f1 of N A induces a function ji on B 1(1, C) defined by ji(/) = S 1 I df1, for each

IE B1(1, C). The NA-topology on B1(1, C) is the smallest topology for
which all these functions are continuous. It is shown by Aumann and
Shapley (see Proposition 22.16 in [lJ) that there is unique mapping that
associates with each V EpNA' a function v*: B1(1, C) ~ [R such that

v*(xs) = v(S) for each S (i.e., v* is an extension of v to B 1(1, C)).

(cw + f3w)* = Ctv*+.f3w*, for each ct, f3E R and v, WEpNA'.

(2.1 )

(2.2)

(2.3 )

(2.4 )

(2.5)

v* is uniformly continuous on B1(1, C) in the NA-topology.

(vw)* = v*w* for each v, WEpNA'.

f1*(f) = tl df-l for each f1 E NA.

Ilv*II'= Ilvll' for each v EpNA' (where here and in the
sequel, if wEpNA' then Ilwll'=sUPSEC Iw(S)I, and Ilw*II'=
SUPjEE1(J,C) Iw*(fl. (2.6)

We note that by Proposition 1 in [12J each game v on (1, C) that has
an extension v* on B1(1, C) which is continuous in the NA-topology (such
an extension is unique by Proposition 22.4 of [lJ) is inpNA'.

For givenf, gEB1(1, C),/v g (1/\ g) denoted the maximum (minimum)
of the two functions I and g. The constant functions in B(1, C) will be
denoted by their value.

3. CHARACTERIZATION OF SYMMETRIC (SCALAR MEASURE)

GAMES IN pNA'

Let v be a game on (1, C). A coalition S is at least as desirable as a
coalition T (with respect to v), written S ~ T, if for each U E C such that
U (\ (S u T) = 0 we have v(S u U) ~ v( T u V).
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If S ~ 1~ but T'j:. S, then we write S>- T. The relation ~ was intro-
duced in [9]. It generalizes the relation of desirability for players (see
Definition 9.1 in [l1J).

If Il is a finite dimensional vector of measures, then the range of Il is
denoted by R(Il).

We are now ready to state our main results.

THEOREMA. Let vEpNA'. Then v is of the form V=foll, where IlENA
and f is a monotonic and continuous function on R(Il), if and only if it has
a complete desirability relation.

We start with an outline of the proof. .

Outline of the Pro~f Let v be a game in pNA' that has a complete
desirability relation. We consider the extension v* of v (v* is the NA-con-
tinuous function on the class B 1(1, C) of "ideal coalitions"). It is shown that
v* is quasi-affine (Lemma 3.4). Using the quasi-affinity it is shown that
there exist a non-zero, continuous linear functional x* on B(1, C) such that
for every f, g in B 1(1, C), x*(f) = x*(g) implie v*(f) = v*(g) (Lemma 3.7).
Therefore, v* is a composition of a monotonic function (using quasi-
affinity) with x*. The linear functionals on B(1, C) can be represented by
finitely additive measures; thus v =fo v, where v is a finitely additive
measure and f is a monotonic function on the range of v. Using the con-
tinuity properties ofv* we first deduce thatfis continuous and v is actually
countably additive. Using again the NA-continuity of v we conclude that
there exists a countably additive non-atomic measure Il withfoll=fov=v,
which completes the proof.

!

For the proof of Theorem A we need a number of lemmata, but first we
need some definitions.

Let L be a linear space over !R, and let K be a convex subset of L. A
function f: K -+ !Ris quasi convex if for each x, y E K and each t E [0, 1], we
havef(tx + (1 - t) y) ~ max(f(x), f(y)). f is quasi con~ave if ~f is quasi
convex, or, equivalently, if for each x, y E K and t E [0, 1J we have
f(tx + (1- t) y) ~ min(f(x), f (y)). A function j: K -+!R is quasi-affine if it
is quasi convex and quasi concave.

Remark 3.1. Let J c !Rbe an interval. Then a functionj: J -+ !Ris quasi-
affine if and only if it is monotonic.

For a given game v in pNA' we define the desirability relation ~ * on
B 1(1, C) by: for./; g EB 1(1, C), f~ * g (f is at least as desirable as g) if for
every h in B1(1, C) with O~h~ 1- (fv g), v*(h+f)~v*(h+g).

LEMMA 3.2. Let v EpNA' be a game that has a complete desirability
relation on C. Then v* has a complete desirability relation on B 1(1, C);
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For the proof of Lemma 3.2 we need the following result from
[4, Theorem 4].

LEMMA 3.3. Let f-l be a finite dimensional vector of measures in NA, and
let fl, ..., fm be m functions in B 1(1, C) such that L';'= 1fi E B 1(1, C). Then
there are m disjoint sets 81, ..., 8m in C such that J.l(8J = II fi df-l for each
1 < i < m (where here, and in the sequel, if f-l = (f-ll' ..., f-ln) is a vector of
measures in NA and f E B1 (1, C), then IIf dJ.l= (I If df-ll' ..., I If df-ln)).

Proof of Lemma 3.2. Otherwise, there exist g l' g2E B 1(1, C) and
hI, h2 eB1(1, C) with 0 < hi< 1- (gl v g2) and

V*(gi + hI) > V*(g2 + hI) and V*(gl + h2) < V*(g2 + h2). (3.1)

Definefl=gl-(gl/\ g2),f2=g2-(gl/\g2),f3=(gl/\g2),f4=(h1/\ h2),
fs = hI - (hI /\ h2), andf6 = h2 - (hI /\ h2). Note that 0 <Ii and that L~= I fi
< 1. Let £> 0 with 2£ < V*(gi + hI) - V*(g2 + hI) and 2£ < V*(g2 + h2)-
V*(gi + h2).

Since v* is continuous on BI(1, C) in the NA-topology, there exist a
vector f-l= (J.ll,..., J.lk)of measures in NA and (5> 0 such that for every h in
BI(1, C) and every f that is a partial sum of L~=lfi' i.e., f=L~=1 aifi,
where aiE {a, 1}, we have

lit
(h-f) dJ.l

II 00

<(5=>lv*(h)-v*(f)I<£, (3.2)

where II 1100denotes here the maximum norm in the Euclidean space Ek.
By Lemma 3.3, there exist disjoint coalitions 8i, 1 < i < 6, with J.l(8J =

SI fi df-l. Therefore, as gi + hI = fl + f3 + f4 + fs and g2 + hI = f2 + f3 + f4 + fs,
we deduce from (3)) and (3.2) that

V(8l u (83 U 84 U 8s)) > V*(gl + hi) - £ > V*(g2 + hi)

+ £ > v(82 U (83 U 84 U 8s)) (3.3 )

and similarly, as g2 + h2 = f2 + f3 + f4 + f6 and gl + h2 = fl + f3 + f4 + f6, we
deduce from (3.1) and (3.2) that

v(81 U (83 U 84 U 86)) < v(82 U (83 U 84 U 86)), (3.4 )

-
The two inequalities (3.3) and (3.4) contradict the completeness of the
desirability relation that is induced on C by v.

LEMMA 3.4. Let V EpNA' be a game that has a complete desirability
relation. Then v* is quasi-affine on B1(1, C).
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Proof First we will show that v* is quasi convex. Let f, g E B 1(I, C).
We have to prove that for each 0 ~ t ~ 1, v*(tf + (1 - t) g) ~
max(v*(f), v*(g)). Since v* is continuous on B1(1, C) in the NA-topology,
the denseness of the dyatic rationals in [0, 1] implies that it is sufficient to
show that v*(f/2 + g/2) ~ max(v*(f), v*(g)). Assume, on the contrary,
that v*((f + g)/2) > max(v*(f), v*(g)).

Let .il = ((f /\ g) + f)/2, f2 = ((f /\ g) + g )/2, g 1 = f - f1, g 2 =
g-f2' Thenf1 +gl=.f, (f+g)/2=f1 +g2=f2+gu andf2+g2=g. There-
fore, v*(fl + gl) = v*(f) < v*((f + g)/2) = V*(f1 + g2) and V*(f2 + g2) =
v*(f) < v*((f + g)/2) = V*(f2 + gl), which contradicts, together with
Lemma 3.2, the completeness of the desirability relation that is induced
by v. In order to show that v* is quasi concave, we consider the game
w = - v. Then w has a complete desirability relation. Therefore by what we
have just shown, w* is quasi convex. Since w* = - v* (see (2.3)), v* = - w*
. .
IS quasI concave.

COROLLARY3.5. Let 11E NA and f: R(I1) --t [R be a continuous function.
Then, the game v =f 011has a complete desirability relation if and only iff
is monotonic on R(I1).

Proqf It is clear that if f is monotonic, then the game v = f 011has a
complete desirability relation. So assume that v has complete desirability
relation. Since f is continuous, v EpNA'; Therefore by Lemma 3.4, v* is
quasi-affine. Now for each 8 E C, f(I1(8)) = v*(Xs)' Therefore f is quasi-
affine on RUt). By Remark 3.1, f is monotonic.

Remark 3.6. Let v EpNA'. Then v* is continuous on B1(I, C) in the
supremum norm.

.
Remark 3.6 follows immediately from the definition of the NA-topology.

and the fact that v* is continuous on B1(I, C) in the NA-topology.

LEMMA 3.7. Let v EpN A' be a game with a complete~desirability relation.
Then there exists a non-zero continuous linear functional x*: B(I, C) --t [R
that for each fJ ,f2 E B 1(1, C) we have

X*(f1) = x*(f2) =>V*(f1) = V*(f2)'

Proof If v* is identically zero the lemma is obvious. So assume that v*
is not identically zero. Without loss of generality, there exists c > 0 with
c < suP/End!, C)v*(f) (for otherwise we consider -v*). Consider now the
sets

Kj = {fEBI(I, C) I v*(f);?c}, K2= {fEBI(I, C) I v*(f)<c}.

It is clear that K1 and K2 are non-empty disjoint subsets of B(I, C).
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Moreover, by Lemma 3.4, Kl and Kl are convex, and by Remark 3.6 they
have a non-empty interior in B(1, C). Therefore by a standard separation
theorem there exist a E [R and a non-zero continuous linear functional
x*: B(1, C) ~ [R such that Ilx*1I~ 1 and

x* (I) ;?;a

x*(/) ~ a

for each IE Kl'

for each IE K2.

(3.5)

(3.6)

Since c> 0 and v*(O) = 0,0 E K2. Therefore, by (3.6) and the continuity of
v*, a> O.

Let 10 E int(Kl). Fix 8> 0 sufficiently small so that, 28 < a and

lo~ 1-38,

x*(/o) ;?;a + 38,

(3.7)

(3.8 )

and

38X*(/o)/a ~/o' (3.9 )

We first show that if 11' 12 are interior points of B 1(1, C) such that

X*(/l)=X*(/2)' then V*(/l)=V*(/2)' Let 11,12 Eint(BI(I, C)) such that
X*(/I) = X*(/2)' Assume, on the contrary, that V*(/I) =1=V*(/2)' Consider
the real valued function F on the closed interval [0, 1J that is given by
F(a) = v*(all + (1 - a)/2)' The function F is continuous (using the con-
tinuity of v*) and F(0)=v*(/2):;i=V*(/l)=F(l). Therefore there exists aI,
a2 in [O,lJ with lal - a21< 8 and F(al) > F(a2)' Setting 13 = aliI +
(1-al)/2 and/4=a2/I + (l-a2)/2 we have

V*(f3) > V*(f4)'

X*(/3) = X*(/4) (= X*(/I) = X*(f2))'

Ilf3-/41100<8.

(3.10)

(3.11 )

(3.12 )

As x* =1=0 and 13 Eint BI(1, C), we deduce by the continuity of v*, (3.10)
and (3.11), that there exists 15 in Bl(I, C) with

X*(f5) < X*(f4)'

V*(f5) > V*(f4)'

(3.13 )

(3.14 )

and
,0

):f
1115 -/41100 < 28. (3.15)

Consider the function hI =/5 /\ 14' g 1 =15 - hI, g2 =14 - hI, Note that
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0~g2~2e and therefore IX~(g2)1~281Ix*11 ~2e. Let h2=((ex-X*(g2))j
x*(fo))fo.

Then by (3.15), 0~gi~28 and, using (3.7) and (3.8),

0~h2~1-(gl v g2) (3.16)

(and obviously also 0~h1~1-L(gl v g2))'
Note that

v*(h1 + gl) = v*(fs) > V*(f4) = v*(h1 + g2), (3.17)

and as x*(h2 + gd = x*(h2) + X*(gl) = ex - X*(g2) + X*(gl) = ex -
X*(f4) + x*(j~) < exand x*(h2 + g2) = x*(h2) + X*(g2) = ex,we deduce from
(3.5), (3.6), and the continuity of v* that

v*(h2 + g2) ~ c> v*(h2 + gl)' (3.18)

The three inequalities (3.16), (3.17), and (3.18) contradict the complete-
ness of the desirability relation >= * on B1(I, C), and thus it follows that
v*(fl)=v*(f2) wheneverfl,f2 are interior points of B1(l, C) and v EpNA'
has a complete desirability relation.

. We will now show that X*(fl) = X*(f2) implies V*(fl) = V*(f2) for each
fl,f2EB1(l, C). Indeed let fl,f2EB1(l, C). For each natural number n
let gl1=(1-1jn)fl+ (lj2n) Xl' hl1=(1-ljn)f2+(lj2n)XI' Then, gn,hl1E
int(B1(l, C)) for each n. Since x*(gl1) = x*(hn), v*(gn) = v*(hn) for each n.
By Remark 3.5, we have v*(gl1) -+ V*(fl) and v*(hn) -+ V*(f2)' Therefore
V*(fl) = V*(f2)'

. .

LEMMA 3.8. Let v EpNA', and let {Sn}:= 1 be a non-increasing sequence
of coalitions in C such that n:= 1 Sn = 0. Then for each g E B 1(I, C) and
each 0 ~ t ~ 1, we have v*(tg + (1- t)XsJ -+ v*(tg).

Proof Let g E B 1(I, C) and 0 ~ t ~ 1. If f.lE N A +, then by the count-
able additivity of f.l we have f.l*(tg+(l-ths)-+f.l*(tg). Therefore
tg + (1 - ths" converges to tg in B 1(1, C) in the NA-topology. As v* is
continuous in the NA-topology, v*(tg + (1- thsJ -+ v*(tg).

LEMMA 3.9. Let J c R be an interval which contains 0, and let f: J -+ R
be a continuous function. Assume that there exists a E c1(J), a =f.0, such that

rr XEJ

f(ta) = 0 for each 0 ~ t < 1,

then f(tx) = f(a + t(x - a)) for each 0 < t ~ 1.

(3.19)

(3.20)

Then f(x) = 0 for each x EJ.
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Proof Let Xo E J. We will show that f(xo) = O. If 0 < Xo < a or
a < xo:'( 0, then by (3.19), f(xo) = O. It remains to distinguish the following
possibili ties:

(a) 0 < a < Xo. We show that f(x) = 0 for each a < x < Xo, and then
by the continuty of f at Xo we will obtain that f(xo) = O. Let 0 < x:'( Xo.
Then by (3.20) we have

f(x) = f(a + (xo - a)x/xo) = f(a + (1- a/xo)x).

Let a = 1- a/xo. Then a> O. For each x E lR, let A(x) = (x - a)/a. Then for
each a < x:'( Xo we have 0 < A(x):'( Xo. Therefore,

f(x) = f(A(x)) for each a < x:'( Xo. (3.21 )

Let a < x < Xo. Then A(x) < x. Since A is an increasing function, the
sequence {An(x)}:=o is decreasing. Now, there exists a natural number n
such that An(x):'(a. For otherwise, the sequence {An(x)}:=o converges to
a point x. Since A is continuous, x is a fixed point of A. But this is
impossible because x < Xo, and A has only Xo as a fixed point. Let no
be the minimal natural number such that An°(x):'( a. Then Ano(x) =
(AnO-l(x)-a)/a>O. Thus 0< AnO(x):'(a. Therefore, by (3.19), f(Ano(x))
=0. Since a<An(x)<xo for each n<no, by (3.21),f(x)=f(Ano(x))=0.

(b) a<O<xo. In this case we will show that f(x)=O for each
0 < x < Xo. Let a = 1- a/xo. Then a> O. For each x E lR, we define

A (x) = ax + a.

Then, by (3.20), we have f(x)=f(A(x)), for each 0 <x:'(xo. Let
0 < x < Xo. As a < 0, A(x) < x. Since A is increasing, the sequence
{An(x)}:=o is decreasing. Now, by a similar argument to that which was
used in (a), there exists a natural n such that An(x):'( O.Let no be the mini-
mal natural number such that Ano(x):'( O.Th~n Ano(x) = a + aAnO-l(x) > a.
Thus, a<AnO(x):'(O. Therefore, by (3.19), f(An°(x))=O. Hence, f(x)=
f(An°(x)) =0.

.

(c) ,xo < a < O. In this case we will show that f(x) = 0 for each
Xo< x < a. Let a = 1- a/xo. For each x E IR,define

A(x) = (x - a)/a.

Then, by (3.20), f(x) = f(A(x)), for each xo:'( x < a. Let Xo < x < a. Then
4~~) > x. Since A is increasing, the sequence {A n(x) }:= 0 is increasing.
Therefore there exists n such that An(x) ~ a. For otherwise the sequence
{An(x)}:=o converges to a point i which is a fixed point of A. But this is
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impossible because i > Xo, and A has only Xo asa fixed point. Let no
be the minimal natural number such that A"O(X)~ a, Then, A"O(X)=
(A"O-l(X) - a)/o:< O. Thus, a ~ AIlO(X)< O. Therefore, by (3.19), f(A"O(X))
= O. Hence, f(x) = f(A"O(X)) = O.

(d) Xo < 0 < a. In this case we will show that f(x) = 0, for each
Xo < x < a. Let 0:= 1- a/xo. Then 0:> O. For each x E IR define

A(x) = o:x + a.

Then, by (3.20) we havef(x)=f(A(x)), for each xo~x<O. Let xo<x<O.
As a > 0, A(x) > x. Since A is increasing, the sequence {A"(X)}:=o is in-
creasing. Therefore there exists n such that A II(X)~ O.Let no be the minimal
natural number such that A"O(x)~O. Then A"O(x)=a+o:A"O-l(x)<a.
Thus, 0 ~ A"O(X)< a. Therefore by (3.19), f(A"O(X)) = O. Hence, f(x) =
f(A"O(X)) = O.

We denote by FA the set of all bounded and finitely additive measure on
(I, C).

Proof of Theorem A. It is clear that if f.1E N A and f is a monotonic
function on R(f.1), then the game v = f 0f.1has a complete desirability rela-
tion. Assume that v has a complete desirability relation. If v is identically
zero, the theorem is trivial. Assume that v is not identically zero. Now, by
Lemma 3.7, there exists a non-zero continuous linear functional
x*: B(I, C) -+ IR such that for each gl, gz E B1(l, C),

X*(gl) = x*(gz) =>V*(gl) = v*(gz). (3.22)

We now use the fact that the dual of B(I, C) is FA (see Theorem IV.5.1,
p. 258 in [3]). This yields the existence of a measure v E FA such that for
each g EB(I, C)

x*(g) = t g dv.

Let J=x*(B1, (I, C)). Define a functionfJ-+R by f(x*(g))=v*(g), for
each gEB1(1, C). Then, by (3.22), lis well defined. It is clear that v=fov.
Now, by Lemma 3.4, v* is quasi-affine on J. -ByRemark 3.1 it is monotonic
on J. Since B 1(I, C) is a connected subset of B(I, C) and v* is continuous
on B 1(I, C), the set v*(B 1(I, C)) is an interval. Since f is monotonic on J
and f(J) is an interval, f must be continuous on J. We first show that v
is countably additive. Assume, on the contrary, that v is not countably
additive. Then there exists a monotonic non-increasing sequence {SII}:=l
of coalitions in C such that n,~= 1 S/I = 0, and the sequence {V(SII)}:=1
does not converge to O. Since v E FA, the sequence {v(S/I)}:= 1 is bounded.
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Therefore it has a convergent subsequence {v(Sn)} ~ 1 which converges to
a number a =I-O. Clearly, a E c1(J). By Lemma 3.8 we have

v*(tg) = lim v*(tg+ (1- t) XsJ,
i- 00

I
(3.23 )

for each 0 ~ t ~ 1 and g E B 1(1, C). Let 0 ~ t < 1. Then ta E J. Since I is
continuous on J, we obtain by (3.23) that

I(ta) = Jim l(tv(SnJ) = tim v*(tXsJ = v*(O) = O.
i--+a) i-co

I

Let x E J. Then there is g EB1(1, C) such that x = x*(g). Let 0 < t ~ 1. Then

l(tx) = I(x*(tg)) = v*(tg) = Jim v*(tg + (1- t) XsJi- 00 '

= lim I(tx + (1 - t)v(Sno)). ,
I --+ 00

= I(tx + (1 - t)a) = I(a + t(x - a)).

Thus we have shown that I satisfies the conditions of Lemma 3.9 on J.
Therefore lex) = 0 for each x E J, which implies that v* is identically
zero. But this contradicts our assumption that v is not identically zero."
Therefore, v is countably additive. Now if v is nonatomic1 we will take
fi = v and the proof is complete. So assume that v have atoms. Let A be an
atom of v. We will show that v(S u A) = v(S) for each S E C such that
S (\ A = 0. Assume, on the contrary, that there exists S E C such that
S (\ A = 0 and v(S u A) =I-v(S). Let E= Iv(S u A) - v(S)I. Then E> O. Since
v EpNA', there exists a vector ~ of measures in NA and a:polynomial p on
R(O such that Ilv-po~II' <8/3. Let n be a natural number such that
Ip(~(S) + ~(A)/n) - p(~(S))1 < 8/3. Now, because of Lyapunov's theorem it
is possible to partition A into disjoint sets T1, ..., Tn such that ~(TJ =
~(A)/n for each 1 ~ i ~ n. Since A is an atom of v, there exists 1 ~ i ~ n such
that v(A)=v(TJ Therefore v(SuA)=/(v(SuA))=/(v(SuTi))=
v(Su TJ Now, 'p(~(S)+ ~(A)/n)-v(SuA)1 = Ip(~(Su Tt))-v(Su TJI
~ 8/3. Hence

Iv(S u A) - v(S)1 ~ Ip( ~(S)) - v(S)1 + Ip( ~(S) + ~(A)/n) - p(~(S))1

+ Iv(S u A) - p(~(S) + ~(A)/n)1 < 8.

But this contradicts the choice of E. Therefore v( SuA) = v(S). Now what
we have just shown implies that v(S) = v(S\A) for each SE C and each
atom A of v. By induction we have v(S) = v(S\ U7= 1 AJ for each S E C

0"

J..:,N-otethat it can be shown by Lemma 3.9 that v( {s }) = 0 for each S E 1. Therefore if (I, 'C)

is a standard measurable space (i.e., it is isomorphic to [0, 1] with its Borel subsets), then v
is nonatomic.
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and each finite set {Ai}~l=l of atoms of v. Let (Ai)r:l be a sequence of
("all") atoms of v for which the measure fl on (I, C) that is given by
fl(S) =v(S\Ur: 1 AJ is in NA. Since fl is countably additive and f is
continuous, for each S E C we have

1 (v (5\91 Ai) ) = }~n~J (v (5\Ql Ai)) =
1(v(5))

Therefore, v = fa /1"Since R(fl) c J, f is continuous and monotonic on R(fl).

4. SOME COROLLARIES AND EXAMPLES

A game v on (I, C) is called a scalar measure game if it is of the form
v = fa fl, where fl E NA + and f is a real valued function on R(fl). The
following corollary is an immediate consequence of Theorem A.

COROLLARY4.1. Let v EpNA' be a monotonic game. Then v is a scalar
measure game if and only if it has complete desirability relation.

COROLLARY4.2. Let v be a finite dimensional vector of measures in NA,
and let g: R(v) + [Rbe a continuousfunction. If the desirability relation of the
game v = g a V is complete then v = fa fl, where fl E N A and f is a continuous
and mono tonic func tion on R(fl). .

Proof Since g is continuous on R(v), v EpNA' (see Proposition 27 in
[20J). Now Corollary 4.2 is a direct consequence of Theorem A.

The following example shows that there are games of the form g a v,

where v is a finite dimensional vector of measures in N A and g is a real
valued function on R( v), that have a complete desirability relation and are
not of the form fa fl, where fl E NA.

o.

EXAMPLE 4.3. Consider the measurable space ([0, 2], C), where C is
the (J-fie1d of Borel subsets of [0, 2]. Let A be the Lebesgue measure on
[0,2]. We define two measures Vl and V2 on ([0,2J,'C) by Vl(S)=
A(Sn[O,lJ) and v2(S)=A(Sn[1,2J) for each SEe. Let V=(Vl,V2)'
Then R(v) = [0, 1J2. Define now a function g: [0, 1J2 + {O, I} by

g(Xl, X2) =

1,

1,

0,

Xl +X2> 1,

xl+x2=1, Xl?X2,
,

otherwise.

Let v = g a v, and let ~ be the desirability relation of v. We will show that



f(t) =
{~:

t?: q,
(4.1)

t < q;

or

{1, t> q,
(4.2)f(t)=

0, t~q.
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):= is complete. Indeed, let S, TEe. If v1(S)+V2(S»V1(T)+V2(T), then
S):= T. If Vl(S) + V2(S) = v1(T) + v2(T), then S';;:=T, if V1(S)?: v1(T). We will
show that there is no measure fl E N A and no function f: IR(,u)-+ {O,1}
such that v = f 0fl. Assume, on the contrary, that there exist such fl and j
Since the sets {x E [0, 1J21 g(x) ~ 1} and {x E [0, 1J21 g(x) ~ O} are
convex, g is quasi-affine on [0, 1r. Now, f(fl(S))=g(v(S)), for each S.
Therefore f is quasi-affine on R(fl). By Remark 3.1, it is monotonic on
R(fl). Without loss of generality, assume that f is non-decreasing on R(fl).
Let q=inf{tER(,u) If(t)=1}. Then

We first assume thatfis given by (4.1). For each natural number n?: 3,
let Sn = [2/3, 5/3 + 1/n]. Then v(Sn) = 1 for each n?: 3. Therefore fl(Sn)?: q
for each n?:3. Since Sn+1 cSn, limn-> 00fl(Sn)=fl(n:=3 Sn)=fl([~, iJ).
Hence, fl(n, iJ)?: q, but this is impossible because v(n, iJ) = O. If v is
given by (4.2), then for each natural number n?: 2 we define Sn =
[1/2 + 1/n, 3/2]. Then v(Sn) = 0 for each n ~ 2. Therefore fl(Sn) ~ q for each
n?:2. Since Sn+1-:::JSn, limn->cofl(Sn)=fl(U:=3Sn)=fl([t~J). Hence,
fl( [t ~J) ~ q. But this is impossible because v( [t ~J) = 1.

We now present an example of a game v EpNA which has a cyclic
desirability relation (i.e., the strict relation which is derived from the
desirability relation of v is cyclic).

EXAMPLE4.4. Consider the measurable space ([0, 6J, C), where C is
the a-field of Borel subsets of [0, 6]. For each i = 1, ..., 6, we define a
measure fli on C by fli(S) = A(S n [i -1, iJ), where A is the Lebesgue
measure on [0,6]. Let fl=(fl1,...,fl6)' Then R(fl)=[0,1J6. Let
N= {1, ..., 6}, and let

8={{1,2,5}, {1,3,4}, {4,5,6}}.

We define a monotonic finite simple game c: 2N -+ {O, 1} by:

c(T) = 1. ~ There exists To E 8 such that To c T

(i.e., 8 is the set of minimal winning coalitions in the game c). Let

.
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.f [0, 1J6 -+!R be the multilinear extension of the game c (see [14,
Chap. Xl); i.e.,

f(xl, ..., X6) = I c(T) TI Xi IT (1-xJ
"TeN ie T ii T

Let v=fo/1. Then by Lemma 7.2 of [1J, v EpNA. Let ~ be the desirability
relation of v. Consider the sets

Sl=(0,2), S 2 = (2, 4 ), S 3 = (4, 6).

We will show that Sl >- S2 >- S3 >- Sl' Let U E C such that Un (Sl u S2) = 0.
Then v(UuSl)=f(1,1,0,0,/1s(U),/16(U))=/1s(U), and V(UUS2)=
f(O,O, 1, 1,/1s(U),/16(U))=/1s(U)/16(U), Hence, V(UUS1)~V(UUS2)'
Therefore, Sl ~ S2' Since V(Sl u (4,5)) = 1 and v(Sz u (4,5)) = 0, Sl >- S2'
Let now UEC with Un(SzuS3)=0. Then v(UUSZ)=/11(U)?:
/11(U) /1z(U) = v(U U S3)' Hence, Sz ~ S3' Since V(S2 U (0, 1)) = 1 and
V(S3 U (0, 1)) = 0, Sz>- 83, Let now U E C such that Un (81 U 83) = 0. Then
V(UUS3)=/14(U)~/13(U)/14(U)=V(UUS1)' Since v(S3u(3,4))=1 and
v(81u(3,4))=0, 83>-81, Thus we have shown that 81>-8z>-83>-81'
Therefore >- is cyclic.

We note that in a finite game >- may be cyclic even if ~ is complete (see
Remark 6.5 in [5J). The following immediate corollary of Theorem A
shows that if v EpNA', this is impossible.

COROLLARY4.5. Let v EpNA'. If the desirability relation of v is com-
plete, then it is acyclic (i.e., the strict. relation which is derived from the
desirability relation of v is acyclic).

.

Let v EpNA'. Then v is homogeneous of degree one if V*{IXXs)= IXV(S) for
each 0 ~ IX~ 1 and each set 8 E C. Games that are homogeneous of degree
one arise in various economic models (e.g., the market game that is
investigated in Section 30 of [1]). The following corollary of Theorem A
characterizes those games in pNA' that are homogeneous of degree one and
have a complete desirability relation.

COROLLARY4.6. Let v EpNA' be homogeneous of degree one. Then
v E NAif and only if the desirability relation of v is complete.
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