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Abstract. In this paper we offer a new approach to modeling strategies of bounded

complexity, the so-called factor-based strategies. In our model, the strategy of a player in

the multi-stage game does not directly map the set of histories H to the set of her actions.

Instead, the player’s perception of H is represented by a factor ϕ : H → X, where X

reflects the “cognitive complexity” of the player. Formally, mapping ϕ sends each history

to an element of a factor space X that represents its equivalence class. The play of the

player can then be conditioned just on the elements of the set X.

From the perspective of the original multi-stage game we say that a function ϕ from

H to X is a factor of a strategy σ if there exists a function ω from X to the set of actions

of the player such that σ = ω ◦ ϕ. In this case we say that the strategy σ is ϕ-factor-

based. Stationary strategies and strategies played by finite automata and strategies with

bounded recall are the most prominent examples of factor-based strategies.

In the discounted infinitely repeated game with perfect monitoring, a best reply to a

profile of ϕ-factor-based strategies need not be a ϕ-factor-based strategy. However, if the

factor ϕ is recursive, namely, its value ϕ(a1, . . . , at) on a finite string of action profiles

(a1, . . . , at) is a function of ϕ(a1, . . . , at−1) and at, then for every profile of factor-based

strategies there is a best reply that is a pure factor-based strategy.

We also study factor-based strategies in the more general case of stochastic games.
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1. Introduction

There are two widely studied approaches to modeling strategies of bounded complexity

in (infinitely) repeated games. Aumann (1981), Lehrer (1988), and Aumann and Sorin

(1989) consider players with stationary bounded recall (SBR strategies) who have imperfect

consciousness of the actual stage of the game, and whose action in the current stage

game relies only on the t previous signals they observed and can “remember.” Neyman

(1985), Rubinstein (1986), Abreu and Rubinstein (1988), and Ben-Porath (1993) deal with

(infinitely) repeated games in which players are represented by finite automata (Moore

machines). Both models provide a measure of the complexity of the strategy. In the

bounded recall approach, the complexity of a strategy is described by the “depth of recall”

t and the complexity of a strategy played by an automaton is measured by the minimal

number of states the automaton must have to play the given strategy.

In this paper we pursue the question already raised by Kalai (1990): “What information

system (size and structure) should a player maintain when playing a strategic game?” in

the context of strategies of bounded complexity. In detail, we study the complexity of

the strategy that is the best response to a strategy with a given complexity. Abreu and

Rubinstein (1988) show that for every finite automaton A1 in the discounted repeated

game, there exists a finite automaton A2 such that A2 maximizes its own payoff in the

game against A1 and the number of states of A2 is less than or equal to the number of

states of A1. Here, we address this question in the broader context of the newly defined

concept of factor-based strategies.

Let us also remark that relationships between automaton complexity and complexity

of strategies were investigated by Kalai and Stanford (1988) who studied complexity of

strategies forming equilibria. In another context of noniterative deterministic environment,

Kalai and Solan (2003) described the structure of the optimal automaton with a given

number of states and proved that such an automaton does not require randomization in

its action function. However, a nondeterministic transition function may be necessary.



SHOULD I REMEMBER MORE THAN YOU? 3

In our bounded rationality approach, the player is not cognitively capable of processing

the set of all possible strategies as the set of all possible mappings from the set of all (finite)

histories H to the set of actions. Instead, the player can base her actions only on elements x

from some abstract set X, where the set X reflects the set of histories H through a mapping

ϕ : H → X. Here, ϕ describes the player’s capacity to differentiate between elements of

H. Alternatively, we can understand X as an image (a representation) of H in the players

mind, where an element x of X represents the set of histories Hx = {h ∈ H : ϕ(h) = x}.

Naturally, we are interested in cases where the set X is a proper factor of H.

In defining the factor-based strategies, we were originally motivated by bounded recall

strategies. The player is unable to distinguish between two different histories h and h′ in

the case where the two histories are identical in the last t coordinates. This fact can be

easily described by ϕ(h) = ϕ(h′) = x. Our formal approach can capture much more than

SBR strategies. The strategies played by finite automata are also factor-based strategies

(with finite range X).

Moreover, we can easily “translate” our model to Aumann (1976); the state space Ω

corresponds to the set of histories H, and the partition P is defined by P = {Hx : x ∈ X}.

Here we can easily see that the factor-based strategies can model a player whose cognitive

failure is of a different nature than forgetfulness; e.g., a player with infinite recall who is

unable to distinguish between some actions of her opponent (i.e., games with imperfect

monitoring). Again, the strategies of such a player will be factor-based strategies (possibly

with infinite range X).

The concept of an agent with limited ability to distinguish between histories reflects also

an older invention: the modal frame 〈W,R〉 of Kripke (1959). Here, the elements of W

represent the “possible worlds” and the binary relation R on W is known as the accessibility

relation. Identifying W with the set of histories H, and R with an equivalence relation, we

match the concept of factor-based strategies with the structure of modal frame.

With the concept of factor-based strategies in hand, we can come back to the original

question “what is the complexity of the strategy that is the best response to a strategy with
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a given complexity?” In our model this means the following: Consider player 1 endowed

with the set of actions A1 who “lives” in “mental world” ϕ : H → X, and plays some

strategy ω1 ◦ϕ, where ω1 : X → A1. Now consider a (general, unbounded) strategy σ2 that

is the best response strategy of player 2 to ω1 ◦ ϕ and another strategy ω2 ◦ ϕ that is the

best response to ω1 ◦ ϕ from the class of the “bounded” ϕ-based strategies. Now we ask

ourselves under which circumstances does σ2 fare better than ω2◦ϕ against ω1◦ϕ. In other

words: considering the mental model of my opponent represented by ϕ : H → X, under

which conditions on ϕ is it really profitable for me to be “cleverer” than my opponent (i.e.,

to play with a general σ2 that is the mapping from the whole set of histories H), and when

is it enough to be just as “clever” as she is (i.e., to play just using some ω2 that maps only

X to the set of my actions).

As the first (negative) result of our paper we show that in the discounted infinitely

repeated game with perfect monitoring, a best reply to a profile of ϕ-factor-based strategies

need not be a ϕ-factor-based strategy. We obtain our main (positive) result for ϕ that

is recursive, i.e., if there exists a function g : X × A → X such that ϕ(a1, . . . , at) =

g(ϕ(a1, . . . , at−1), at) , where A is the set of action profiles in the stage game. Note that in all

the examples of factor-based strategies above (finite automata, SBR strategies, imperfect

monitoring) the factor ϕ is recursive. For every recursive factor ϕ we show that for any

profile of factor-based strategies there is a best reply that is a pure factor-based strategy.

As a tool we use the theory of Markov decision processes (MDP), namely, theorems on

the existence of the best stationary strategy for a given MDP. In fact, once we rephrase

our problem of finding the best reply as a question in an MDP our results turn out to be

corollaries of the results of Blackwell (1962) and Derman (1965).

This new perspective on Blackwell’s optimality also proves (and extends) the previous

results of Abreu and Rubinstein (1988). First, the statements are now proven in the same

way for behavioral automata and behavioral SBR strategies. Second, Blackwell’s theorem

gives all statements in a more robust form for patient players, namely, for the whole interval

of discount factors β ∈ [β0, 1).
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All relevant notions will be defined and discussed in the next section. Section 3 introduces

the concept of factor-based strategies and presents examples. Section 4 contains the main

result and its proof. Section 5 concludes.

2. The Game Models

If X is a finite or countable set (or a measurable space), then ∆(X) denotes the set of

all probabilities on X. Our results apply to a large class of multistage games with perfect

monitoring.

2.1. Supergames. We start with recalling the model of the two-person supergame with

finite action sets. Let G = 〈A1, A2, u1, u2〉 be a stage game, where Ai is a nonempty finite

set of actions for player i (i = 1, 2) and ui : A1×A2 → R is the payoff function of player i.

The corresponding supergame G∞ is played as follows. At each period t ∈ N = {1, 2, 3, . . . }

players 1 and 2 make simultaneous and independent moves ait ∈ Ai, i = 1, 2.

A play of the supergame is a sequence of action profiles (at)
∞
t=1 with at = (a1t , a

2
t ) ∈ A =

A1 × A2, and a play (at)
∞
t=1 defines a stream (ui(at))

∞
t=1 of payoffs to player i.

A pure strategy for player i in the supergame G∞ is a mapping σ : A<N → Ai. The

player i following a pure strategy σ plays at the t-th round the action σ(a1, . . . , at−1)

where (a1, . . . , at−1) ∈ At−1 is the sequence of actions that have been already played.

A behavioral strategy for player i in the supergame G∞ is a mapping σ : A<N → ∆(Ai).

Player i following a behavioral strategy σ plays at the t-th round an action ait ∈ Ai with the

probability σ(a1, . . . , at−1)(a
i
t) where (a1, . . . , at−1) ∈ At−1 is the sequence of actions that

have been already played. Pure strategies can be viewed as a special case of behavioral

strategies by identifying Ai with the Dirac measures on Ai. This point of view will be used

throughout the paper.

2.2. Supergames with a time-dependent stage game. The previous concept can be

generalized as follows. Let {〈A1(t), A2(t), u1(t), u2(t)〉} be a sequence of stage games. The

corresponding game Γ∞ is played as follows. At each period t ∈ N players 1 and 2 make
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simultaneous and independent moves ait ∈ Ai(t), i = 1, 2. These plays define a stream

(ui(t)(at))
∞
t=1 of payoffs to player i. The pure and behavioral strategies of player i in Γ∞

are defined in a straightforward way.

2.3. Stochastic games. A two-person stochastic game with finite action sets is 5-tuple

Γ = 〈S,A, u, p, µ〉 such that

• a state space S is a nonempty set,

• A(z) = A1(z)× A2(z) is an action set: for every state z ∈ S, Ai(z) is a nonempty

finite set of actions for player i (i = 1, 2) at the state z,

• u = (u1, u2) is a payoff function, where ui(z, a) is the payoff function of player i,

(z ∈ S, a ∈ A(z)),

• p is a transition function: for each state z ∈ S and each action profile a ∈ A(z),

p(z, a) ∈ ∆(S) is a probability distribution of next states; i.e., p(z, a)(z′) is the

probability of moving to the state z′ if the players played a at the state z, and

• µ ∈ ∆(S) is a distribution of the initial state.

A play of the stochastic game Γ∞ is a sequence of states and actions (z1, a1, . . . , zt, at, zt+1,

at+1, . . .) with at ∈ A(zt).

A pure strategy of player i in the stochastic game with perfect monitoring specifies her

action ait ∈ Ai(zt) as a function of the past state and action profiles (z1, a1, . . . , at−1, zt).

Similarly, a behavioral strategy of player i is a function of the past state and action profiles

(z1, a1, . . . , at−1, zt) and specifies the probability that an action ait ∈ Ai(zt) is played. A pair

of strategies σ1 and σ2 of players 1 and 2 defines a probability distribution Pσ1,σ2 on the

space of plays of the stochastic game. The expectation w.r.t. this probability distribution

is denoted by Eσ1,σ2 . Given a discount factor 0 < β < 1 the (unnormalized) β-discounted

payoff to player i is defined by

V i
β(σ1, σ2) = Eσ1,σ2

(
∞∑
t=1

βt−1ui(zt, at)

)
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and the normalized β-discounted payoff to player i is defined by

viβ(σ1, σ2) = (1− β)V i
β(σ1, σ2).

This normalization ensures that if player i receives a payoff c at each period (i.e., the

stream of her payoffs is constant), then viβ(σ1, σ2) = c.

Supergames are a special case of stochastic games with a single state. Similarly, su-

pergames with a time-dependent stage game can be viewed as stochastic games with the

state space N and the deterministic transition t 7→ t+1. Thus, the normalized β-discounted

payoff is well defined also for supergames (possibly with a time-dependent stage game) as

long as their stage payoffs are either bounded or grow in a subexponential rate in t. There-

fore, results on stochastic games will have direct consequences for them.

3. Factor-based strategies

Let H denote the set of all finite histories in a supergame G∞ (in a stochastic game

respectively), i.e., H = A<N (H = S × (A× S)<N respectively). Let X be a set and ϕ be

a mapping from H to X.

We say that a behavioral strategy σ is a factor-based strategy with factor ϕ (ϕ-based

strategy for short) for player i in the supergame G∞ if there is a factor-action function

ω : X → ∆(Ai) such that σ = ω ◦ ϕ. The factor ϕ is called recursive if there is a function

g : X × A→ X such that ϕ(a1, . . . , at) = g(ϕ(a1, . . . , at−1), at).

The notion of factor-based strategy for player i in the supergame Γ∞ with a time-

dependent stage game is defined analogously. The resulting probability of ait depends

on ϕ(a1, . . . , at−1) and on the actual period t. Thus the ϕ-based strategy σ satisfies

σ(a1, a2, . . . , at−1) = ω(t, ϕ(a1, a2, . . . , at−1)).

for some ω : N×X → ∆(Ai).

Further, we define ϕ-based strategy for player i in the stochastic game. The choice of

distribution of action ait depends on ϕ(z1, a1, . . . , zt−1, at−1) and on the actual state zt. This
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means that ω : S ×X → ∆(Ai) and

σ(z1, a1, . . . , zt) = ω(zt, ϕ(z1, a1, . . . , zt−1, at−1)).

The factor ϕ in the case of a stochastic game is called recursive if there is a function

g : X ×S×A→ X such that ϕ(z1, a1, . . . , zt, at) = g(ϕ(z1, a1, . . . , zt−1, at−1), zt, at). A few

classes of recursive ϕ-based strategies follow.

3.1. SBR strategies. Let k ∈ N. By a behavioral k-SBR strategy for player i in the

supergame G∞ we mean a pair (e, ω), where e = (e1, e2, . . . , ek) ∈ Ak and ω : Ak → ∆(Ai)

is a mapping. Player i following the strategy (e, ω) plays as follows. If moves a1, . . . , al ∈

A have been played, then player i takes the sequence s, which is formed by the last k

elements of the sequence (e1, . . . , ek, a1, . . . , al), and his (l + 1)-th move is a ∈ Ai with the

(conditional) probability ω(s)(a). A pure k-SBR strategy for player i in the supergame

G∞ is defined in a straightforward way.

Defining ϕ(a1, . . . , al) to be the last k elements of the sequence (e1, . . . , ek, a1, . . . , al), the

k-SBR strategy σ defined above obeys σ = ω ◦ ϕ, and ϕ is recursive; thus σ is a recursive

ϕ-based strategy with finite range.

We say that a behavioral (pure) strategy σ is a behavioral (pure) SBR strategy if σ is a

behavioral (pure) k-SBR strategy for some k ∈ N.

3.2. Strategies with time-dependent recall. (See, e.g., Neyman and Okada, 2009) Let

k : N → N be a function with k(t) < t for every t ∈ N. Behavioral (respectively, pure)

k(t)-BR strategy is defined analogously to the above case but the action at stage t depends

on t and the last k(t) stage-actions. Let σ be such a strategy. Setting ϕ(a1, . . . , at) =

(t, (at−k(t), . . . , at−1)) we easily see that σ is ϕ-based. Moreover, ϕ is recursive provided

k(t+ 1) ≤ k(t) + 1 for every t ∈ N.

3.3. Automata and behavioral automata. A behavioral automaton (for player 1 in the

supergame G∞) is a quadruple 〈M,m∗, α, τ〉, where M is a nonempty set (the state space),

m∗ ∈M is the initial state, α : M → ∆(A1) is a probabilistic action function, and τ : M ×
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A→M is a transition function. A k-state behavioral automaton is a behavioral automaton

where the set M has k elements. A behavioral automaton 〈M,m∗, α, τ〉 defines a behavioral

strategy σ1 (for player 1) inductively: m1 = m∗, σ1(∅) = α(m1), σ
1(a1, . . . , at−1) = α(mt),

where mt = τ(mt−1, at−1).

A behavioral automaton 〈M,m∗, α, τ〉 defines a recursive ϕ-based strategy where X =

M , ϕ(∅) = m∗, ϕ(a1, . . . , at) = τ(ϕ(a1, . . . , at−1), at), and ω = α.

A k-state (deterministic) automaton is defined by the replacement of ∆(A1) with A1.

3.4. Time-dependent automata. (See, e.g., Neyman, 1997) A time-dependent action

automaton is defined by replacing the action function α by a sequence of action functions

αt, t ≥ 1, where αt defines the action at stage t. Similarly, a time-dependent transition

automaton is obtained by replacing the (stationary) transition function τ with a sequence

of time-dependent transitions τt, t ≥ 1, where τt defines the transition at stage t. Finally,

a time-dependent (action and transitions) automaton in the supergame G∞ is a quadruple

〈M,m∗, (αt)
∞
t=1, (τt)

∞
t=1〉, where M is a nonempty set (the state space), m∗ ∈ M is the

initial state, αt : M → ∆(A1) is a probabilistic action function, and τt : M × A→ M is a

(deterministic) transition function. It defines a behavioral strategy σ1 (for player 1) induc-

tively: m1 = m∗, σ1(∅) = α1(m1), σ
1(a1, . . . , at−1) = αt(mt), where mt = τt(mt−1, at−1).

Note that a time-dependent automaton 〈M,m∗, (αt)
∞
t=1, (τt)

∞
t=1〉 defines the same strat-

egy as the automaton 〈M × N,m∗∗, α, τ〉 with m∗∗ = (m∗, 1), α(m, t) = αt(m) and

τ((m, t), a) = (τt(m, a), t + 1). Therefore, the corresponding strategy is a recursive ϕ-

based strategy, where ϕ : A<N → M × N is given by ϕ(a1, . . . , at) = τ(ϕ(a1, . . . , at−1), at)

and ω = α.

3.5. A counterexample. Our objective is to study for what factors ϕ of the strategy σ1

player 2 has a ϕ-based best reply. First, we demonstrate that in the discounted two-person

repeated game (with finitely many stage actions) there need not be such a strategy.

Let G be the stage game with stage-action sets A1 = A2 = {1, 2}, and the payoff function

to player 2 is given by u2(1, 1) = u2(1, 2) = 0, u2(2, 1) = u2(2, 2) = 1. Define the factor
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ϕ : H → X by X = {B,C} and

ϕ(h) =

B if
(
h = (a1) and a21 = 1

)
or
(
h = (a1, a2, a3) and a23 = 2

)
,

C otherwise.

Consider a ϕ-based strategy σ1 defined via ω1 : X → A1, where ω1(B) = 2 and ω1(C) = 1.

Let us demonstrate that any ϕ-based strategy σ2 of player 2 cannot be a best reply to

the strategy σ1. First, the nonzero payoffs to player 2 are possible only in stages 2 and 4.

Suppose σ2 is ϕ-based with σ2 = ω2 ◦ ϕ. Set 0 ≤ ω2(C)(1) = x ≤ 1. Then V 2
β (σ1, σ2) =

βx+β3(1−x). But the strategy σ̃2, where player 2 plays 1 in the first period and 2 in the

third, yields V 2
β (σ1, σ̃2) = β + β3 > βx+ β3(1− x), whenever x ∈ [0, 1], β ∈ (0, 1).

4. Main results

The main result follows.

Theorem 4.1. Let Γ = 〈S,A, u, p, µ〉 be a two-person stochastic game with countably many

states, finitely many actions at each state, and a bounded payoff function u2. Let σ1 be a

ϕ-based behavioral strategy of player 1 in Γ∞. If ϕ is recursive, then the following hold.

(i) For every β ∈ (0, 1) there exists a ϕ-based pure strategy σ2 such that for every

behavioral strategy ρ of player 2 in Γ∞ we have v2β(σ1, σ2) ≥ v2β(σ1, ρ).

(ii) If S and the range of ϕ are, in addition, finite, then there is a ϕ-based pure strategy

σ2 and a discount factor β0 ∈ (0, 1) such that

– for every behavioral strategy ρ (of player 2 in Γ∞) and every β ∈ [β0, 1), we

have v2β(σ1, σ2) ≥ v2β(σ1, ρ);

– for every behavioral strategy ρ we have

Eσ1,σ2

(
lim inf
n→∞

1

n

n∑
t=1

u2(zt, at)

)
≥ Eσ1,ρ

(
lim sup
n→∞

1

n

n∑
t=1

u2(zt, at)

)
;
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– for every ε > 0 there exists N ∈ N such that, for every behavioral strategy ρ

and every n ≥ N , we have

Eσ1,σ2

(
1

n

n∑
t=1

u2(zt, at)

)
≥ Eσ1,ρ

(
1

n

n∑
t=1

u2(zt, at)

)
− ε.

Remark 4.2. (i) Let G∞ be a supergame (supergame with time-dependent stage game

respectively). Since such a supergame belongs also to the class of stochastic supergames,

Theorem 4.1 gives the following consequences in the β-discounted game G∞, β ∈ (0, 1).

a) For every behavioral k-SBR strategy σ1, there is a pure k-SBR strategy σ2 that is

a best reply of player 2.

b) For every behavioral (time-dependent recall) k(t)-SBR strategy σ1 with k(t+ 1) ≤

k(t) + 1, there is a pure k(t)-SBR strategy σ2 that is a best reply.

c) For every strategy σ1 that is defined by a k-state behavioral automaton, there is a

best reply σ2 of player 2 defined by a (deterministic) k-state automaton.

d) For every strategy σ1 that is defined by a k-state time-dependent automaton, there

is a best reply σ2 defined by a (deterministic) k-state time-dependent automaton.

(ii) The extension of the models from two-person games to multi-person games is straight-

forward and our results on the best reply for two-person games extends to n-person games

(n > 2) since players 1, 2, . . . , n − 1 can be considered as one player playing actions from

the space A1 × · · · × An−1.

The main result is a simple corollary of results on Markov decision processes. By a

Markov decision process (MDP, for short) we mean a one person (called the decision

maker) stochastic game. We recall the definition of the MDP in the following notation: by

r we denote the single-stage payoff function to decision maker and by vβ(σ) the normalized

β-discounted payoff to the decision maker when the strategy σ is played.

More precisely, by MDP we mean a 5-tuple 〈M,B, r, p, ν〉 such that

• M is a nonempty countable set (set of states),

• B(z), z ∈M is a nonempty finite set (set of actions at the state z),
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• r(z, a) is a real number for every z ∈M and a ∈ B(z) (reward function),

• p(z, a) is a probability on M for every z ∈M and a ∈ B(z),

• ν is an initial probability on M .

One can interpret this structure as follows. The set B(z) is the set of feasible actions

that can be played at state z ∈M by the decision maker. The sequence (z1, a1, z2, a2, . . . )

of states and actions of the process is realized as follows. The initial z1 is chosen with

the probability ν(z1). If the sequence (z1, a1, z2, a2, . . . , zt) has been constructed, then the

decision maker plays an action at ∈ B(zt) and receives a payoff r(zt, at). The (conditional)

probability of the next state zt+1 ∈ M of the process (given z1, . . . , zt, at) is given by the

probability distribution p(zt, at).

A strategy for an MDP is a function σ that assigns to every finite sequence of states

and actions s = (z1, a1, z2, a2, . . . , zt) a probability σ(s) on B(zt). If σ(s) is always a

Dirac measure, then σ is pure. By a stationary strategy for an MDP we mean a strategy

depending only on the last state.

A strategy σ of the decision maker defines a probability distribution Pσ on the space of

plays of the MDP. The expectation w.r.t. this probability distribution is denoted by Eσ.

Given a discount factor 0 < β < 1, the normalized β-discounted payoff to the decision

maker is defined by

vβ(σ) = (1− β) · Eσ

(
∞∑
t=1

βt−1r(zt, at)

)
.

The key tools in our paper are results of Blackwell and Derman. Parts (ii) and (iii) of the

Theorem 4.4 follow implicitly from part (i) and the proof in Mertens and Neyman (1981)

that shows that the stationary strategy σ that obeys (i) is ε-optimal for every ε > 0; for

for an explicit statement see Neyman (2003).

Theorem 4.3 (Derman, 1965). Let 〈M,B, r, p, ν〉 be an MDP with countably many states

and finitely many actions in each state, and with bounded reward function. Then for each

β ∈ (0, 1) there is a stationary pure strategy σ such that, for every strategy ρ, we have

vβ(σ) ≥ vβ(ρ).



SHOULD I REMEMBER MORE THAN YOU? 13

Theorem 4.4 (Blackwell, 1962). Let 〈M,B, r, p, ν〉 be an MDP with finitely many states

and actions. Then there is a stationary pure strategy σ and a discount factor β0 ∈ (0, 1)

such that

(i) for every strategy ρ and for every β ∈ [β0, 1), we have vβ(σ) ≥ vβ(ρ);

(ii) for every strategy ρ we have

Eσ

(
lim inf
n→∞

1

n

n∑
t=1

r(zt, at)

)
≥ Eρ

(
lim sup
n→∞

1

n

n∑
t=1

r(zt, at)

)
;

(iii) for every ε > 0 there exists N ∈ N such that, for every strategy ρ and every n ≥ N ,

we have

Eσ

(
1

n

n∑
t=1

r(zt, at)

)
≥ Eρ

(
1

n

n∑
t=1

r(zt, at)

)
− ε.

Proof of Theorem 4.1. Let σ1 be a ϕ-based strategy for player 1 in the stochastic game

Γ and assume that ϕ is recursive. Thus there exist functions ω : S × X → ∆(A1) and

g : X × S × A→ X such that

σ1(z1, a1, . . . , zt) = ω(zt, ϕ(z1, a1, . . . , zt−1, at−1)),

ϕ(z1, a1, . . . , zt, at) = g(ϕ(z1, a1, . . . , zt−1, at−1), zt, at).

We define an MDP M = 〈M,B, r, q, ν〉 as follows.

M = S ×X,

B(z, x) = A2(z), (z, x) ∈M,

r(z, x, a2) =
∑

a1∈A1(z)

u2(z, (a
1, a2)) · ω(z, x)(a1), (z, x) ∈M, a2 ∈ A2(z),

q(z, x, a2)(z′, x′) =
∑

a1∈A1(z),
g(x,z,(a1,a2))=x′

p(z, (a1, a2))(z′) · ω(z, x)(a1), (z′, x′) ∈M, a2 ∈ A2(z),

ν(z, x) =

µ(z), x = ϕ(∅);

0, otherwise.
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A play of M is of the form

(z1, x1, a
2
1, z2, x2, a

2
2, . . . , zt, xt, a

2
t , . . . ).

If ρ is a strategy for player 2 in Γ∞, then the probability measure Pσ1,ρ captures prob-

ability distribution of possible plays (z1, a1, z2, . . . ) of Γ∞, where players 1 and 2 follow

the strategies σ1 and ρ, respectively. Thus Pσ1,ρ(z1, a1, . . . , zt) is the probability that a

play starts with the sequence (z1, a1, . . . , zt). Similarly, if ζ is a strategy of the decision

maker in M, then the probability that a play starts with (z1, x1, a
2
1, . . . , zt, xt) is denoted

by Pζ(z1, x1, a
2
1, . . . , zt, xt).

Let ψ be a mapping assigning to each sequence (z1, a1, . . . , zt) the corresponding sequence

(z1, x1, a
2
1, . . . , zt, xt), where x1 = ϕ(∅), xj = g(xj−1, zj−1, aj−1), j = 2, . . . , t.

Let ρ be a strategy of player 2 in Γ∞. Then we define the corresponding strategy ρ̃ in

M by

ρ̃(s̃)(a2) =
∑

s,ψ(s)=s̃

ρ(s)(a2) · Pσ1,ρ(s|s̃),

where s = (z1, a1, . . . , zt), s̃ = (z1, x1, a
2
1, . . . , zt, xt), and Pσ1,ρ(s|s̃) denotes the conditional

probability of s given s̃. The symbol Pσ1,ρ(s̃) denotes the probability that the play starts

with a sequence s satisfying ψ(s) = s̃, that is,

Pσ1,ρ(s̃) =
∑

s,ψ(s)=s̃

Pσ1,ρ(s).

Claim 4.5.

(i) For every fixed s̃ = (z1, x1, a
2
1, . . . , zt, xt) we have Pσ1,ρ(s̃) = Pρ̃(s̃).

(ii) Let β ∈ (0, 1), t ∈ N, and ρ be a strategy in Γ∞ for player 2. Then Eρ̃(r(zt, xt, a
2
t )) =

Eσ1,ρ(u2(zt, at)).

Proof of Claim. (i) We will proceed by induction on the length of s̃. Suppose that s̃ =

(z1, x1). If x1 = ϕ(∅), then we clearly have∑
s,ψ(s)=s̃

Pσ1,ρ(s) = Pσ1,ρ(z1) = µ(z1) = Pρ̃(z1, x1).
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If x1 6= ϕ(∅), then the equality clearly holds. Now assume that the desired equality

holds for every w̃ = (z1, x1, a
2
1, . . . , zt, xt). Fix such a w̃ and consider s̃ of the form s̃ =

(z1, x1, a
2
1, . . . , zt, xt, a

2
t , zt+1, xt+1). We have∑

s,ψ(s)=s̃

Pσ1,ρ(s) =
∑
w

ψ(w)=w̃

∑
a1∈A1(zt)

g(xt,zt,(a1,a2t ))=xt+1

p(zt, (a
1, a2t ))(zt+1) · ω(zt, xt)(a

1) · Pσ1,ρ(w)

=
∑
w

ψ(w)=w̃

q(zt, xt, a
2
t )(zt+1, xt+1) · Pσ1,ρ(w)

= q(zt, xt, a
2
t )(zt+1, xt+1) · Pρ̃(w̃) (by induction hypothesis)

= Pρ̃(s̃).

(ii) Let us compute

Eσ1,ρ(u2(zt, at)) =

∫
u2(zt, at) dPσ1,ρ

=
∑

s=(z1,a1,...,zt)

∑
a=(a1,a2)∈A(zt)

u2(zt, a) · ω(zt, xt)(a
1) · ρ(s)(a2) · Pσ1,ρ(s).

Using the definition of r we get

Eσ1,ρ(u2(zt, at)) =
∑
s

∑
a2∈A2(zt)

r(zt, xt, a
2) · ρ(s)(a2) · Pσ1,ρ(s)

=
∑
s̃

∑
s,ψ(s)=s̃

∑
a2∈A2(zt)

r(zt, xt, a
2) · ρ(s)(a2) · Pσ1,ρ(s)

=
∑
s̃

∑
a2∈A2(zt)

r(zt, xt, a
2) ·

 ∑
s,ψ(s)=s̃

ρ(s)(a2) · Pσ1,ρ(s|s̃)

 · Pσ1,ρ(s̃)

=
∑
s̃

∑
a2∈A2(zt)

r(zt, xt, a
2) · ρ̃(s̃)(a2) · Pσ1,ρ(s̃).

Using part (i) of Claim 4.5 we conclude

Eσ1,ρ(u2(zt, at)) =
∑
s̃

∑
a2∈A2(zt)

r(zt, xt, a
2) · ρ̃(s̃)(a2) · Pρ̃(s̃)

= Eρ̃(r(zt, xt, a
2
t )).
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�

Fix β ∈ (0, 1). According to Theorem 4.3 there exists a pure stationary strategy τ for

the decision maker in M. Such a strategy defines a ϕ-based pure strategy σ2 of player 2

in Γ∞ as follows:

σ2(z1, a1, . . . , zt) = τ(zt, ϕ(z1, a1, . . . , zt−1, at−1)).

Now assume that we have a strategy ρ of player 2 in Γ∞. According to Claim 4.5(ii), we

have v2β(σ1, ρ) = vβ(ρ̃) ≤ vβ(τ) = v2β(σ1, σ2). Thus we get assertion (i). Assertion (ii)

follows from Theorem 4.4 and Claim 4.5(ii). �

5. Concluding remarks

5.1. Compact action spaces. A natural extension of our model is to consider players

with compact action sets Ai. In this extension, there arises a new problem not found in

games with finite action profiles, namely, the existence of a best reply to a given strategy

σ. Consider, for example, the following two-player supergame, where the sets of actions of

each player is the interval [0, 1] and the stage-payoff of player 2 is (at any time) given by

u2(a
1, a2) = a1 + a2. Now, suppose that player 1 plays the 1-SBR strategy given by

σ1(a1, . . . , at−1) =

1, if a2t−1 < 1 and t > 1,

0, otherwise,

e1 = (0, 0).

This strategy is recursively factor-based. Indeed, we set X = {B,C} and ϕ(a1, . . . , at−1) =

B if a2t−1 < 1 and t > 1, ϕ(a1, . . . , at−1) = C otherwise; ω(B) = 1 and ω(C) = 0. Then we

have σ1 = ω ◦ ϕ. However, in the β-discounted game there is no ϕ-based best reply, and

any ϕ-based reply is dominated by (another) ϕ-based reply.

Of course, there does not exist any general best reply to σ1. The difficulty stems from

the fact that the factor ϕ is not continuous. However, using, e.g., Maitra (1968) one can

generalize our results of part (i) of Theorem 4.1.
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5.2. Public vs. private strategies. Another interpretation of the ϕ-based strategies is

related to the imperfect monitoring literature. Setting X as the set of all possible histories

of public signals, we can identify the ϕ-based strategies with so-called public strategies

(see, e.g., Radner, Myerson, and Maskin, 1986). In contrast, a private strategy (see, e.g.,

Kandori and Obara, 2006) is a strategy where the current action depends on the history

of public signals (i.e., on elements of X), and, in addition, on private signals (e.g., past

private actions). Our question at the outset of this paper can then be reformulated as

“Considering my opponent is limited to public strategies only, under which conditions can

I exploit my (additional) private signal?”; in other words, “Can private strategies fare

better than the public strategies against public strategies?” The answer is that one does

not profit from the additional private signal since the factor ϕ is in this situation obviously

recursive.
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