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Consider non-atomic vector measure games; i.e., games u of the form u = f o(pI.. . ,p.), where 
(pIr.. .,p.) is a vector of non-atomic non-negative measures and f is a real-valued function 
defined on the range of (pi,. . .,pi.). Games of this form arise, for example, from production 
models and from finite-type markets. We show that the value of such a game need not be a 
linear combination of the measures p,, , pn (this is in contrast to all the values known to date). 
Moreover, this happens even for market games in pNA. In the economic models, this means that 
the value allocations are not necessarily generated by prices. All the examples we present are 
special cases of a new class of values. 

1. Introduction 

Much of economic theory is concerned with the existence of prices. In 
particular, one is interested in whether various outcomes, defined by diverse 
postulates, turn out to be actually generated by prices. Whenever this is the 
case, a theory of endogenous price formation is obtained. In this paper we 
consider a well-known game-theoretic solution concept: the value.’ We will 
first describe the problem formally in game theoretic terms, and then we will 
present the corresponding class of economic models to which it applies. 

Consider non-atomic games which are defined by finitely many non- 
negative measures; i.e., games u of the form u=f o&, . . . ,pn), where 
(pl,. . , pL,) is a vector of non-atomic non-negative measures and f is a real- 
valued function defined on the range of (pl,. . . , p,); a game of this form is 

*The research was started at the Institute for Advanced Studies, the Hebrew University, 
Jerusalem, during the Research Year on Game Theory in 197%1980, and was continued in 
summer 1985 at the University of California, Los Angeles. Financial support by National 
Science Foundations Grants SES-83-12190 and SES-85-10123 and by the U.S.-Israel Binational 
Science Foundation Grants 84-00201 and 85-00342 is gratefully acknowledged. We want to 
thank the editor, Andreu Mas-Colell, for useful suggestions on the presentation of these results. 

‘An alternative title for this paper might thus be ‘Values of non-atomic economies: Are they 
generated by prices?‘. 
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usually called a vector measure game. It is a well-known fact that in all cases 
studied to date, the value of such a game u turns out always to be a linear 
combination of the measures ,u~, . . . , ,u,,.~ 

Can this ‘fact’ be proved in general? That is, is it a consequence of the 
axioms defining the value [cf. Aumann and Shapley (1974)]? We will show 
here that the answer is negative. 

Formally, let Q be a space of non-atomic games [all notations and 
definitions follow Aumann and Shapley (1974)-J, and let 4: Q-F-4 be a value 
on Q. The property we discuss is 

P.Z. Let p1 ,..., p” be n non-atomic non-negative measures, and f a real- 
valued function defined on the range of (pl,. . . ,pJ. If u =f o(,ul,. . . , p,) 
belongs to Q, then there exist real numbers a,,.. .,a, such that $u=~~=~ aipi. 

Note that P.l holds when n = 1 [by3 Proposition 6.1 in Aumann and 
Shapley (1974)]. We will construct a number of examples, each one con- 
sisting of a space of games Q together with an appropriate value rj on it, 
such that P.l is violated. Of course, there might well be other values on the 
same space Q which do satisfy P.l (indeed, this is the case in all the examples 
in this paper). 

Why is this question of interest? It turns out that in many applications, 
one usually encounters games of this form that depend on finitely many 
measures. Most notably, in mathematical economics, there are numerous 
such instances. We will consider here two standard examples. 

The first one is a model of a production technology. There are n production 
factors (inputs), out of which one final good (output) is produced, according 
to the function f: For each input i, let Xi denote the quantity of input i, then 

f(x 1,. . . ,x,) is the quantity of output that may be produced from these 
inputs together. The ownership of each input i is described by the measure 
pci; i.e., a group of agents (a coalition) S initially owns pi(S) units of input i. 
The total amount produced by S is then precisely V(S)=&(S), . . . ,p,(S)). 
An outcome in this model is a certain payoff - a quantity of the final good - 
that each agent receives. This may be described by a measure [: the total 
payoff of coalition S is l(S). Assume that all the agents are insignificant (i.e., 
there is no single agent who initially owns a positive fraction of the total 
supply of some input; formally, this means that the measures rui are non- 
atomic). It is reasonable to expect in this case that prices for the inputs 
should arise. Thus, if we let ai be the price of input i (i.e., 1 unit of input i is 
worth a, units of output), then the outcome measure i is a,,~~ + *a. + Q”K; 

*This is also true for other solution concepts; e.g., the core - see Billera and Raanan (1981). 
3Here and in the sequel we always assume that the underlying measurable space (I,C) is 

standard (i.e., isomorphic to (CO, l],B), where B denotes the Bore1 u-field). 
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and, conversely, if [ is such a linear combination of the pi’s then the 
corresponding coefficients a, may be interpreted as input prices. Property P.l 
can therefore be translated in this model as follows: to every value outcome 
there correspond prices for the production factors. As we have stated above, 
it turns out that this is, however, not true in general. 

A second model is that of a market (exchange economy) with transferable 
utility [cf. Aumann and Shapley (1974, ch. VI)]: the space of agents is I, and 
,u is the population measure. There are 1 goods. Each agent t in I has an 
initial endowment4 e(t) E W’+ and a concave function u,: R’+ +lR, which may 
be interpreted either as a utility function or as a production function. 
Assume that there are only finitely many different functions u,; i.e., the space 
of agents I is partitioned into disjoint sets T,, . . . , Tk, such that u, = Uj for all 
tEq and j=l,..., k. This is called the finite type case (note that ‘type’ refers 
here only to the utility functions and not to the initial endowments). Put 
n = k + 1, and define the function f: R; + R by 

f(Yl,..-,Yki Zl,..., z,)=max 
{j-i j ’ ’ 1 j=t 

i Y U.(X.) XjER:, f YjXj~(Zl,...,Z,) 
}- 

Then the maximum that is achieveable by a coalition S equals [see Aumann 
and Shapley (1974, (39.1 S))] 

where vi(S) =p(S n 7J (the proportion of type j in S) and [i(S) =Jse, dp (the 
total initial endowment of S of good i). Note that the measures qj are 
mutually singular, whereas the measures 5i need not be so. In this setup, a 
linear combination of the measures, cjUjllj+Ci biri, corresponds to a price bi 
per unit of good i, and a price aj per type j.5 

Since we will show that a value need not satisfy P.l, it follows that the 
classical axiomatic approach to the value in the non-atomic case [cf. 
Aumann and Shapley (1974)] does not yield the existence of prices for the 
economic factors in the corresponding models. It should therefore be of 
interest to find, on one hand, additional plausible axioms that would imply 
P.l, and, on the other hand, reasonable economic interpretations to the 
values we exhibit here - where P.l is violated and there are thus no 
underlying prices. 

‘%! denotes the real line, and R’+ is the non-negative orthant of the I-dimensional Euclidean 
space. 

‘The two models are actually quite similar: on one hand, a finite type market with one type 
(k= 1) corresponds to a production technology. On the other hand, if one considers the k types 
as additional ‘goods’, then the function f defined above represents a production technology with 
n = k + I inputs. 
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2. The examples 

We start with a simple counter-example to P.l. 

Example 1. Let pI and pz be two non-atomic probability measures on (I, C) = 
(CO, 11, B), and consider the game u=min {,u~, pz}. For each i = 1,2 let gi = 
dpJdp be the Radon-Nikodym derivative of pi with respect to p=pI +p2. 
Define { =pl A pLz by dc/dp =min (gI,g,}. We now require that i is not a 
linear combination of pI and pL2; in particular, 5 does not vanish. For 
example, let A be the Lebesgue measure on ([0, 11, B), pI =1, and p2(S)= 
Js 2s dI(s); then c(S) = Js min { 2s, l} d1( ) s is not a linear combination of fir 
and pz [indeed, (dc/dI)(s) is not an affine function of s, whereas (d(a,pr + 
a&/dl)(s) is so for all real a,,~,]. 

Let Q be the symmetric linear space generated by the game u; an element 
w of Q is thus of the form 

W= i uiei*v, 
i=l 

where, for each i=l,..., n, ai is a real number, Bi is an automorphism of the 
measurable space (Z,C), and 0: denotes the induced symmetry on games: 
(&+%)(S)=v(&S) for all SEC. Define an operator $: Q+FA by 

We claim that $ is well-defined (i.e., $w does not depend on the particular 
representation of w), that it is symmetric, linear and positive. As usual [see, 
e.g., Proposition 4.1 in Neyman and Tauman (1979)], it suffices to prove 
positivity; the rest then follows easily. To this end, let I, = {SEZ Igl(s)<g,(s)} 
and I, =Z\Z,; note that 

for all SEC such that either SC I, or ScZz. Therefore, if SEC satisfies 
Sc8;‘Z, or Sc8;‘Z, for all i= l,...,n, then 

W(S) = i UiV(BiS)=i$l +Z(eis)=(tiw)(f9- 

i=l 

Let w be a monotonic game; we thus have ($w)(S) = w(S) 20 for all coalitions 
S as above. Since $w is a measure, and every coalition T EC is a union of 
such sets S, it follows that Il/wzO, i.e., $ is a positive operator.6 

6A similar argument was used in Tauman (1982, Lemma 2). 
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To obtain a value C#I from $, we only need to normalize 
effkiency is also satisfied: 

This completes Example 1: 4 is a value on Q that does not satisfy P.l. 

35 

it, so that 

How ‘exceptional’ is this example? We will show that one may actually 
require additional conditions, both on the space Q and on the value 4, and 
still obtain a counter-example to P.l. 

Recall that a value is defined by the following axioms: additivity, symmetry, 
positivity and efficiency. Another desirable property is the 

Projection Axiom. $p = p for all finitely additive measures p.’ 

Of course, this condition applies only when p belongs to the space on which 
the operator C#I is defined. The space Q of Example 1, however, does not 
contain any positive finitely additive measure.8 An (indirect) argument 
showing that no positive finitely additive measure belongs to Q is as follows: 
let p be such a measure in Q, then p is absolutely continuous (since the 
generating game v is absolutely continuous), and thus p is a non-atomic 
measure. By symmetry and linearity, Q must therefore contain all positive 
non-atomic measures, in particular i. Now 

The measures ccl -[ and pL2 - [ are easily seen to be mutually singular 
positive non-atomic measures, therefore any value 4 satisfies [by the same 
argument as that of Proposition 19.7 in Aumann and Shapley (1974)] 

This implies that &I=&~~ +p2). 
The argument above shows not only that Q does not contain any positive 

measure, but, moreover, that the value 4 on Q cannot be extended to any 
larger space that will include NA, the space of all non-atomic measures. 

Our examples below will be of values that satisfy the Projection Axiom, on 
spaces that will contain NA. 

‘Note that if p is a non-atomic countably additive measure, then +p=p is a consequence of 
symmetry and efficiency. 

‘It contains all non-atomic countably additive measures with total mass zero; indeed, let 
B(s)=l-sforalls~[O,l], then u-0*u=p2-p,. 



36 S. Hart and-A. Neyman, Values of non-atomic vector measure games 

We next consider conditions on the space Q. In both Examples 2 and 3 
below, we show that Q can be made large enough so as to contain the 
‘differentiable’ games: pNA, or even DIFF [see Mertens (1980)]. Moreover, 
the value 4 will of course coincide on pNA with the unique value there, and 
on DZFF it will coincide with Mertens’ value &,. 

Example 2 is obtained by a slight modification of Example 1; it has, 
however, the drawback that the game u where P.l is violated is not 
monotonic. This is remedied in Example 3, where v is a market game [the 
minimum of three measures; of course, not mutually singular - see Propo- 
sition 19.7 in Aumann and Shapley (1974)]. 

Finally, we will also show that Q may be taken to consist only of 
differentiable games. In Example 4, Q is the space generated by a market 
game in pNA, or, alternatively, it is a subspace of pNA containing NA. 

We now present these examples. They will be followed in section 3 by the 
general construction of a new class of values, of which all our examples are 
special cases. We hope that these values may well be of independent interest. 

Example 2. Let (I, C) =([0,2], B), and let p1 and /.L~ be as in Example 1 
(their support is [O,l]). Let ~1~ and cl,+ be the measures with support Cl,23 
obtained by translating p1 and pz, respectively: for i= 1,2, pi+*(S) =pi(S- l), 
where S-l={s-11~~s) for Sc[1,2]. 
defined as in Example 1. Finally, let 

Let 5=p1 A p2 and t;l=p3 A p4 be 

and define Q as the linear symmetric space9 generated by v and NA. An 
element w of Q is thus of the form 

w= jJ a,O*v+q, 
i=l 

where q E NA and ai, 8,, are as before. The operator 4: Q+FA is defined by 

Note that 4 is efficient [since u(Z) =O=~(Z)=~(Z)], and satisfies all the 
axioms of a value (use the same proof as in Example 1). 

‘Note that Q is a reproducing space: u =(u+ p3 +p,+) -(p3 +p4) is a difference of two 
monotonic games. 
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Actually, one may add to Q also pNA and even DZFF. Indeed, let 

WC 2 Uie:V +U, 
i=l 

with u a game in DZFF. Assume w is monotonic; then its extension G is 
also monotonic, therefore 

$(tZ+rS)-w(tZ)]20 

for all SEC, t l (0,l) and z > 0 sufficiently small. It is easily seen that the 
above expression equals 

Integrate over t in (0,l) and the take the limit as z+O+, to obtain 

i MWS) + (~DU)(S) 2 0 
i=l 

(where &, denotes Mertens’ value on DZFF). 
We again consider first coalitions S for which 

V min {cL~,P~)(S) = WS) and Of’ min {pa, C(~)(S) = O;c(S) 

for all i. Then &+v(S)=8*(@)(S), implying (4w)(S)ZO. The proof is com- 
pleted by decomposing any T E C into a union of such coalitions S. 

Example 3. Let pi, p2 and p3 be three non-atomic probability measures 
(not mutually singular). Put 

F=pl v p2 v P,, and p=clt A ~2 A ~3 

(i.e., dji/dp = maxi 5 in 3 {dpi/dp} and dp = min, 5 is 3 {dpi/dp}). Choose the real -- -- 
constant a so that 

c=ap+(l-a)fi 
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is a probability measure [i.e., c(Z)= 1; note that Ojp(Z) 5 1 ~~(Z)~~(Z), thus 
0 5 a 5 11. We now require that [ is not a linear combination of the pls. 

For example, let g be the following real function on [0, 1): g(s) =0 for 
s E CO,*)); g(s) = 2s for s E [$, 5); and g(s) = 2 for s E [$ 1). Let ,? be the Lebesgue 
measure on (I, C) =([O, 11, B) and put (d~i/dn)(s) =g([s+(i-- 1)/3] [mod 11) for 
i= 1,2,3. Then p= 21, p=O and [ = 1 (which is indeed not a linear combina- 

- tion of the pi’s). 
Let Q be the symmetric linear space generated by D together with DZFF, 

and let 4 be the symmetric linear operator on Q defined by & =[ and 
&v = &,w for all w E DZFF (recall that &, denotes Mertens’ value on DZFF). 
It may be checked that 4 is a value on Q (of course, P.l is not satisfied). 
This will follow in particular from the general arguments below. 

Example 1. Let p1 and pz be two non-atomic probability measures that are 
not mutually sin ular, and let u=JE. Then v is a market game” in 
pNA [indeed, $ pi E pNA by Theorem C in Aumann and Shapley (1974), and 
pNA is an algebra]. Let 

where P=,u~ +pz and SEC. For an appropriate constant a, the operator all/ 
can be extended to a value on the linear symmetric space generated by u. 

Moreover, if 0 is an automorphism such that u and 0*u have disjoint 
carriers, then $ itself (without the constant a) is a value on the space 
generated by u = u -d*u, which can be extended to a value on the space 
generated by u together with NA. 

Remark. The last example shows, in particular, that on subspaces of pNA 
the value need not be unique.” 

3. A class of values 

We come now to the general construction of a new class of values, of 
which all the four examples above are special cases. We hope that these 
values may be of independent interest and find other applications as well. 

Let Q be a linear symmetric space of games, i.e., functions u: C+R with 
y(@)=O. Let v-+6 be an (extension) operator that associates to every game u 

“1 e super-additive monotonic and positively homogeneous of degree one. . ., 
“Another example: )or every VE~NA, let $v = 21;” afit, S) dt. Then + is a continuous value (of 

norm 2) on the symmetric linear subspace Q of pNA on which it is efficient (i.e., o E Q if and only 
if v(l) = I&J(I) c 2&); note that Q includes all homogeneous games in pNA, in particular NA). 
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in Q a real valued function 17 defined on simple functions h which are 
measurable with respect to C, satisfying: 

(i) 6((h) = G((h v 0) A 1); $0) =O; I?( 1) = v(Z); and V is continuous at 0 and 1; 
(ii) if u is monotonic then V is monotonic; 
(iii) if UEFA~Q and Ophsl, then IT((~)=~,ZIC&; 
(iv) If 8 is an automorphism of (I, C), then uofl=iTo0, where (oh)(s) =h(&); 
(v) the operator u-G is linear. 

For any pair 1, q of measures on [0, 1) and (0, 11, respectively, any finite 
subfield ZZ of C and any o >O, let $(A, q; ZZ; z)u be the measure on (I, Z7) 
defined by 

+f a[tT(rZ)-fi(tZ-rS)]dq(t), 

for every atom S of ZZ, whenever all the integrals exist. Next, define the 
measure $(A, q; ZZ)u on (I, ZZ) as the limit of measures $(A,?; ZZ;z)u as T-+O+, 
whenever the limit exists. Finally, we define $(11,q)u on (I, C) as the limit - 
again, whenever it exists - of the measures $(A, q; ZZ)u as ZZ increases (i.e., for 
every SEC and every a>0 there exists a finite field ZZ with SEZZ such that 
for every finite field ZZ, that includes ZZ, 

1 cvw, ‘I; nIbI - CW rl; WI(S) 1-c 8. 

Let Q(I,?) be the set of all games u in Q for which 11/(1, q)u exists and is 
finite (that is, all the above integrals and limits exist and are finite). It is now 
easy to check the following: 

(4 
(‘4 
(4 

(4 

(4 

Q(n,q) is a linear symmetric subspace of Q. 
1,9(&q) is a linear and symmetric operator from Q(&q) into FA. 
If both 1 and q are non-negative measures, then $(&q) is a positive 
operator. 
If both I and q are non-negative measures, then $(A,$ is a value operator 
on the linear symmetric subspace Q’(n, q) of Q(1, T,J) on which it is efficient 
[i.e., Q”(2, q) consists of all u E Q(2, q) for which [$(A, $u](Z) =u(Z)]. 
If ,J([O, 1)) + ~((0, 11) = 1 then $(A, v) satisfies the Projection Axiom and, 
moreover, Q”(& ‘1) 1 FAn Q; otherwise, Q’(A, q) n FA+ = (0). 

All the values in our examples are obtained as $(n,q) for a pair of non- 
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negative measures 2,~. We always use the standard extension operator, Q 
being a subspace of pNA’ or EXT [see Mertens (1980)]. 

In example 1, q =0 and 1 is any measure on [0, 1) of total mass l/c(Z) 
[note that when v=min {p1,p2) we have C((tZ + zS) -t?((tZ) =fi(rS) and there- 
fore tj(A,O)u depends only on the total mass of n]. In Example 2, again q=O, 
but now A([O, 1)) = 1. 

We come next to Example 3. If UE Q has a concave extension 6, and the 
marginals of 17 in a neighborhood of the diagonal are bounded by the 
marginals of some measure, then VE Q(A, 0) and u E Q(0, A.) for any measure A. 
Indeed, the concavity of U and the monotone convergence theorem yield 
[#(A, 0; ZZ)v](S) = 1; %((t, S) dA(t) for all atoms S of n; this expression increases 
with Z7 (again by the concavity of C) and is bounded from above (by our 
assumption on the marginals of 6); this implies that u~Q(1,0). Similarly we 
obtain u E Q(0, A), implying also u E Q(aA, (1 -a)A) for all 0 $ a 5 1. 

If 1 is the Lebesgue measure, then in addition we have the following: 

Cti(A 0; WIU) s 40 I cw, 1; m1m ( recall the representation as an integral 
above), hence also [@(A, O)u](Z) 5 u(Z) $ [$(O, A)u](Z). Therefore u E Q’(aA,( 1 - a)A) 
for an appropriate constant UE [0, I]. Finally, note that $(an,(l -u)A) coin- 
cides on Q n DZFF with 4D (for any a g [O, 11). 

In Example 4 we consider $(A,O) with 1 an atomic measure concentrated 
at the point 0: on the space generated by u =,/G there, A({O}) =a, and 
on the space generated by u= u-8*u and NA, A({O>) = 1. 
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