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1. Introduction. Stochastic games are Markov decision processes in which the transitions of the state are
controlled by the actions of the decision makers. In a stochastic game, the players interact repeatedly. At each
stage, the players observe the current state, then choose an action independently, and then are informed of the
chosen actions. According to these actions and the current state, the chain moves to a new state that is observed
by all players. The stage payoff is a function of the current state and the actions chosen. We focus on two-player
zero-sum stochastic games.
Stochastic games were introduced by Shapley [13]. He proved the existence of the value of �-discounted

two-player zero-sum stochastic games with finitely many states and actions.
In the case where the sets of actions and of states are finite, the existence of the limit: say, v, of the values

of the �-discounted games as � goes to 0 (i.e., as players become more patient) was proved in Bewley and
Kohlberg [1], using an algebraic argument. It is proved in Mertens and Neyman [8] that v is a (uniform) value:
for each � > 0, there exists N��� and ���� and each of the players has a strategy that (1) guarantees him a
payoff of v up to an error of � in any n-stage or �-discounted game provided n≥N��� or �≤ ����, and (2) the
strategy of player 1 (respectively, player 2) guarantees that the expectation of the lim inf (respectively, lim sup)
of the average payoff in the first n-stages as n goes to infinity is at least v− � (respectively, at most v+ �).
In the case of stochastic games with finite-state space but with compact action sets, there is no general result

ensuring the convergence of the values of the n-stage or �-discounted games (and a fortiori none ensuring the
existence of the (uniform) value).
An absorbing state of a stochastic game is a state such that for any profile of actions chosen by the players,

the state remains the same almost surely. An absorbing game is a stochastic game in which all states but one
are absorbing. Note that in an absorbing state, the game is reduced to a standard repeated game, where the value
exists and is equal to the value of the one-shot game. Therefore, in an absorbing game, there is only one relevant
state, the nonabsorbing one. This simplifies the study because in such a game there is at most one transition
between states. The first example of such games was studied by Blackwell and Ferguson [2]. Kohlberg [3]
proved the existence of the value for (two-person zero-sum) absorbing games with finite-action sets (now seen
as a particular case of Mertens and Neyman [8]).
For absorbing games with compact action sets, the algebraic approach of Bewley and Kohlberg [1] does not

apply and convergence of the values of the �-discounted games was proved in Rosenberg and Sorin [11] using
an operator approach.
In this paper, we focus on absorbing games and prove that the value of absorbing games with compact action

sets exists. The proof relies on Mertens and Neyman [8] and on the characterization of the limit of the values
of the �-discounted games provided in Rosenberg and Sorin [11].

2. The model. Here, a stochastic game is a two-player zero-sum game determined by:
• Three sets: S (the set of states), I (the set of actions of player 1), and J (the set of actions of player 2). We

will assume throughout that I and J are compact metric; we will see that when focusing on absorbing games,
we can assume without loss of generality that S is finite.
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• A bounded payoff function g S× I × J →� that is separately continuous. Note that this implies measur-
ability (see Mertens et al. [9, I.1.Ex.7a]).
• A transition probability q from S× I× J to S, where q� z′ � z� i� j � denotes the probability of reaching state

z′ from state z given the pair of actions �i� j�, where q is separately continuous on I × J . Note that this implies
measurability (see Mertens et al. [9, I.1.Ex.7a]).
• An initial state z1 ∈ S.
The game is played in stages. At each stage n ∈ �, players 1 and 2 choose an action, in ∈ I and jn ∈ J ,

knowing the whole past history, including current state zn. Then, the current payoff is gn = g�zn� in� jn�, and
q�z � zn� in� jn� is the conditional probability, given z1� i1� j1� � � � � zn−1� in−1� jn−1, that the next state, zn+1, is z.
We denote by hn the history up to stage n; more precisely hn = �z1� i1� j1� � � � � zn−1� in−1� jn−1� zn�. Let Hn denote
the set of histories up to stage n, and H the set of infinite-length histories. Let �n be the �-algebra on H
induced by histories hn (of length n) and �� be the �-algebra spanned by

⋃
n�n.

Thus, a player’s behavioral strategy (� of player 1, � of player 2) specifies a probability distribution over his
actions at each stage conditional on the current state and the past history. A pair ��� �� induces a probability
P��� on histories �H����. The corresponding expectation is denoted by E��� .

Notation 2.1. We use · for the sup-norm, and let A= g = supz� i� j �g�z� i� j��.
We are interested in the existence of infinite-game strategies that guarantee a given payoff in all sufficiently

long games, as well as in the infinite undiscounted game.
Definition 2.1. Player 1 can guarantee v ∈�S if for every �> 0 and z1 ∈ S, there is a strategy � of player 1

and N > 0 such that for any strategy � of player 2,

E���

[
lim inf
n→�

1
n

n∑
k=1

gk

]
≥ v�z1�− �

∀n≥N� E���

[
1
n

n∑
k=1

gk

]
≥ v�z1�− ��

Player 2 can guarantee v ∈ �S if for every � > 0 and z1 ∈ S, there is a strategy � of player 2 and N > 0 such
that for any strategy � of player 1,

E���

[
lim sup

n→�

1
n

n∑
k=1

gk

]
≤ v�z1�+ �

∀n≥N� E���

[
1
n

n∑
k=1

gk

]
≤ v�z1�+ ��

A stochastic game has a value v ∈�S if both players can guarantee v.
All stochastic games with finite state space S and finite action sets I and J have a value.1 It is unknown

whether all stochastic games with finite state space and compact action sets have a value. This paper focuses on
the special class of absorbing games. It proves that all absorbing games have a value.
Definition 2.2. An absorbing state is a state z ∈ S such that for all i ∈ I and all j ∈ J , q�z � z� i� j�= 1. An

absorbing game is a stochastic game in which all but one of the states are absorbing.
Absorbing games with finite-action sets I and J were studied in Kohlberg [3]. We are going to study absorbing

games with compact action sets.
Remark 2.1. Both players know the current state at each stage of the game, and so they know as soon as an

absorbing state z is hit. By the definition of an absorbing state, the absorbing state will never be left. The rest of
the game is therefore a repeated zero-sum game, with value v�z�. Let us now define a new absorbing game with
three states that has the same value as the original and the same optimal strategy in the nonabsorbing state. The
new absorbing game has one nonabsorbing state z0, with the same payoff function as the original game, and two
absorbing states z+ and z−, with constant payoff A and −A. The transitions from the nonabsorbing state z0 are
modified by replacing the transition to an absorbing state z in the original game by transitions with probabilities
�1±A−1v�z��/2 to z+ and z−. Let ��� �� be a pair of strategies of the players in the original game that play

1 This result is not a consequence of the one proved in Maitra and Sudderth [5, 6] for the weaker lim sup value; see Neyman [10, §§1.2–1.4].
In fact, there are stochastic games where the lim sup value and lim inf value exist and the uniform value does not exist, and there are
stochastic games where all these different values exist and differ from each other.
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repeatedly an optimal strategy in any one-shot game corresponding to an absorbing state. The payoff associated
to ��� �� is the same as the payoff in the auxiliary game obtained by playing in z0 ���z0�� ��z0��. Similarly, for
any pair of strategies �� ′� � ′� in the auxiliary game, define ��� �� to be the pair of strategies in the original game
that follow �� ′� � ′� in the nonabsorbing state and that play repeatedly the one-shot game optimal strategy in any
absorbing state. Again, the payoff induced by �� ′� � ′� in the auxiliary game is equal to the payoff induced by
��� �� in the original game. Thus, without loss of generality, we need at most 3 states in an absorbing game:
z0 (the nonabsorbing state), z+, and z−.
This note proves the following result.

Theorem 2.1. Absorbing games have a value.

3. The proof.

3.1. Reminder of �-discounted games.

Notation 3.1. For a compact set X, ��X� denotes the set of probability distributions over X.

For � ∈ �0�1�, the �-discounted payoff function is

E���

[ �∑
k=1

��1−��k−1gk

]
�

The value v��z1� and stationary optimal strategies �x�� y�� (of the �-discounted game) exist (Mertens et al.
[9, Chapter VI, Proposition 1.4]), and v� is characterized by

v� = T ��� v��� (1)

where for u ∈�S ,

T ���u��z�= max
x∈��I�

min
y∈��J �

Ex� y� q#�g�z� i� j�+ �1−��u�z̃�$� (2)

where Ex� y� q is the expectation operator where, independently, i and j are distributed according to x and y, and
then z̃ is distributed according to q�z̃ � z� i� j�.

3.2. Reminder of the Mertens-Neyman [8] theorem. The proof in §2 of Mertens and Neyman [8] proves
the following2 theorem.

Theorem 3.1. If � �→w� ∈�S is a function defined on �0�1� with

w� −w�̄ ≤
∫ �̄

�
&�x�dx for all 0<�� �̄ < 1� (3)

where & �0�1$→�+ is integrable, and for every � ∈ �0�1$ sufficiently small, we have

T ���w��≥w�� (4)

then player 1 can guarantee lim�→0+w�.

2 In Mertens and Neyman [8, §2], the function v� indeed stands for the value of the �-discounted game, and thus condition (4) of Theorem 3.1
(equivalently, Mertens and Neyman [8, Inequality 2.1]) and Mertens and Neyman [8, Inequality 2.2] follow. These two conditions are the
only use in Mertens and Neyman [8, §2] of the fact that v� is the value of the �-discounted game. Other examples where the proof in
Mertens and Neyman [8] is applied to functions v� that are not necessarily the values of the discounted games that appear in Neyman [10]
and Rosenberg et al. [12].
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3.3. The auxiliary function w�. Recall that we can assume w.l.o.g. that the absorbing game has three states:
z0, z+, and z−. Fixing in (2) u�z+� and u�z−� at the values A and −A, one gets a map T ��� ·�  �→ �; this
map is the restriction of T ��� �� to vectors that take values A and −A at their z+ and z− coordinates; unless
otherwise specified, T ��� �� will now denote this restriction. Then, by Rosenberg and Sorin [11], v� converges
to v; note that v�z+�=A, v�z−�=−A, and therefore v is characterized by the real value v�z0�. In the following
w is a function on S such that w�z+�=A�w�z−�=−A. Then, v is characterized by the following equations:

T �0� v�= v and

lim
�→0

�T ���w��z0�−w�z0��/� < 0 for w�z0� > v�z0�

lim
�→0

�T ���w��z0�−w�z0��/� > 0 for w�z0� < v�z0��

(5)

Note that by definition of w, it is always the case that T ���w��z+�=w�z+� and similarly for z−.
Take � > 0. Our goal is to apply the previous theorem with w� = v� (for any �) defined by v��z� =

v�z�− �1z=z0 .

3.4. Proof of Theorem 2.1. First, we prove that w� (=v�) satisfies the conditions of Theorem 3.1. As w�

is independent of � the function � �→ w� satisfies condition (3) with the function &��� = 0. Condition (4)
holds trivially for z1 = z+ and for z1 = z−. It remains to prove that the condition holds for z1 = s0. However,
Equation (5) implies that for � small enough,

T ��� v���z
0�≥ v��z

0�� (6)

Therefore, for every � > 0, player 1 can guarantee v�, and therefore player 1 can guarantee v. This completes
the proof that continuous absorbing games have a value.

4. An explicit strategy. For the sake of completeness, in this section, we construct an explicit strategy,
based on the construction in Mertens and Neyman [8, §2] and using the auxiliary function w� = v� that obeys
inequality (6).
Fix � > 0, and let �0 > 0 be sufficiently small, so that T ��� v��≥ v� for all 0< �< �0. The correspondence

(from �0��0� to ��I�)

� �→ ⋂
y∈��J �

{
x ∈��I� Ex� y� q��g�z� i� j�+ �1−��v��z̃��≥ v��z�

}

has nonempty and closed values, and therefore (by e.g., Kuratowski and Ryll-Nardzewski [4]) it has a measur-
able3 selection � �→ x���.
We define a sequence ��k�

�
k=1, where 0 < �k < �0 is a function of the past history, i.e., measurable w.r.t.

the �-algebra �k of all events preceding time k (including the choice of a new state zk after the play at time
k− 1). The ��k�

�
k=1-strategy of player 1 is to play on time k the mixed action xk = x��k�. It follows that for the

��k�
�
k=1-strategy (of player 1), � , inequality (2.1) of Mertens and Neyman [8],

E���

[
w�k

�zk+1�−w�k
�zk�+�k�gk −w�k

�zk+1��
∣∣�k

]≥ 0 (7)

holds for any strategy � of player 2 and with w�k
�z� = v�z�− �1z=z1

, where z1 = z0 is the initial nonabsorbing
state. We now define precisely how the sequence �k is to be defined.
Let M > 1/� be a sufficiently large constant such that (6) holds for � < 1/M2 and �6A�2/M < �, and thus

for all sk� sk+1 ≥M with �sk+1 − sk� ≤ 6A, we have
∣∣∣∣�sk+1 − sk�

(
sk
sk+1

− 1
)∣∣∣∣< 2�� (8)

The computation of �k in stage k is done inductively as follows. Define inductively (as in Mertens and
Neyman [8, §2]), sk+1 =max#M� sk + gk −w�k

�zk+1�+ 4�$ and �k = 1/s2k , starting with s1 ≥M arbitrary.

3 We thank John Levy for pointing out the omission of this measurability requirement in an earlier draft.
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We now prove that such a strategy is indeed optimal. Fix any strategy � of player 2. All expectations are
taken with respect to the probability induced on histories by the previously defined strategy of player 1, � , and
the transition probabilities. Set Yk =w�k

�zk�− 1/sk (=v� − 1/sk). We have

Yk+1 − Yk = w�k
�zk+1�−w�k

�zk�+�k�gk −w�k
�zk+1��

− 1/sk+1 + 1/sk −�k�gk −w�k
�zk+1���

and therefore, using (7), we have

E�Yk+1 − Yk ��k� ≥ E
(
1/sk − 1/sk+1 −�k�gk −w�k

�zk+1�� ��k

)

≥ E
(
sk+1 − sk
sksk+1

−�k�sk+1 − sk − 4��

∣∣∣∣�k

)

= E
(
4��k −�k�sk+1 − sk�

(
sk
sk+1

− 1
)∣∣∣∣�k

)

≥ 2��k�

where the second inequality follows from sk+1−sk ≥ gk−w�k
�zk+1�+4�, and the last inequality follows from (8).

Because �k ≥ 0, the inequality E�Yk+1 − Yk � �k� ≥ 2��k implies that Yk is a submartingale. Obviously,
Yk is bounded and thus it converges a.s., say to Y�, with E�Y� � �1� > Y1. It follows that 4A ≥ 2A+ 2/M ≥
E�Yk − Y1�≥ 2�E�

∑
1≤l<k �l�. Thus, by the monotone convergence theorem,

E
( ∑

k<�
�k

)
< 2A/�� and thus (9)

E�#-k � �k ≥ ./�≤ 2A
�.

� (10)

Thus, a.s. �k → 0, sk →� (and hence 1sk=M → 0), as k→�, and therefore

w�k
�zk+1�→ Y� with E�Y� ��1� > Y1 ≥ v�z1�− �− 1/M� (11)

Also
E�w�k

�zk+1��≥ v�z1�− �− 1/M� (12)

From the definition of sk+1, it follows that

gk ≥w�k
�zk+1�+ sk+1 − sk − 4�− 2A1sk+1=M�

Summing these inequalities over 1≤ k < n, we have

∑
k<n

gk ≥
∑
k<n

w�k
�zk+1�+ sn − s1 − 4�n−∑

k<n

2A1sk+1=M� (13)

implying that

lim inf
n→�

1
n

∑
k<n

gk ≥ Y� − 4��

and thus

E
(
lim inf
n→�

1
n

∑
k<n

gk

)
≥ E�Y� ��1�− 4�≥ v�z1�− 5�− 1/M

and

E
(
1
n

∑
k<n

gk

)
≥ v�z1�− 2�− 4�− s1/n�

Altogether, we deduce that the ��k�
�
k=1-strategy of player 1 guarantees v�z1�− 7�. Thus, player 1 can guaran-

tee v�z1�. Similarly, player 2 can guarantee v�z1�, and therefore v�z1� is the value of the absorbing game.
The ��k�

�
k=1-strategy of player 1 (is a constant mixed action on the absorbing states, and) has a simplified form

on the nonabsorbing state. Indeed, as w��z�= v�z�−�1z=z0 , we can define sk+1 =max#M� sk + gk − v�z0�+5�$.
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