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Abstract This chapter studies the implications of bounding the complexity
of players’ strategies in long term interactions. The complexity of a strategy
is measured by the size of the minimal automaton that can implement it.

A finite automaton has a finite number of states and an initial state. It
prescribes the action to be taken as a function of the current state and its next
state is a function of its current state and the actions of the other players.
The size of an automaton is its number of states.

The results study the equilibrium payoffs per stage of the repeated games
when players’ strategies are restricted to those implementable by automata of
bounded size.

1 Introduction

The simplest strategic game quickly gives rise to a game of formidable com-
plexity when one considers a finitely-repeated version of it.This is because the
number of pure strategies in the repeated game grows as a double exponential
of the number of repetitions. To just write down in decimal form the number
of pure strategies available to a player in the hundred-times repeated pris-
oner’s dilemma would require more digits than the number of all the letters
in all of the books in the world. This chapter examines the implications of
restricting the set of strategies to those that are implementable by finite au-
tomata of bounded size. Such restrictions place a bound on the complexity of
strategies and they can (dramatically) alter the equilibrium play of a repeated
game.

When we try to argue that an outcome is or is not an equilibrium in a game
there are direct references to all possible strategies in that game. In the case
of the hundred-times repeated Prisoner’s Dilemma it would obviously be an
impossible task to merely write out all of the strategies, let alone construct the
huge matrix which would constitute the explicit representation of this game
in normal (strategic) form. Moreover, many of the strategies in the finitely
or infinitely repeated game are extremely complicated. They may involve
actions contingent on so many possible past events that it would be nearly



impossible to describe them; even writing them down or writing a program to
execute some of these strategies is practically impossible. We consider here
a theory that limits the strategies available to a player in a repeated game.
The restriction is to those strategies that are implementable by bounded size
automata- the simplest theoretical model of a computer. It turns out that the
equilibria of the resulting strategic game can be dramatically different from
those of the original game.

In the finitely repeated Prisoner’s Dilemma, it is well known that all equi-
libria, and all correlated equilibria or communication equilibria, result in the
repeated play of (defect, defect). This is in striking contrast to the experimen-
tal observation that real players do not choose always the dominant action of
defecting, but in fact achieve some mode of cooperation.

The present approach justifies cooperation in the finitely repeated pris-
oner’s dilemma, as well as in other finitely repeated games, without departing
from the hypothesis of strict utility maximization, but under the added as-
sumption that there are bounds (possibly very large) on the complexity of the
strategies that players may use.

There are other methods of restricting strategies. I am not going to advo-
cate here that the avenue we are taking is superior. Each one of the possible
approaches has its pros and cons.

The paper surveys results about the equilibrium payoffs of repeated games
when players’ strategies in the repeated game are resricted. It contains also
several new results, e.g., Propositions 2, 3, 4, 5, 6, 7 and 8. There is no
attempt here to survey all results related to the title, and therefore several
important and related papers are not covered in this survey.

2 The Model

2.1 Strategic Games

Let G be an n-person game, G = (N,A, r), where N = {1, 2, . . . , n} is the set
of players, A = ×i∈NAi ,Ai is a finite set of actions for player i, i = 1, . . . , n,
and r = (ri)i∈N where ri : A → IR is the payoff function of player i. The
set Ai is called also the set of pure strategies of player i. We denote by
r : A → IRN the vector valued function whose ith component is ri, i.e.,
r(a) = (r1(a), . . . , rn(a)). We use also the more detailed description of G,
G = (N ; (Ai)i∈N ; (ri)i∈N ), or G = ((Ai)i∈N ; (ri)i∈N ) for short. For any finite
set (or measurable space) B we denote by ∆(B) the set of all probability
distributions on B. For any player i and any n-person game G, we denote
by vi(G) his individual rational payoff in the mixed extension of the game G,
i.e., vi(G) = min max ri(ai, σ−i) where the max ranges over all pure strategies
of player i, and the min ranges over all N\{i}-tuples of mixed strategies of
the other players, and ri denotes also the payoff to player i in the mixed
extension of the game. We denote by ui(G) the individual rational payoff of
player i in pure strategies, i.e., ui(G) = min max ri(ai, a−i) where the max



ranges over all pure strategies of player i, and the min ranges over all N \ {i}
-tuples of pure strategies of the other players. Obviously ui(G) ≥ vi(G). We
denote by wi(G) the max min of player i where he maximizes over his mixed
strategies and the min is over the pure strategies of the other players, i.e.,
wi(G) = maxx∈∆(Ai) mina−i∈A−i

ri(x, a−i) where A−i = ×j 6=iAj . Recall that
the Minimax Theorem asserts that for a two person game G, vi(G) = wi(G).
For any game G in strategic form we denote by E(G) the set of all equilibrium
payoffs in the game G, and by F (G) the convex hull of all payoff vectors in
the one shot game, i.e., F (G) = co(r(A)). Given a 2-person 0-sum game G
we denote by Val(G) the minimax value of G, i.e., Val(G) = v1(G).

2.2 The Repeated Games GT and G∗.

Given an n-person game, G = ((Ai)i∈N ; (ri)i∈N ), we define a new game in
strategic form GT = ((Σi(T ))i∈N ; (ri

T )i∈N ) which models a sequence of T
plays of G, called stages. After each stage, each player is informed of what
the others did at the previous stage, and he remembers what he himself did
and what he knew at previous stages. Thus, the information available to each
player before choosing his action at stage t is all past actions of the players in
previous stages of the game. Formally, let Ht, t = 1, . . . , T , be the cartesian
product of A by itself t − 1 times, i.e., Ht = At−1, with the common set
theoretic identification A0 = {∅}, and let H = ∪T

t=1Ht. A pure strategy σi

of player i in GT is a function σi : H → Ai. Obviously, H is a disjoint
union of Ht, t = 1, . . . , T and therefore one often defines σi

t : Ht → Ai as the
restriction of σ to Ht. We denote the set of all pure strategies of player i in
GT by Σi(T ). The set of pure strategies of player i in the infinitely repeated
game G∗ is denoted by Σi, i.e., Σi = {σi : ∪∞t=1Ht → Ai}.

Any N -tuple σ = (σ1, . . . , σn) ∈ ×i∈NΣi(T ) (Σi) of pure strategies in GT

(in G∗) induces a play ω(σ) = (ω1(σ), . . . , ωT (σ)) (ω(σ) = (ω1(σ), ω2(σ), . . .))
defined by induction: ω1(σ) = (σ1(∅), . . . , σn(∅)) = σ(∅) and ωt(σ) = σ(ω1(σ),
. . . , ωt−1(σ)) or in other words ωi

1(σ) = σi(∅) and ωi
t(σ) = σi(ω1(σ), . . . ,

ωt−1(σ)) = σi
t(ω1(σ), . . . , ωt−1(σ)).

Set

rT (σ) =
r(ω1(σ)) + . . . + r(ωT (σ))

T
.

We define RT or R for short to be the function from plays of GT to the
associated payoffs, i.e., RT : AT → RN is given by

RT (a1, . . . , aT ) =
r(a1) + r(a2) + . . . + r(aT )

T
.

Two pure strategies σi and τ i of player i in GT ( in G∗ ) are equivalent
if for every N\{i} tuple of pure strategies σ−i = (σj)j∈N\{i}, ωt(σi, σ−i) =
ωt(τ i, σ−i) for every 1 ≤ t ≤ T ( 1 ≤ t). The equivalence classes of pure
strategies are called reduced strategies. For i ∈ N let A−i = ×j 6=iAj . Then
an equivalence class of pure strategies is naturally identified with a function
σ̄i : ∪∞t=0(A−i)t → Ai.



2.3 Finite Automata

We will consider strategies of the repeated games which are described by
means of automata, (which are also sometimes referred to as Moore machines
or exact automata). An automaton for player i consists of a finite state space
M ; an initial state q1 ∈ M ; a function f that describes the action to be
taken as a function of the different states of the machine, f : M → Ai, where
Ai denotes the set of actions of player i; and a transition function g that
determines the next state of the machine as a function of its present state and
the action of the other players, i.e., g : M × A−i → M . Thus, an automaton
of player i is represented by a 4-tuple 〈M, q1, f, g〉. The size of an automaton
is the number of states.

This machine, the automaton, will change its state in the course of playing
a repeated game. At every state q ∈ M , f determines what action it will take.
The next state of the automaton is determined by the current state and the
action taken by the other players. We can think of such an automaton as
playing a repeated game. It starts in its initial state q1, and plays at the first
stage of the game the action assigned by the action function f , f(q1). Thus,
f(q1) = ai

1 is the action of the player at stage 1. The other players’ action at
this stage is b1 = a−i

1 ∈ A−i. Thus the history of play before the start of stage
2 is the n-tuple of actions, (ai

1, a
−i
1 ), played at the first stage of the game . As

a function of the present state, and the other players’ actions, the machine is
transformed into a new state which is given by the transition function g. The
new state of the machine is q2 = g(q1, b1). The action that player i takes at
stage 2, ai

2, is described by the function f : f(q2) = f(g(q1, b1)), and denoting
by a−i

2 the action of the other players in stage 2, (f(q2), a−i
2 ) is the pair of

actions played in the second stage of the repeated game, and so on.
What is the state of the machine at stage t of the game? The machine

moves to a new state which is a function of the state of the machine in the pre-
vious stage and the action played by the other players. Thus qt = g(qt−1, a

−i
t−1)

is the new state of the automaton at stage t, and player i takes at stage t the
action f(qt) = f(g(qt−1, a

−i
t−1)) and so on.

Define inductively,

g(q, b1, . . . , bt) = g(g(q, b1, . . . , bt−1), bt),

where bj ∈ A−i. The action prescribed by the automaton for player i at stage
t is f(g(q1, a

−1
1 , . . . , a−i

t−1)) where a−i
j , 1 ≤ j < t, is the N\{i} tuple of actions

at stage j. Therefore, any automaton α = 〈M, q1, f, g〉 of player i induces a
strategy σi

α in GT that is given by σi
α(∅) = f(q1) and

σi
α(a1, . . . , at−1) = f(g(q1, a

−i
1 , . . . , a−i

t−1)).

Note also that an automaton α of player i induces also a strategy σi
α of player

i in the infinitely repeated game G∗. A strategy σi of player i in G∗ (in GT )
is implemented by the automaton α of player i if σi is equivalent to σi

α, i.e.,
if for every σ−i ∈ ×j 6=iΣj (Σj(T )), ω(σi, σ−i) = ω(σi

α, σ−i).



A finite sequence of actions a1, . . . , at is compatible with the pure strategy
σi of player i in G∗, if for every 1 ≤ s ≤ t, σi(a1, . . . , as−1) = ai

s. Given
a strategy σi of player i in G∗, any sequence of actions a1, . . . , at, induces a
strategy (σi|a1, . . . , at) in G∗, by

(σi|a1, . . . , at)(b1, . . . , bs) = σi(a1, . . . , at, b1, . . . , bs).

Proposition 1 The number of different reduced strategies that are induced
by a given pure strategy σi of player i in G∗ and all σi-compatible sequences
of actions equals the size of the smallest automaton that implements σ.

2.4 Repeated Games with Finite Automata

Given a strategic game G and positive integers m1, . . . , mn, we define Σi(T, mi)
( Σi(mi)) to be all pure strategies in Σi(T ) (in Σi) that are induced by an
automaton of size mi. Note that if a strategy is induced by an automaton of
size mi and m′

i ≥ mi then it is also induced by an automaton of size m′
i. The

game GT (m1, . . . ,mn) is the strategic game (N ; (Σi(T, mi))i∈N ; rT ) where rT

here is the restriction of our earlier payoff function rT to ×i∈NΣi(T, mi).
The play in the supergame G∗ which is induced by an n-tuple of strategies

σ = (σi)i∈N with σi ∈ Σi(mi) enters a cycle of length d ≤ ∏
i∈N mi after a

finite number of stages. Indeed, if at stages t and s the n-tuple of states of the
automata coincide, then for every nonnegative integer r, ωt+r(σ) = ωs+r(σ).
As the number of different n-tuples of automata states is bounded by

∏
i∈N mi

the periodicity follows. Therefore, the limiting average payoff per stage is well
defined whenever all players are restricted to strategies which are implemented
by finite automata. The game G∗∞(m1, . . . , mn) or G(m1, . . . , mn) for short,
is the strategic game (N ; (Σi(mi))i∈N ; r∞) where r∞ is defined as the limit
of our earlier payoff function rT as T →∞.

3 Zero-Sum Games with Finite Automata

In this section we present results of the value of 2-person 0-sum repeated games
with finite automata. Results concerning zero-sum games are important for
the study of the non-zero sum case by specifying the individual rational payoffs
and thus the effective “punishments.”

Consider the two-person zero-sum game of matching pennies:

1 −1
−1 1

Assume that player 1, the row player, and player 2, the column player,
are restricted to play strategies that are implemented by automata of size m1

and m2 respectively. Recall that we are considering the mixed extension of



the game in which the pure strategies of player i are those implemented by an
automaton of size mi. An easy observation is that for every m1 there exists a
sufficiently large m2 , a pure strategy τ ∈ Σ2(m2) and a positive integer T such
that for any t ≥ T and σ ∈ Σ1(m1), r1(ωt(σ, τ)) = −1. Therefore, we conclude
in particular that for the above matching pennies game G = (A,B, h), for
every m1 there exists m2 such that Val(G(m1,m2)) = maxA minB h(a, b).
Moreover this statement is valid for any two-person zero-sum game H =
(A,B, h). Theorem 1 of Ben-Porath (1993) asserts that if m2 ≥ m1|Σ1(m1)|,
where for a set X, |X| denotes the number of elements in X, then

Val (H(m1,m2)) = max
a∈A

min
b∈B

h(a, b).

Note that |Σ1(m)| is of the order of an exponential function of m log m. How-
ever, it turns out that if the larger bound m2 is subexponential in m1, player
2 is unable to use effectively in the long run his larger bound. Indeed,

Theorem 1 (Ben-Porath, 1986, 1993). Let H = (A,B, h) be a two person
0-sum game in strategic form, and let (m(n))∞n=1 be a sequence of positive
integers with

lim
n→∞

log m(n)
n

= 0.

Then,
lim inf
n→∞

Val (H(n,m(n))) ≥ Val (H).

Proof. W.l.o.g. we assume that n ≤ m(n). For every sequence a =
(a1

1, a
1
2, . . .) of actions of player 1 we denote by σa the pure strategy of player

1 with σa
t (∗) = a1

t . Note that if a is k-periodic then σa ∈ Σ1(k). For every
k, σ1(k) denotes the mixed strategy σX of player 1 where X = (X1, X2, . . .)
is a random k-periodic sequence of actions of player 1, with X1, X2, . . . , Xk

i.i.d and the distribution of Xt is an optimal strategy of player 1 in the one
shot game. It follows that for every pure strategy τ of player 2 and every
t ≤ k, Eσ1(k),τ (h(at, bt)|Ht) ≥ Val(H), where Ht denotes the algebra gen-
erated by the actions a1, b1, . . . , at−1, bt−1 in stages 1, . . . , t − 1. Therefore
it follows from Azuma’s inequality (Azuma 1967 or Alon and Spencer 1992)
that Probσ1(k),τ (

∑k
t=1 h(at, bt)/k < Val(H) − ε) ≤ e−C(ε)k with C(ε) > 0.

Therefore for every finite set T ⊂ Σ2,

Probσ1(n)(min
τ∈T

hn(σa, τ) ≤ Val(H)− ε) ≤ |T | exp(−C(ε)n). (1)

Let τ be a pure strategy of player 2 which is implemented by an automaton of
size m(n), and set T = {(τ | b1, . . . , bt)}. Then for every n periodic sequence
a and every positive integer s,

s+n∑
t=s+1

h(ωt(σa, τ)) ≥ min
τ∈T

s+n∑
t=s+1

h(ωt(σa, τ)).



As |T | ≤ m(n), and σ1(n) is a mixture of (at most |A|n) pure strategies of
the form σa ∈ Σ1(n), the result follows from (1).

It is worth mentioning that the proof implies a stronger result. Setting
Σi

g(m) to be all strategies σi such that for each t |{(σi | b1, . . . , bt) : bj ∈
B}| ≤ m, and σ1(n) as constructed in the proof, we conclude that under the
same condition as in the theorem,

lim inf
n→∞

V al H({σ1(n)}, Σ2
g(m(n))) ≥ Val (H).

This stronger result implies that whenever limn→∞ log m(n)/n = 0, for every
n there exists a random n-periodic sequence of actions of player 1, (σX), which
guarantees approximately the value Val(H) against any strategy in Σ2

g(m(n)).
Note that for every pure strategy σ of player 1, there exists a strategy τ ∈
Σ2

g(1) with ht(σ, τ) ≤ maxa∈A minb∈B h(a, b). The next result asserts that
when m(n) log m(n) = o(n) as n →∞, then there is a deterministic n-periodic
sequence of actions of player 1, a, such that σa guarantees approximately
Val(H) when player 2 is restricted to strategies in Σ2(m(n)).

Proposition 2 Let m : IN → IN with limn→∞
m(n) log m(n)

n = 0. Then for
every n there exists an n-periodic sequence of actions of player 1, a, such that

lim
n→∞

(inf{ht(σa, τ) | τ ∈ Σ2(m(n)), t ≥ n}) = Val(H).

Proof. Note that there is a positive constant K such that |Σ2(m(n))| ≤
m(n)Km(n). Let k : IN → IN be such that limn→∞

m(n) log m(n)
k(n) = 0, and

limn→∞ k(n)/n = 0. X = (X1, . . . , Xk(n), . . .) be a random n-periodic se-
quence of actions of player 1, where X1, . . . , Xk(n) are i.i.d each distributed ac-
cording to the distribution of an optimal mixed strategy of player 1 in the one
shot game, and (X1, . . . , Xn) is k(n)-periodic. As limn→∞

m(n) log m(n)
k(n) = 0,

it follows that for every positive constant C > 0,

lim
n→∞

|Σ2(m(n))| exp (−Ck(n)) = 0,

and therefore it follows from (1) that

lim
n→∞

Pr( min
τ∈Σ2(m(n))

hk(n)(σX , τ) ≤ Val(H)− ε) = 0

and therefore there is an n-periodic sequence of actions a such that

lim
n→∞

(inf{ht(σa, τ) | τ ∈ Σ2(m(n)), t ≥ n}) ≥ Val(H).

The next result follows from the proof of the result of Ben-Porath (1993),
and is used in the proof of theorems 5 and 6.



Theorem 2 For every ε > 0 sufficiently small, if

exp(ε2m1) ≥ m2 > 1,

then for every positive integer T ,

Val (HT (m1,m2)) ≥ Val (H)− ε.

The next corollary is a restatement of Theorems 1 and 2 which provides
a lower bound for equilibrium payoffs in nonzero sum repeated games with
finite automata.

Corollary 1 For every strategic game G = (N, A, r), i ∈ N , and ε > 0
sufficiently small, if

exp(ε2mi) ≥ mj > 1 for every j 6= i,

then for every x ∈ E(GT (m1, . . . , mn)), or x ∈ E(G(m1, . . . , mn)),

xi ≥ wi(G)− ε.

The next result asserts that if the bound on the sizes of the automata of
player 2 is larger than an exponential of the sizes of the automata of player
1, then player 2 could hold player 1 down to his maxmin in pure strategies.

Theorem 3 For every 2-person 0-sum game H = ({1, 2}; (A, B); h), and ev-
ery positive constant K with K > ln |A|, if m(n) ≥ exp(Kn), then

Val H(n,m(n)) → max
a∈A

min
b∈B

h(a, b) as n →∞.

Proof. Let K > ln |A|. It is sufficient to prove that for every ε > 0 there
exists n0 such that for every n ≥ n0 and every m ≥ exp(Kn),

Val (H(n,m)) ≤ max
a∈A

min
b∈B

h(a, b) + ε.

Note that for every positive constant C there exists n0 such that for every
n ≥ n0, exp(Kn) ≥ Cn2|A|n. Therefore the theorem follows from the next
lemma.

Lemma 1 For every ε > 0, there is a sufficiently large integer K = K(ε) ,
such that for every m ≥ Kn2|A|n there exists a strategy τ∗ ∈ ∆(Σ2(m)) such
that for every T ≥ K2n3|A|n, and any strategy σ ∈ Σ1(n),

hT (σ, τ∗) ≤ max
a∈A

min
b∈B

h(a, b) + ε.

and therefore,
Val (GT (n,m)) ≤ max

a∈A
min
b∈B

h(a, b) + ε.

and
Val (G(n,m)) ≤ max

a∈A
min
b∈B

h(a, b) + ε.



Proof. The idea of the proof is as follows: for every pure strategy
σ ∈ Σ1(n) of player 1, there is 1 ≤ k ≤ n and a sequence of actions
b = b1, . . . , bn, . . . with bi = bj whenever i > j > n− k and i− j = 0(mod k)
(and thus in particular bn+1 = bn−k+1), such that the strategy τ b of player 2
which plays the sequence b results in payoff ≤ maxa∈A minb∈B h(a, b) in seach
stage t > m − k. Such a strategy is implemented by an automaton of size
n, and the number of such strategies σb is bounden by n|B|n. The strategy
of player 2 immitates choosing at random a pair k, σb, and if the resulting
payoffs are not sufficiently small, it attempts another randomly chosen pair
k, σb. The sufficiently large number of states of the automaton of player 2,
gaurantees that with high probability the induced play will eventually enter
a cycle with payoffs ≤ maxa∈A minb∈B h(a, b) in each stage .

Formally, let b : A → B be a selection from the best reply correspondence
of player 2. Construct the following mixed strategy of player 2, τ∗, which is
implemented by an automaton with state space

M2 = {1, . . . , n} × {1, . . . , `}.

where ` = Kn|A|n. The initial state of the automaton of player 2 is (1, 1). Let
a : M2 → A be a random function, each such function equally likely, i.e., for
every 1 ≤ i ≤ n , and every 1 ≤ j ≤ `, a(i, j) is a random element of A each
one equally likely, and the various random elements a(i, j) are independent.
We define now the random action function of the automaton.

f2(i, j) = b(a(i, j)).

The transition function of the automaton depends on a random sequence
k = k1, . . . , k`, 1 ≤ kj ≤ n, each such sequence equally likely and the sequence
k is independent of the function a. We are ready now to define the transition
function which depends on the functions b and a and on the random sequence
k.

g2((i, j), c) =





(i + 1, j) if i < n and c = a(i, j)
(kj , j) if i = n and c = a(i, j)
(1, j + 1) if j < ` and c 6= a(i, j)
(1, 1) otherwise.

Let σ be a pure strategy of player 1 that is implemented by an automaton of
size n. Let x1, x2, . . . where xt = (at, bt) be the random play induced by the
strategy pair σ and τ∗, and let qi

1, q
i
2, . . . be the random sequence of states of

the automaton of player 2. Fix 1 ≤ j ≤ ` and let t = tj be the random time
of the first stage t with q2

t = (1, j). Note that

Prob(at+s = a(s + 1, j) ∀ 0 ≤ s < n) =
1
|A|n .

and if at+s = a(s+1, j) ∀ 0 ≤ s < n then there exists 0 ≤ s < n such that the
state of the automaton of player 1 at stage t+n, q1

t+n coincides with its state
at stage t + s. Therefore if kj = s + 1, the play will enter a cycle in which the



payoff to player 1 is at most maxa∈A minb∈B h(a, b). Therefore the conditional
probability, given the history of play up to stage tj , that the payoff to player
1 in any future stage is at most maxa∈A minb∈B h(a, b), and that tj+1 = ∞ is
at least 1/(|A|nn). Otherwise, if tj+1 < ∞, tj+1 ≤ tj + n2. Therefore, either
t` = ∞ and then for every stage t > `n2, the payoff to player 1 is at most
maxa∈A minb∈B h(a, b), or t` < ∞. However, the previous inequalities imply
that,

Prob(t` = ∞) ≥ 1− (1− 1/(n|A|n))`−1 → 1 as K →∞,

which completes the proof of the lemma.
It is of interest to study the asymptotics of Val(H(m1,m2)) when m1 →∞

and m2 is approximately a fixed exponential function of m1. This would
close the gap between Theorem 1 and Theorem 3. Given a 2-person 0-sum
game H = (A,B, h), it will be interesting to find the largest (smallest) mono-
tonic nondecreasing functions v̄ : (0,∞) → IR (v : (0,∞) → IR) such that if
ln m2(m)

m → α > 0 as m →∞ then

v(α) ≤ lim inf
m→∞

Val(H(m,m2)) ≤ lim sup
m→∞

Val(H(m,m2)) ≤ v̄(α).

Theorems 1 asserts that limα→0 v̄(α) = limα→0 v(α) = Val(H), and The-
orem 3 asserts that for α > ln |A|, v̄(α) = maxa∈A minb∈B h(a, b). We conjec-
ture that the two functions v̄ and v are continuous with v̄ = v for all values
of α > 0 with the possible exception of one critical value.

The next two conjectures address the number of repetitions needed for a
unrestricted player to use his advantage over bounded automata. The positive
resolutions of each of the conjectures have implications on the equilibrium
payoffs of finitely repeated games with automata. A positive resolution of the
next conjecture, will provide a positive answer to conjecture 3.

Conjecture 1 For every ε > 0 , if m : IN → IN satisfies m(T ) ≥ εT , then

lim
T→∞

Val (HT (m(T ),∞)) = Val (H).

The truth of the above conjecture implies that there is a function m : IN →
IN with limT→∞m(T )/T = 0, and such that

lim
T→∞

Val(HT (m(T ),∞) = Val(H).

An interesting open problem is to find the “smallest” such function. The next
conjecture specifies a domain for such a function.

Conjecture 2 If m : IN → IN obeys limT→∞(T/ log T )/m(T ) = 0, then

lim
T→∞

Val (HT (m(T ),∞)) = Val (H).

If m : IN → IN obeys limT→∞m(T )/(T/ log T ) = 0, then

lim
T→∞

Val (HT (m(T ),∞)) = max
a1∈A1

min
a2∈A2

h1(a1, a2).



4 Equilibrium Payoffs of the Supergame G∗
∞

We state here a result, due to Ben-Porath, which is a straightforward corol-
lary of Theorem 1. All convergence of sets is with respect to the Hausdorff
topology. Recall that for a sequence of subsets, En, of a Euclidean space IRk

,
lim inf
n→∞

En = {x ∈ IRk | ∀ε > 0,∃N s.t. ∀n ≥ N, d(x,En) < ε}
where d(x,E) denotes the distance of the point x from the set E,

lim sup
n→∞

En = {x ∈ IRk | ∀ε > 0, ∀N, ∃n ≥ N with d(x, En) < ε},

and limn→∞En = E if E = lim inf En = lim sup En.

Theorem 4 ( Ben-Porath 1986, 1993). Let G = (N ; (Ai)i∈N ; (ri)i∈N ) be a
strategic game, and mi(k), i ∈ N , sequences with limk→∞mi(k) = ∞ and

lim
k→∞

log(maxi∈N mi(k))
mini∈N mi(k)

= 0.

Then,
{x ∈ F | xi ≥ vi(G)} ⊆ lim inf

k→∞
E(G(m1(k), . . . , mn(k))),

and
lim sup

k→∞
E(G(m1(k), . . . ,mn(k))) ⊆ {x ∈ F | xi ≥ wi(G)}.

Note that in two-person games vi(G) = wi(G) and therefore the above
theorem provides exact asymptotics for two-person games. An interesting
open problem is to find the asymptotic behavior of E(G(m1(k), . . . ,mn(k))) as
k →∞ and limk→∞{log(maxi∈N mi(k))/ mini∈N mi(k)} = 0. Such questions
lead to the study of the asymptotics of

vi(G(m1(k), . . . , mn(k))) = min
τ−i

max
σi

ri
∞(σi, τ−i),

where the min ranges over all τ−i ∈ ×j 6=i∆(Σj(mj(k))) and the max is over
σi ∈ Σi(mi(k)) and where mi(k), i ∈ N , is a sequence with limk→∞mi(k) =
∞ and limk→∞(log(maxi∈N mi(k)))/(mini∈N mi(k)) = 0. W.l.o.g. assume
that m1(k) ≤ m2(k) ≤ . . . ≤ mn(k) and limn→∞ log mn(k)/m1(k) = 0, and
let i < n. Set vi(k) = vi(G(m1(k), . . . , mn(k))). We denote by Q(i), or Q for
short, the set of all probability measures on A−i whose marginal distribution
on ×j<iAj is a product measure. The following is a partial answer to the
study of the asymptotics of vi(k).

Proposition 3 (a) If limk→∞
m1(k) log m1(k)

m2(k) = 0, then

lim sup
k→∞

v1(k) ≤ min
q∈Q

max
a1∈A1

∑

a−1∈A−1

q(a−1)r1(a1, a−1).



(b) If for a fixed player 1 < i < n, limk→∞
log mi+1(k)
log mi(k) = ∞, then

lim sup
k→∞

vi(k) ≤ min
q∈Q

max
ai∈Ai

∑

a−i∈A−i

q(a−i)ri(ai, a−i).

Proof. Part (a) follows from Proposition 2. We turn to the proof of part (b).
Let (N(k))∞k=1 be a sequence of positive integers with limk→∞N(k)/ log mi(k)
= ∞ and limk→∞N(k)/ log mi+1(k) = 0. The constructed N \ {i} tuple of
minimax strategies, (σj)j 6=i, will enter a cycle of length N(k), following the
first N(k)(n− 1) stages. The cycle play, X1, . . . , XN(k), is a sequence of i.i.d.
actions in A−i with each Xt distributed according to a minimizing probability
q ∈ Q. For every k let q∗(k) ∈ Q, or q for short, attain the minimum and
let qj be the marginal distribution of q on Aj , j < i. Let σj , j < i, be
the strategy σj,X which plays a random N(k)-periodic sequence of actions
Xj

1 , Xj
2 , . . . where Xj

1 , . . . , Xj
N(k) are i.i.d. and the distribution of each Xj

t is qj .
We define next the strategy σj for j > i, which is a mixture of pure strategies,
each implemented by an automaton of size iN(k)|AN(k)| which for sufficiently
large k is ≤ mi+1(k). For every b = (b1, . . . , bi−1, bi+1, . . . , bn) ∈ ×j<iAj ,
denote by bj the projection of b on ×i 6=j′<jAj′ , and let qi+1(b) denote the
marginal of the conditional probability (q|bj) on Aj . The automaton includes
|A|N(k) + (j − i − 1)N(k) states which are used to record the realization of
the choices of all players in stages N(k)(j − i− 1) + 1, . . . , N(k)(j − i) stages.
Thereafter, player j plays an N(k)-periodic sequence aj

1, . . . , a
j
N(k) which is

a realization of a sequence of independent actions Xj
1 , . . . , Xj

N(k) with the

distribution of Xj
t being (qi+1|bj

t+(j−i−1)N(k)). One verifies that following the
first (n− 1)N(k) stages the play of players j 6= i enters an N(k) cycle of i.i.d
actions each distributed according to q.

In the above proof we can also construct the minimaxing strategies of
players j > i to be pure strategies, as in Proposition 2. Consider the following
3 player game G.

0, 0, 0 8, 0, 4
0, 0, 8 0, 0, 8

0, 0, 8 0, 0, 8
0, 8, 4 0, 0, 0

Player 1 chooses the row, player 2 the column, and player 3 chooses the
matrix. Note that v1(G) = 0 = v2(G) and v3(G) = 5. However, w3(G) = 4
(and w1(G) = w2(G) = 0). Therefore we can not deduce from Theorem
4 whether or not the vector payoff (4, 4, 4) is approximated by equilibrium
payoffs of the restricted games G(m1(k),m2(k),m3(k)) for sufficiently large
k and where k < mi(k) are sequences with log max mi(k)/ min mi(k) → 0 as
k → ∞. However, Proposition 3 characterizes for this game the limit of the
equilibrium payoffs provided that we assume in addition that
limk→∞ log max(m1(k), m2(k))/ log m3(k) = ∞. In particular, it follows in
this case that (4, 4, 4) is in the limit of the equilibrium payoffs.



We state now a result which provides a partial answer to the asymptotic
behavior of the set of equilibrium payoffs of repeated games with bounded
automata. Denote by

di = min
q∈Q(i)

max
ai∈Ai

∑

a−i∈A−i

q(a−i)ri(ai, a−i)

and
F = {x ∈ F (G)|xi > di}

Proposition 4 Assume that m1(k) ≤ . . . ≤ mn(k), limk→∞
log mn(k)

m1(k) = 0,

limk→∞
m1(k) log m1(k)

m2(k) = 0 and that for i > 1 limk→∞
log mi(k)

log mi+1(k) = 0. Then,

lim inf
k→∞

E(G(m1(k), . . . , mn(k))) ⊃ F

5 Cooperation in Finitely Repeated Games

The results in this section address the asymptotic behavior of the sets of
equilibrium payoffs, E(GT (m1,m2)), of the games GT (m1,m2), as T , m1

and m2 go to ∞. All convergence of sets is with respect to the Hausdorff
topology. In each one of the theorems in the present section we assume that
G = ({1, 2}, A, r) is a fixed 2-person strategic game, F = F (G) stands for the
feasible payoffs in the infinitely repeated game, i.e., F = co(r(A)) and that
(T (n),m1(n), m2(n))∞n=1 is a sequence of triples. For simplicity, the state-
ments of the theorems are nonsymmetric with respect to the two players, and
therefore we assume in addition that m2(n) ≥ m1(n). We also suppress often
the dependence on n; no confusion should result.

Theorem 5 Let G = ({1, 2}, A, r) be a two person game in strategic form,
and assume that there is x ∈ F (G)) with x1 > v1(G), and x2 > u2(G). Then,
if m1(n) →∞ and log m1(n)

T (n) → 0 as n →∞,

lim inf
n→∞

E(GT (m1,m2)) ⊇ {x ∈ F | x1 ≥ v1(G) and x2 ≥ u2(G)}.

Special cases of the above theorem have been stated in previous publica-
tions. Neyman (1985) states that in the case of the finitely repeated prisoner’s
dilemma G, for any positive integer k, there is T0 such that if T ≥ T0 and
T 1/k ≤ min(m1, m2) ≤ max(m1,m2) ≤ T k, then there is a mixed strategy
equilibrium of GT (m1,m2) in which the payoff is 1/k-close to the “cooper-
ative” payoff of G. Papadimitriou and Yannakakis (1994) state the special
case of Theorem 5 obtained by assuming that the payoffs of the underlying
game are rational numbers and replacing F (G) in the statement of the theo-
rem with {x ∈ r(A) with xi > vi(G)} . They also state a result for a subset
of F with the additional assumption that the bounds on both automata are
subexponential in the number of repetitions.



The conclusion of the theorem fails if we replace in the assumptions of the
theorem the strict inequality x1 > v1(G) by the weak inequality x1 ≥ v1(G).
For example in the game

0, 4 1, 3
1, 1 1, 0

the only equilibrium payoff in GT (m1,m2) with m2 ≥ 2T is (1,1).
The next theorem relates the equilibrium payoffs of GT (m1,m2) to the

equilibrium payoffs of the undiscounted infinitely repeated game G∗∞. Recall
that the Folk Theorem asserts that

E(G∗∞) = {x ∈ F | x1 ≥ v1(G) and x2 ≥ v2(G)}.
Theorem 6 Let G = ({1, 2}, A, r) be a two person game in strategic form ,
and let (T, m1(T ),m2(T ))∞T=1 be a sequence of triples of positive integers with
m1(T ) ≤ m2(T ) and m1(T ) →∞ as T →∞, and

lim
T→∞

log m2(T )
min(m1(T ), T )

= 0.

Then,
lim

T→∞
E(GT (m1(T ),m2(T ))) = E(G∗∞).

The limiting assumption limT→∞
log m2(T )

m1(T ) = 0 in Theorem 6, could prob-
ably be replaced by an alternative lower bound, as a function of T , on m1(T ),
provided that we also assume that there is x ∈ F with x1 > v1(G). One
example of such a result is presented in the following conjecture.

Conjecture 3 Let G = ({1, 2}, A, r) be a two person game in strategic form,
and assume that there is x ∈ F with x1 > v1(G). Then, if

lim inf
T→∞

m1(T )/T > 0,

and

lim
T→∞

log m1(T )
T

= 0,

Then
lim

T→∞
E(GT (m1,m2)) = {x ∈ F | xi ≥ vi(G)}.

The next theorem is straightforward and very easy. We state it as a con-
trast to the previous results. It shows that the subexponential bounds on the
sizes of the automata as a function of the number of repetitions is essential to
obtain equilibrium payoffs that differ from those of the finitely repeated game
GT .

Theorem 7 For every game G in strategic form there exists a constant c such
that if mi ≥ exp(cT ) then

E(GT (m1, . . . ,mn)) = E(GT ).



6 Repeated Games with Bounded Recall

Aumann (1981) mentioned two ways of modeling a player with bounded ra-
tionality: with finite automata and with bounded recall strategies. There are
two alternatives to define strategies with bounded recall. The first one (see
e.g. Aumann and Sorin, 1989) considers strategies with bounded recall which
choose an action as a function of the recalled opponents’ actions, and the
second alternative (see e.g. Kalai and Stanford, 1988, or Lehrer 1988) allows
a player to rely on his opponents’ actions as well as on his own. The following
are results on repeated games with bounded recall of the second type which
are closely related to those presented for finite automata. Let BRi(m) denote
all strategies of player i in a repeated game that choose an action as a function
of all players action in the last m stages. Each pure strategy σi ∈ BRi(m) is
thus represented by a function f i : Am → Ai and a fixed element, initial mem-
ory, e = (e1, . . . , em) ∈ Am; for t > m , σi(a1, . . . , at−1) = f i(at−m, . . . , at−1)
and for t ≤ m, σi(a1, . . . , at−1) = f i(et, . . . , em, a1, . . . , at−1). Given a strat-
egy σi = (e, f i) ∈ BRi(m), the automaton 〈Am, e, f i, gi〉 where gi(x, y),
x = (x1, . . . , xm) ∈ Am and y ∈ A−i, equals (x2, . . . , xm, (f i(x), y)), im-
plements the strategy σi. Thus each strategy in BRi(m) is implemented by
an automaton of size |A|m, or in symbols and identifying a strategy with its
equivalence class, BRi(m) ⊂ Σi(|A|m). Given a fixed two-person zero-sum
game G = (A, B, h), we denote by Vm1,m2 the value of the undiscounted in-
finitely repeated game G where player i is restricted to mixed strategies with
support in BRi(mi). Lehrer (1988) proves the following result which is related
and has a spirit similar to the result of Ben-Porath (1986,1993).

Theorem 8 (Lehrer, 1988). For every function m : IN → IN with log m(n)/n
→ 0 as n →∞,

lim inf Vn,m(n) ≥ Val (G).

Proof. Note that, by identifying a strategy with its equivalence class,
BR2(m(n)) ⊂ Σ2(|A×B|m(n)) . Let k : IN → IN with limn→∞m(n)/k(n) = 0
and limn→∞ log k(n)/n = 0. E.g., k = m2. Let X = X1, X2, . . . , Xk(n), . . .
be a random k(n)-periodic sequence of actions, with X1, . . . , Xk(n) i.i.d and
Xt an optimal strategy of player 1 in the one shot game. W.l.o.g. we as-
sume that the support of Xt has at least two elements. Consider the mixed
strategy σ1(k(n)) of player 1 which plays the realization of X. The proof of
Theorem 1 shows that for any sequence of strategies τ(n) ∈ Σ2(|A×B|m(n)),
lim infn→∞ r∞(σ1(k(n)), τ(n)) ≥ Val(G) as n → ∞. (Note that σ1(k(n)) 6∈
∆(BR1(n))). It is thus sufficient to prove that the norm distance of σ1(k(n))
from ∆(BR1(n)) tends to zero as n →∞, i.e., that for most realizations of X,
the implied pure strategy is in BR1(n). Note that for any 0 ≤ s < t < k(n)
there are positive integers s′ and t′ with t ≤ t′ ≤ t+n−[n/3], and s ≤ s′ ≤ s+
n− [n/3] such that Xs′+1, . . . , Xs′+[n/3], Xt′+1, . . . , Xt′+[n/3] are independent
and (Xs+1, . . . , Xs+n) = (Xt+1, . . . , Xt+n) only if (Xs′+1, . . . , Xs′+[n/3]) =
(Xt′+1, . . . , Xt′+[n/3]). Indeed, if min{t − s, s + k(n) − t} ≥ [n/3] set s′ = s
and t′ = t; if t < s + [n/3] set s = s′ and t′ − s is the smallest multiple of



t − s which is ≥ [n/3]; and if s + k(n) < t + [n/3] set t = t′ and s′ − t is
the smallest multiple of s + k(n) − t which is ≥ [n/3]. There is a constant
0 < α < 1 that depends on the optimal strategy of player 1 in the one shot
game, such that Pr(Xs′+i = Xt′+i) ≤ α. (e.g., if p is the probability vector as-
sociated with the optimal strategy in the one shot game α =

∑
p2

i ).Therefore,
Pr(∀i, 1 ≤ i ≤ [n/3], Xs′+i = Xt′+i) ≤ α[n/3]. Therefore

Pr(∃ s, t, 0 ≤ s < t < k(n) s.t ∀ i, 0 < i ≤ n, Xs+i = Xt+i))

< k2(n)α[n/3] →n→∞ 0.

Note that the strategy σ∗(n) which is defined as the strategy σ1(k(n))
conditional on {∀ s, t, 0 ≤ s < t < k(n), ∃1 ≤ i ≤ n s.t.Xs+i 6= Xt+i} is in
∆(BR1(n)) with d(σ∗(n), σ(k(n))) → 0 as n → ∞, where d(σ∗(n), σ(k(n)))
denotes the norm distance between the mixed strategies (viewed as distribu-
tions) σ∗(n) and σ(k(n)). Therefore

lim inf
n→∞

Val(BR1(n), Σ2(|A×B|m(n)), h∞) ≥ Val (G).

which completes the proof.
The next result is an analog of Proposition 2.

Proposition 5 For every 2-player 0-sum game H = (A,B, h) there is a pos-
itive constant K such that if m : IN → IN with n > Km(n), then for every n
there exists a strategy σ(n) ∈ BR1(n) such that

lim
n→∞

(inf{ht(σ(n), τ) | τ ∈ BRi(m(n)), t ≥ exp(n)}) = Val(H).

An interesting straightforward corollary of this proposition is the following.
Let G = (A, r) be an n-person game, A = ×1≤i≤nAi and r = (ri)1≤i≤n, and
assume that m1(k) ≤ . . . ≤ mn(k) .

Corollary 2 There is a constant K such that if Km1(k) ≤ m2(k), then
for every k there exist an (n − 1)-tuple of strategies τ(k) = (τ2, . . . , τn) ∈
×1<i≤nBRi(mi(k)) such that for any strategy σ(k) ∈ BR1(m1(k)),

lim sup
k→∞

r1
∞(σ(k), τ(k)) ≤ max

q∈∆(A1)
min

a−1∈A−1

∑

ai∈Ai

q(ai)r1(a1, a−1).

The next result is an analog of Proposition 3. Assume that m1(k) ≤
. . . ≤ mn(k) with limk→∞ log mn(k)/m1(k) = 0. For every 1 ≤ i ≤ n
denote by vi(m1(k), . . . ,mn(k)), or vi(k) for short, the minimax payoff to
player i, i.e., minτ−i maxσi ri

∞(σi, τ−i), where the min ranges over all τ−i ∈
×j 6=i∆(BRj(mj(k))) and the max ranges over all σi ∈ BRi(mi(k)). As in sec-
tion 4, we denote by Q(i), or Q for short, the set of all probability measures
on A−i whose marginal distribution on ×j<iAj is a product measure.



Proposition 6 If for a fixed player 1 ≤ i < n, limk→∞mi+1/mi(k) = ∞,
then

lim sup
k→∞

vi(k) ≤ min
q∈Q

max
ai∈Ai

∑

a−i∈A−i

q(a−i)ri(ai, a−i).

We state now a result which provides a partial answer to the asymptotic
behavior of the set of equilibrium payoffs of repeated games with bounded
recall. It is an analog of Proposition 4.

Proposition 7 There is a constant K > 0 such that if m1(k) ≤ . . . ≤ mn(k),
limk→∞

log mn(k)
m1(k) = 0, m2(k) > Km1(k), and limk→∞

mi(k)
mi+1(k) = 0 for i > 1,

then
lim inf
k→∞

E(G(BR1(m1(k)), . . . , BRn(mn(k)))) ⊃ F

The next proposition and conjecture address the advantage of an unre-
stricted player over a player restricted to bounded recall strategies in finitely
repeated 2-player 0-sum games. For a fixed two-person zero-sum game H =
(A,B, h), we denote by V T

n,∞, or V T
n for short, the value of the finitely re-

peated game HT (BR1(n), Σ2), i.e. the value of the T -repeated game in which
player 1 is restricted to use strategies in BR1(n) while player 2 can use any
strategy in Σ2. The following proposition asserts that if the duration T is
shorter then some exponential function of n then the unrestricted player has
no advantage.

Proposition 8 There exists a constant K > 0 such that if T : IN → IN
satisfies T (n) ≤ exp(Kn), then

lim
n→∞

V T (n)
n = Val H.

Proof. It is sufficient to prove the result in the case that any optimal strategy
of player 1 in the one shot game is not pure. Let X1, X2, . . . be a sequence of
i.i.d optimal strategies in the one shot game. The stochastic process X1, . . .
induces a strategy σ ∈ ∆(BR1(n)) as follows. For each realization of the
random sequence define the initial memory e = (X1, . . . , Xn) and the action
function f : (A×B)n → A is defined as follows: for every (a1, b1), . . . , (an, bn)
define the stopping time S as the smallest value of t such that (a1, . . . , an) =
(Xt−n, . . . , Xt−1) and define

f((a1, b1), . . . , (an, bn)) = XS .

Note that the strategy induced by each realization of the random sequence
X1, . . . consists of a deterministic sequence (which enters eventually a cycle)
of actions of player 1 and that the sequence is independent of the strategy of
player 2. It is easy to verify that there is a positive constant K > 0 such that

lim
n→∞

Probσ(at(σ) = Xt+n ∀t ≤ exp Kn) = 0



and therefore the norm distance between the strategies σ and σX goes to zero
as n goes the infinity. As σX is an optimal strategy in HT the result follows.

The conjecture below claims that there is an exponential function of n,
exp(Kn) such that if the number of repeatition T is larger then exp(Kn), the
values V T

n converge to the maxmin in pure strategies.

Conjecture 4 There is a constant K such that if T : IN → IN satisfies T (n) ≥
exp(Kn), then

lim
n→∞

V T (n)
n = max

a∈A
min
b∈B

h(a, b).

As BR1(n) ⊂ Σ1(|A × B|n) a positive answer to the second part of Con-
jecture 2 provides also a positive answer to Conjecture 4. It is of interest to
study the asymptotics of V

T (n)
n where T (n) is approximately a fixed expo-

nential function of n. This would close the gap between Proposition 8 and
Conjecture 4. Given a 2-person 0-sum game H = (A,B, h), it will be inter-
esting to find the largest (smallest) function ū : (0,∞) → IR (u : (0,∞) → IR)
such that if ln T (n)

n → α as n →∞ then

u(α) ≤ lim inf
n→∞

V T (n)
n ≤ lim sup

n→∞
V T (n)

n ≤ ū.

Proposition 8 asserts that there is a constant K1 > 0 such that u(K1) =
Val H and the conjecture claims that there is a constant K2 with ū(K2) =
maxa∈A minb∈B h(a, b). It is interesting to find the sup and inf of K1 and K2

respectively. We conjecture that the two functions ū and u are continuous
with ū = u for all values of α with the possible exception of one critical value.
We do not exclude the possibility of the existence of a positive constant K
such that u(K) = Val (H) and ū(K) = maxa∈A minb∈B h(a, b).

7 Variations and Extensions

We have studied here some topics in the theory of repeated games with de-
terministic automata. There are several variants of the concept of automata
which merits study in the context of repeated games broadly conceived, i.e.,
including repeated games with incomplete information and stochastic games.
The variations of the concept of an automaton are in several independent
dimensions. E.g., we can allow transitions that depend on the actions of all
players and also allow for probabilistic actions and/or transitions, and more-
over we can consider transition and/or action functions which are time depen-
dent. A full automaton for player i is a 4-tuple 〈M, q1, f, g〉 where the set of
states M , the initial state q1 ∈ M and the action function f : M → Ai are
as in a (standard) automaton , and the transition function g : M × A → M
specifies the next state as a function of the current state and the n-tuple
of actions of all players. The strategy σi

α induced by a full automaton α=
〈M, q1, f, g〉 is defined naturally by σi

1 = f(q1) and for every a1, . . . , at−1



in A, σi(a1, . . . , at−1) = f(qt) where qt is defined inductively for t > 1 by
qt(a1, . . . , at−1) = g(qt−1, at−1). Obviously, every strategy which is induced
by a full automaton of size m is equivalent to a strategy induced by an automa-
ton of size m. Therefore when the actions and transitions are deterministic,
allowing transitions to depend on your own action is not affecting the equi-
librium theory. However it does have implications in the study of subgame
perfect equilibrium of repeated games (see e.g. Kalai and Stanford (1988) and
Ben-Porath and Peleg (1987)). Kalai and Stanford (1988) show that given a
pure strategy σi of a player in the repeated game, the number of different
strategies induced by it and any finite history (a1, . . . , at) equals the size of
the full automaton that induces σi. A mixed action automaton for player i
is a 4-tuple 〈M, q1, f, g〉 where M is a finite set, q1 ∈ M is the initial state,
f : M → ∆(Ai) is a function specifying a mixed action as a function of the
state, and g : M × A → M is the transition function. Each mixed action
automaton induces a behavioral strategy σi as follows. σi

1 = f(q1). Define
inductively qt(a1, . . . , at−1) = g(qt−1, at−1), and

σi
t(a1, . . . , at−1) = f(qt(a1, . . . , at−1)).

Denote by Σi
p(mi) all equivalence classes of behavioral strategies which are

induced by a mixed action automata of size mi. Two mixed (or behavioral)
strategies, σi and τ i, of player i are equivalent if for any N \ {i}-tuple of
pure strategies σ−i, (σi, σ−i) and (τ i, σ−i) induce the same distribution on
the play of the repeated game. Note that Σi(mi) ⊂ Σi

p(mi) and that Σi
p(1) \

∆(∪∞m=1Σ
i(m)) 6= ∅. A stationary behavioral strategy in a repeated game with

complete information is induced by a mixed action automaton with one state.
Given a behavioral strategy σi = (σi

t)
∞
t=1, the number of equivalence classes of

the behavioral strategies of the form (σi | a1, . . . , at) where a1, . . . , at ranges
over all histories which are consistent with σi, (i.e., (σi | a1, . . . , as)(ai

s+1) > 0
for every s < t), equals the size of the smallest mixed action automaton that
implements σi. A probabilistic transition automaton is a 4-tuple 〈M, q1, f, g〉
where M is a finite set, q∈M is the initial state, f : M → Ai is the action,
and g : M × A−i → ∆(M). Each probabilistic transition automaton induces
a mixed strategy σi as follows. σi

1 = f(q). Then the automaton changes its
states stochastically in the course of playing the repeated game. If its state
in stage t is qt and the other players action in stage t is a−i

t the conditional
probability of qt+1, given the past is g(qt, a

−i
t ), and its action in stage t is f(qt).

Denote by Σi
t(mi) all equivalence classes of strategies which are induced by

probabilistic transition automata of size mi. Note that Σi
p(m) ⊂ Σi

t(m|Ai|).
Repeated games with complete information. The theory of finitely

or infinitely repeated 2-person 0-sum games with complete information and
either mixed action or probabilistic transition automata is trivial and not of
much interest. However, the asymptotic behavior of the set of equilibrium
payoffs of n-person (n ≥ 3) infinitely repeated or 2-person finitely repeated
games with either mixed action or probabilistic transition automata is un-
known and of interest. The difficulties in the study of equilibrium payoffs



of n-person infinitely repeated games is the asymptotics of the minmax pay-
offs which is unknown. As for 2-player finitely repeated games with either
mixed action or probabilistic transition automata, it seems that our con-
structed equilibrium (Neyman 1995) in the finitely repeated games, remains
an equilibrium in the game in which players are restricted to play with either
mixed action or probabilistic automata with the same bounds. Note that as
Σi(m) is a proper subset of Σi

p(m) (and of Σi
t(m)), the assertion that σ∗ ∈

∆(Σ1(m1))×∆(Σ2(m2)) is an equilibrium in ({1, 2}; Σ1
p(m1),Σ2

p(m2); rT ) (in
({1, 2}; Σ1

t (m1), Σ2
t (m2); rT )) is stronger than the assertion that it is an equi-

librium in GT (m1,m2). Moreover, in this setup, holding a player down to
his individual rational payoff requires just one state (a fixed finite number of
states) and therefore in the theorems there is only a need to bound the size
of one of the automata.

Repeated games with incomplete information. The theory of re-
peated games with incomplete information and either probabilistic or deter-
ministic action function is of interest. Here the initial state is allowed to
be a function of the initial information, or equivalently, the initial move of
nature is part of the input at stage 0. Alternatively, one allows the action
function to depend on the state of the machine and the information about
the state of nature. It is relatively easy to verify that in the case of 2-person
0-sum repeated games with incomplete information on one side the value of
the “restricted game” Γ(p,m1,m2) converges to lim vn(p) as mi → ∞ and
(log max {m1, m2})/ min {m1,m2} → 0. It is of interest to find whether in re-
peated games with incomplete information on both sides and under the above
asymptotic conditions on m1 and m2 the values of Γ(p,m1,m2) converge to a
limit and whether this limit equals lim vn(p).

Stochastic Games. My initial interest in the theory of repeated games
with finite automata stemmed from my work with J.-F. Mertens on the exis-
tence of a value in stochastic games. The ε-optimal strategies exhibited there
are behavioral strategies which are not implemented by any finite state mixed
action automaton. Blackwell and Ferguson (1968) show that in the “Big
Match” there are no stationary (i.e. implemented by a mixed action automa-
ton of size 1) ε-optimal strategies, and it can be shown further that there are
no ε-optimal strategies which are implemented by a mixture of mixed action
automata of finite size. However, when both players are restricted to strategies
that are implemented by either deterministic or mixed action automata of sizes
m1 and m2 we are faced with a 2-person 0-sum game G(m1,m2) in normal
form which has a value V (m1,m2). It is of interest to study the asymptotic
behavior of V (m1,m2) as mi → ∞. Consider the “Big Match” ( Blackwell
and Ferguson 1968) which is an example of a 2-person 0-sum stochasic game.

1 0
0∗ 1∗



The value of the (unrestricted) undiscounted game is 1/2. Mor Amitai
(1989) showed that for this game there is a polynomial function m : IN → IN
such that the value of the restricted “Big Match” where player 1 and player 2
are resricted to strategies which are implemented by automata of sizes m(n)
and n respectively equals 1.

Another generalization of automata suggested by the theory of stochastic
games is a time dependent probabilistic action automaton. In a time depen-
dent automaton the action of the automaton depends on its internal state
and the stage. This generalizes also the concept of a Markov strategy. Black-
well and Ferguson (1968) have shown that in the “Big Match” there are no
ε-optimal Markov strategies. This leads to the natural question as to whether
or not there are ε-optimal strategies which are implemented by a finite state
time dependent probabilistic automaton. When raising this question in a sem-
inar in Stanford University, Jerry Green has pointed out to me the work of
T. Cover (1969) which illustrates a statistical decision problem in which a
difference between the stationary finite automata and the time dependent au-
tomata emerges. My attention to the topic of repeated games with bounded
automata was recalled in discussions I had with Alan Hoffman during his visit
to Jerusalem in the spring of 1983. Hoffman informed me that in the early
fifties, when engineers at SEAC were actually playing tick-tack-toe on the
SEAC, he was concerned on how game theorists will view/study the fact that
a 2-person 0-sum fair (value 0) game, becomes an unfair game when players
are restricted by their “programs”. This triggered my attention to pose the
problem settled by Ben-Porath and later to the study of the possible cooper-
ation in finitely repeated games with bounded automata. I am indepted to
each one of the above mentioned individuals for their influence, either directly
or indirectly, on my working on repeated games with finite automata.

Mor Amitai proved the following interesting result concerning the maxmin
of stochastic games with probabilistic transition automata: for any stochastic
game and ε > 0, there exists a constant m such that for any m1 and any
strategy σ1 ∈ Σ1

t (m1) there exists a strategy σ2 ∈ Σ2
t (m) such that

r1
∞(σ1, σ2) ≤ sup inf r1

∞(σ, τ) + ε

where the sup ranges over all stationary strategies of player 1 and the inf
ranges over all strategies of player 2.
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