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Abstract

We study a repeated game in which one player, the prophet, ac-
quires more information than another player, the follower, about the
play that is going to be played. We characterize the optimal amount
of information that can be transmitted online by the prophet to the
follower, and provide applications to repeated games played by finite
automata, and by players with bounded recall.

1 Introduction

The classical paradigm of game theory assumes the full rationality of interac-
tive agents. In particular, it often assumes unlimited computational power.
However, there are many games where it is impossible to assume that the
players can implement all strategies. In fact, the number of strategies of the
repeated game grows at a double exponential rate in the number of repeti-
tions, and many of the strategies are not implementable by reasonable-sized
computing agents.

A central question that arises is how does the outcome of a given in-
teraction depend on the agents’ computational power. Over the last two
decades many papers have developed a theory that enables one to quan-
tify the impact on the outcome of such limits on implementable strategies.
The general framework of this theory considers repeated games where each
player is restricted to a subclass of strategies that are implementable by
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machines with prescribed bounds on its complexity. For instance, Ben Po-
rath [2], Kalai [5], Kalai and Stanford [6], Megiddo and Widgerson [10],
Neyman [11] [13], Neyman and Okada [14], Papadimitriou and Yannakakis
[15] study repeated games with bounded automata, Lehrer [7], [8] study re-
peated games with bounded recall, and Gossner [4] studies repeated games
played by polynomial time Turing machines.

The study of equilibria of the resulting strategic dynamic interactions
leads to phenomena that are absent in the (unconstrained) repeated game.
For instance, consider a 3-player repeated game in which players 2 and
3 form a team, player 1 is restricted to choosing a periodic sequence of
period m and players 2 and 3 are restricted to automata of sizes mo and
mg respectively. Results due to Ben Porath [2] and Neyman [12] show
that, whenever mo > exp(Km) for K sufficiently large, and mg = o(logm),
complexity bounds imply the sequence can be fully decoded by player 2,
whereas it remains completely unpredictable for player 3. Hence, it may
be profitable for the team that player 2 shares part of its knowledge of the
sequence with player 3. The only way that player 2 can send information to
player 3 is by the particular choice of action during the course of the game.
This is what we refer to as online communication through actions, opposed
to offline communication through some outside communication channel. We
investigate the best means for the team to achieve this communication,
which leads to the study of online communication by boundedly rational
agents.

In order to single out the problem of efficient online communication,
we consider an auxiliary 3-player game, called the 3-player online matching
pennies. Its analysis is of independent interest and it enables to derive
results regarding repeated games with bounded automata and/or bounded
recall.

The 3-player matching pennies is a zero-sum game in which each one of
the 3 players chooses an action in {0, 1}, and the payoff to players 2 and 3 is
1 if the 3 actions coincide and 0 otherwise. In the n-stage version of online
matching pennies, player 1 first chooses a sequence of actions in {0,1}",
which is then announced to player 2. The repeated game then proceeds,
in which player 1 plays the chosen sequence, player 2 plays according to
its knowledge of the sequence and its observation of player 3’s actions, and
player 3 plays only conditional to past actions. Clearly, the problem faced
by the team in the game of online matching pennies is the same as in the
previously discussed game played by finite automata, namely to efficiently
use online communication from player 2 to player 3.

The performance of a strategy for the team can be measured under



different assumptions on how the sequence is chosen. In particular, the
sequence may be random i.i.d. (%, %), or it may be the worst possible against
this given strategy. In both cases, we study the optimization problem of the
team. Our main result shows, somewhat surprisingly, that the value, i.e.,
the maximal payoff that the team can guarantee, in both cases coincide.
Namely, we prove the existence of a value v* such that there exist pure
strategies of the team that guarantee v* in the long run against all sequences,
and furthermore, no strategy of the team can obtain more than v* against
an i.i.d. (%, %) sequence. We also give an analytical formula for v*, and
design e-optimal strategies.

We introduce formally the model of online matching pennies in Section 2,
and illustrate it with examples of strategies in Section 3. Section 4 presents
the main result, provides the formula for v*, and introduces tools for the
proofs. In Section 5, we bound the payoff that the team can obtain against
a random sequence by v*. Moreover, we construct e-optimal strategies that
guarantee v* —¢ against all sequences in long games in Section 6. Finally, we
conclude in Section 7 with applications to repeated games played by finite

automata, or by players with bounded recall.

2 Model: Online matching pennies

2.1 The one-shot game

We consider a 3-player game of matching pennies. Players 1, 2, and 3 choose
i, j, and k in {0, 1}, and the payoff to players 2 and 3 is given by:

0 otherwise

and can be represented by the payoff matrices:

110 0
0 0|1

where player 1 chooses the row, player 2 chooses the column, and player 3
chooses the matrix. The payoff to player 1 is —g(i, j, k).

Player 2 is called the prophet, and player 3 the follower. Since they have
a common payoff function, players 2 and 3 form a team.



2.2 The repeated game

A (pure) strategy for the prophet is a mapping Y : {0, 1} — {0, 1}"Y with co-
ordinates (Y;,),. A (pure) strategy Z for the follower is a mapping Z: {0, 1} x
{0, 1} — {0,1}" with coordinates (Z,), such that Z, depends on the ac-
tions of players 1 and 2 from stages 1 to n — 1.

Hence, player 1 chooses a sequence of actions, and does not react to the
team’s actions. Player 2 has knowledge in advance of the actions of player
1, and can play accordingly. Player 3’s actions depend on the past actions
of players 1 and 2.

Given a sequence X € {0,1}" and strategies Y, Z for the team, the in-
duced sequences of actions (y,), and (z,), of the prophet and the follower
are given by the relations: (y,)n, = Y(X), (2n)n = Z(X,Y). Any probability
P on {0, 1}" together with strategies (Y, 7Z) induces a probability distribu-
tion Py.z on the set of sequences (7, ys, 2) in ({0, 1} x {0,1} x {0,1})".

2.3 Questions
We address the following questions:

e What is the best expected payoff that the team can guarantee against
a fized distribution over sequences of player 17

e What is the best payoff that the team can guarantee against all se-
quences of player 17

We therefore introduce the following notations:
Given a probability p on {0,1}", let

1
vn(p) = max —E,, , Zg(l“taytazt)

Y, Z N po
and let v, = min, v, (p).

Hence, assuming X ~ p, v,(p) is the best expected payoff the team can
obtain in the n-stage game, and v, is the best expected payoff against the
worst distribution p.

The minimal payoff that strategies Y, Z of the team guarantee against
all sequences is min(y,), % Sor19(ze,yi, z) in the n-stage version. A pru-
dent choice of strategies for the team would maximize this minimum payoff.
Hence, given n € N, we let

wy, = maxmln— E 9(Te, yt, 2t)-
:Et t N



Since a strategy that guarantees w, against all sequences of player 1 also
guarantees w, against any distribution of sequences, w, < v,(p) for any p
and therefore w,, < v,.

3 Candidate strategies

We present two strategies for the team and analyze their payoffs both against
the distribution p = (1/2,1/2)®™, and for the worst case.

Example 1: Consider the strategies given by y = z for the prophet and by
an arbitrary sequence of actions z = (z1,..., z,) for the follower.

e Against p, the average expected payoff is 0.5.

e The worst possible sequence is x = (1 — z1,... ,1 — z,), and the cor-
responding payoff is 0.

Example 2: Assume the prophet plays on odd stages the next action of
player 1 and on even stages the follower and the prophet play the previous
action of the prophet. The follower plays an arbitrary sequence of actions
on the odd stages.

The resulting sequences of actions are:

r = (1‘1,1‘2,1‘3,1‘4,.-- ,Z‘n)
— (1‘2,1‘2,1‘4,1‘4,--- ,Z‘n)
z = (2’1,1'2,23,1'4,--- 7xTZ)'

e Against a sequence distributed according to p, the team obtains:

— 1 at even stages;
— an expected payoff of i at odd stages;

— resulting in an average expected payoff of 0.625.
e Against the worst possible case, the payoffs are:

— 1 at even stages;
— 0 at odd stages;
— resulting in an average payoff of 0.5.
The strategies in Example 1 do not involve any communication. Strate-

gies of Example 2, which involves communication at odd stages, improve
both in terms of expected payoff against p and against the worst case.



4 Main result
We let v* be the (unique) solution of the equation
H(z)+ (1 —1z)logy3 =1
where H is the entropy function H(z) = —zlogyz — (1 — ) logy(1 — ) for
z € (0,1).

Theorem 1 The game of online matching pennies has value v* in the fol-
lowing sense:

1. With P = (%,%)@’N, for all strategies Y, Z of the team and for all
n €N,

1 n
o ZEPY,Zg(xtayta z) < vt
t=1

2. There exist strategies Y, Z of the team such that: for all € > 0 there
exists N such that for all n > N and for all P,

1 n
o Z Epy ,g(ze,y, 2t) > v* — €.
t=1

4.1 Notations and tools

We introduce the tools needed for the proof of Theorem 1.

4.1.1 General notations

Given a finite set (or a measurable space) X we denote by A(X) the set of
probability measures on X.

For z € R, we let [z] and [z] denote the integer part and the superior
integer part of z respectively (z — 1 < [z] < zand z < [z] < 2+ 1). Given
a finite set Z, |Z| denotes the cardinality of Z.

Given two sequences a = (a,), and b = (a,)n of positive numbers, we
logan—logbn __ 0

write a = b whenever lim,,_, -

4.1.2 Entropy and conditional entropy

Let X be a random variable over a finite set ® with distribution p. The
entropy H(X) of X is

H(X) = —¥ycop(0)logp(f) = —Ex logp(X)



where 0log0 = 0 (by convention log is taken in basis 2). The entropy of a
random variable depends on its distribution only. Thus, for p € A(©) we let
H(p) = H(X) for a random variable X with distribution p. By convention,
if p € [0, 1], H(p) also represents the entropy of a Bernoulli random variable
of parameter p.

Given a pair of random variables (X7, X5) taking values in ©; x Oy with
joint distribution p(61, 62), we denote by p(f2 | 61) the conditional probabil-
ity that X2 = 02 given that X1 = 91. Define h(X2 | 91) = _2926921)(02 |
01)logp(f2 | 01). Thus h(Xs | 01) is the entropy of X9 when the realization
X, = 60y is known.

The conditional entropy H (X5 | X1) of X5 given X is

H(Xy | X1) = Ex, [M(X2 | X1)] = Y p(B1)A(X2 | 61).
01€0,

Direct computation shows that H (X1, Xo) = H(X)+ H (X2 | X1). This
extends to a family of random variables (X1,..., X,,) to:

n
H(Xy,...,X,) = H(X1) + Y H(Xp | X1, 00, Xp—1)-
k=2

4.1.3 Hamming distance

2™ stands for the sequences of zeroes and ones of length n. T stands for the
indicator function. The Hamming distance between two sequences z,y € 2"
is denoted dg (z,y) (= D1 (@t # yi)).

We shall rely on the following bound on the size of a sphere of size ¢
centered at z € 2".

Proposition 1 Given i,n € N, ¢ <n and x € 2":

g, drz,) = i} = (”) > 27%) |

Proof. The first equality is obvious, and the second follows directly from
classical bounds. (See e.g. [9], p. 309, 310.) m

5 The information constraint

We assume the distribution p of sequences of player 1 known to players 2
and 3, and obtain a bound on the best response payoff to the team. Then
we derive a proof for Part 1 of Theorem 1.



We first provide a bound on the payoff that the team can obtain facing
a distribution over the sequences of length n.

Proposition 2 Let p € A(2"), and h = %H(p)

h < H(vn(p)) + (1 — vn(p)) log 3.

Proof. Assume thus that X = (Xy,... ,X},) is drawn according p, and that
Y : 2" = 2% and Z : 2 x 2N — 2N are pure strategies of players 2 and 3
respectively.

Let F; denote the algebra of events spanned by the random variables
X, Y, ..., Xy, Ys. We define

a=E,I(X;=2Z,=Y) | Fiz1) .

Thus, ¢; is the F;_i-measurable random variable that represents the ex-
pected payoff for the team at stage ¢ given the past actions.

Note that Z; being F;_1-measurable, the triple (X, Yy, Z;) may take only
4 values conditional to F; 1, as represented in the following tree:

(J
® [ ]
Xt = Zy

Y = Z4

[ ]
Xt = Z¢ X¢ # Zy Xt # Zt

Yy # Zy Y: = Z; Y #£ Z¢

Hence, we deduce that:
h(Xy, Yy | Fe1) < H(ge) + (1 — g¢) log 3.
Taking expectations over histories in F; ; yields:
H(X, Y | Xi,Y1,..., Xi-1,Yi-1) <E,(H(g¢) + (1 —g¢) log 3).

Summing over ¢ now gives:

H(X1,Y1,..., X0, Y,) B, > (H(gr) + (1 —g1) log 3).
t=1



Note also that:

H(X,Y1,...,X,,Y,) = H(Xy,...,Xn)+HMY,..., Y, | Xq1,...,X,)
= H(XlaaXn)
= nh.

since (Y7,...,Y,) is a function of (X1,...,X,). Hence,
1 n
h < E/’ﬁ ;(H(gt) + (1 — g¢) log 3).

We now apply twice Jensen’s inequality to the concave mapping = +— H(z)+
(1 — z)log 3 and obtain

h < th 1——th log 3)
< th (1-E,— th ) log 3.

Hence, the expected payoff to the team g = Ep% Sorq gt verifies
h < H(g)+ (1 —g)log3.

The following figure shows the curve of equation y = H(x)+ (1—xz) log 3.
We see that the z-coordinate of the intersection between this curve and the
straight line y = h is minimal when h =1 (0 < h < 1), and equals v*. From
this we deduce Part 1 of Theorem 1.

2.0 A

1.5 1

1.0

0.5 +
(g,h) o

0 0.25 0.50 0.75 1.00



6 Design of c-optimal strategies

We now design e-optimal strategies for the team against all sequences of
player 1, and show that they can guarantee any payoff close to v*. This will
imply Part 2 of Theorem 1.

Let z < v*, and n = H(x) + (1 —z)log3 — 1 > 0. We now construct
strategies for the team that (for sufficiently large n) guarantee x against all
sequences.

Let p = IIJ:Z’; and ¢ = %(1 — x). The strategies are defined over blocks
of length n in such a way that in any block after the first, and for any
sequence X, the proportion of stages for which 7, # X, is close to ¢, and
the proportion of stages for which Y; # X; conditional on Z; = X, is close
to p. The proportion of stages in which Z; = Y; = X; is then close to
(1=p)(1—q) ==

During each block (after the first), the follower has to interpret the mes-
sage sent by the prophet during the previous block in order to choose a
sequence of actions Z. This sequence of actions should be such that it
matches [(1—¢)n] times the sequence X of player 1. We call each sequence
Z that may be chosen by the follower an action plan.

During a block, assuming that the sequence of actions of the follower Z
matches [(1 —¢)n] times the sequence X of player 1, the prophet chooses a
sequence of actions Y such that:

e Among the [(1 — g)n] stages in which Z and X match, Y matches
X exactly [(1 —p)(1 —¢g)n] = [zn] times (and mismatches X about

11—z

p(1 —g)n = Z%n times).

e Among the [gn] stages in which Z and X do not match, Y matches
X exactly [4n] = [15%n] times (and mismatches X about the same

number of times).

Let M (X' 7 ) be the set of sequences Y that satisfy these frequency require-
ments. We design strategies in such a way that, by the choice of a particular
Y, the prophet indicates to the follower which sequence of actions to play
during the next block. Hence, we call each such sequence Y a message.

In order for the above construction to work, we must find a set of action
plans A such that there exists a mapping from the set of messages onto
the set of action plans, and such that for each X, there exists Z € A that

10



matches [(1 — ¢)n] times the sequence X. To check the existence of such
a mapping, we need to estimate the size of the set of messages, and the
minimal size of a set A having the required property.

A message is given by the choice of [(1 — p)(1 — ¢)n] stages among
[(1 —g)n], and of [2n] among [gn]. Hence, the size of the set of messages

e [ I

1S:
1—

Since (1 —p)(1 —¢) = = and p(1 — ¢q) = 4 = 3%, the following trees are
equivalent:

[ J
1— °
7 \ 9 1—=z T
[ ] ®
% % p _ p 1 () 1 ®hoth right
3 f 3
[ J [ ] [ ] [ J 3
o ®

both follower prophet both

wron onl, onl,
& ¥ ¥ both follower prophet

right
wrong only only

Hence, H(q)+q+ (1 —q)H(p) = H(x)+ (1 —z)log3 = 1 —n. Therefore,

H(p)(1—-q)+q=1-H(q) +17

and the set of messages has size = 2n(1-H(@)+n)

6.1 On the minimal size of a set of action plans

We prove that there exists a set of action plans A = A(n) of size |[A(n)| =
on(1=H(a)) guch that for every & € 2", there exists 2 € A that matches X
exactly [n(1 — ¢)] times.

Lemma 1 There exists a sequence of sets (A(n)), € 2™ such that:

o For every X € 2", there exists Z € A that matches X ezactly [n(1—q)]
times;

o |A(n)| = 20(1-H(@),

11



Proof. We prove this lemma following a probabilistic method (see for in-
stance [1]). More precisely, we consider a random subset of 2" composed
of |[A(n)| = 2"(1=H(@) independently and uniformly distributed points, and
prove that the probability that A(n) satisfies the first condition of the lemma
is positive. This will imply the existence of a realization A(n) that fits it.

Let then ¢}, = %, and oy, = [nV2n2"(1-H(4))] = on(1-H(a) | Take a
family (Z;)1<i<a, ofi.i.d. uniformly drawn points in 2", and A(n) = {Z;,1 <
i < ap}. Prob denotes the probability induced by the Z;’s.

For X € 2", let S(X;|gn|) be the sphere centered at X of radius |gn|

w.r.t. the Hamming distance. Lemma 1 implies:
onH(q;)
V2n

For X € 2™ and Z uniformly drawn in 2", we then have:

|S(X5 [gn])| >

Prob (de(X. 7 < (o onH(an) \ 1 . on(H(q,)-1)

Then:

Prob (AZ € A(n), du(X,Z) = gn]) < (1 - M)

on(H(gy)—-1) \ ™"
< | exp(———F7=—)

< exp(—n).

Thus, for A(n) randomly chosen, the expected number of points X € 2"
such that AZ € A(n), dy(X,Z) = [gn] is less than 2"e™ < 1. Therefore,
there exists a realization, i.e., a subset A(n) of 2", such that this number of
points X is zero, which means that for every X € 2" there is Z € A(n) for
which dy (X, Z) = |gn]|. =

Remark that the set of messages of the prophet depends on the actions
X and Z of the sequence and the follower. This is so because the set of
messages is defined in terms of statistics for (X, Y, Z). On the other hand,
the set A of action plans for the follower does not depend on X and Y.

6.2 Construction of the optimal strategies

From the property of A and the fact that for n large enough |M (X, Z)| > A,

we deduce the existence of families of message maps (mf(,Z) % zeon and

12
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51
1

b

action maps (ag 7) g 7con Withmyg 52 2" — M(X,Z), ag 72 M(
and such that

VX'€2", dplag z(mg z(X"), X') = gn]. (1)

We shall construct strategies for the team over blocks of length n. In these
strategies, m oA is used by the prophet to choose a sequence of actions
Y, in the k-th block as a function of the sequence Xk+1 of player 1 in the
k + 1-th block (knowing also the sequences Xy, Zi of players 1 and 3 in the
k-th block). The follower then uses a %7, 1O choose a sequence of actions in

the k£ + 1-th block as a function of Yj. This is summarized by the following
diagram:

myg . .-
on 2ol AR Zh) 2% A
X1  — Yy —  Zj1 -

Property (1) then ensures that:
dir(Xps1, Ziyr) = lan).

We now define formally the strategies o,7 for the prophet and the fol-
lower over blocks of length n. For k € N let Xp = (Xt—1ynt1,--- > Xn),
Y, = (Yv(kil)n*,l’ oo, Yi,) and Zp = (Z(k:il)n+1,. ..y Zgpn) denote the ac-
tions of players 1, 2, and 3 during the k-th block, and let oy, 7} represent
the strategies of the prophet and the follower during the k-th block.

e During the first block (kK = 1), the prophet plays the actions of
the sequence of the second block, while the follower plays a constant
sequence of 1’s. Formally:

{Ul(X) = Xg
n(X,Y) = (1,...,1).

e During the second block (k = 2), the follower plays a sequence in
A which is at a Hamming distance |gn| of X5, and the prophet tells
the prophet what to play during block 3. Formally:

(X,Y) = Zsuch that di (Y1, Zo) = |qn],
O'g(X) mX2’22(X3) .

e In each subsequent block (k > 2), the follower interprets the pre-
vious message of the prophet in order to play a sequence of Hamming

13



distance |gn| of X}, and the prophet signals to the follower which
sequence to play during the next block:

Tk (X’ Y) = af(k—lyék—} (ffkfl)’
mf(kyék (Xk+1)'

Q

=

>
Il

7 Applications to repeated games played by bound-
edly rational players

The corollaries of the present section address 3-players repeated matching
pennies played by finite automata or by players with bounded recall. We
follow the notation of the previous sections.

Notice that in the previous construction of e-optimal strategies for the
team, the complexity of the strategies of the follower is bounded. Indeed, it
is implementable by a strategy of bounded recall (of memory 2n, where n is
the size of a block) and thus also by a finite automaton.

In what follows we wish to deduce the foresight of the prophet from
his computational superiority. For that we bound the complexity of the
sequence and provide sufficient lower bounds for the size of automata or
the length of recall needed to generate the foresight and to implement the
strategy.

We assume that the sequence (of player 1) is mq-periodic. This will be
the case if it is generated by a non-interactive automaton with m; states,
or by an oblivious bounded recall strategy of memory logy,m;.

In order for player 2 to be able to record and keep track of the sequence
and the stage within the sequence he needs an automaton of size 2™'m;.
(2™ states suffice to record the periodic cycle, and my states suffice to keep
track of the time within the cycle.) Therefore we have:

Corollary 1 For every € > 0 there is m sufficiently large s.t. for every
my and mo with mg > [2™|my there are pure strategies o (of player 2)
implementable by an automaton of size ms and a strategy T (of player 3)
implementable by an automaton of size m s.t. for every infinite mq-periodic
sequence X = (Xq,...) we have

n
Zg(Xt, Y, Zy) > v'n—en—m
t=1

where Yy = o(X1q,... ,X4—1), and Zy = 7(Y1,... ,Yi_1).

14



A minor modification of the strategy of the prophet is needed when we
restrict ourselves to bounded recall strategies. This modification calls on
player 2 to mark the start and end of the cycle, by strings of his own actions
that will not appear elsewhere. We skip the details. We thus have:

Corollary 2 For every € > 0 there is m sufficiently large s.t. for every m,
and mo with my > my there are pure strategies o (of player 2) of recall
of size mo and a strategy T (of player 3) of recall of size m s.t. for every
infinite mq-periodic sequence X = (X1,...) we have

n
> 9(Xe, Vi, Zy) 2 v'n—en —m
t=1

where Y;g = U(Xt_mei_mz, e 7Xt—1,Yt—1)7 and Zt = T(Yt—mQ, e ,Yt—l)-
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