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Econometrica, Vol. 52, No. 5 (September, 1984)

PAYOFFS IN NONATOMIC ECONOMIES:
AN AXIOMATIC APPROACH

By PRADEEP DUBEY AND ABRAHAM NEYMAN'

1. INTRODUCTION

IT HAS BEEN OFTEN REMARKED that different solution concepts become equivalent
in the setting of “perfectly competitive” economies (i.e., to use the modern idiom
[2], economies in which the agents form a nonatomic continuum). The conjecture
that the core and competitive (Walras) allocations coincide was broached as far
back as 1881 by Edgeworth [10]. This insight has been vindicated in increasing
generality in a spate of articles® [21, 9, 2, 14, 13, 7, 8, 1] over the last two decades.
More recently, it was shown by Aumann [3] that—with a smoothness assumption
on the preferences—the “value allocations™? also coincide with the above two.

If we restrict ourselves to the case of smooth, transferable utilities, then the
equivalence phenomenon turns out to be even more striking: not only do these
solutions coincide but they are also unique, i.e., consist of a single payoff. Our
aim here is to give another view of this “coincident payoff” by putting it on
an axiomatic foundation. As an upshot of our approach we get a “meta-
equivalence” theorem, by way of a categorization: any solution coincides with
this payoff if, and only if, it satisfies our axioms.

The transferable-utility assumption is undoubtedly restrictive. But we are
encouraged by its good track record of being the precursor of the general
analysis (e.g. [6] before [3]; [18] before [19]; [21] before [9]). And we hope that
our approach can be extended to the nontransferable case.

Denote by M the class of nonatomic economies with transferable and differen-
tiable utilities. Any such economy can also be viewed as a productive economy
with a single consumable output. (See the discussion in Chapter 6 of [6].) We will,
in fact, adopt the production interpretation for most of our discussion. But by
thinking of the output as “utiles” everything we say can be translated into the
exchange version as well.

The problem of determining payoffs (final distributions of the output) in these
economies has been approached from many sides. Let us briefly recount some of
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SOC77-27435, MCS81-04259, SES82-10792, as well as ONR Grant No. N00014-77-C-0517 issued
under Contract Authority NR 047-006. The revision part of this work was done in the Spring of 1982
when the second named author was at the Harvard Business School.

We would like to thank an anonymous referee for an extremely thoughtful report. This referee has
suggested Lemma 5.4 and its proof which has contributed to a shortened version of our original
proof. We would also like to thank Robert Aumann for very helpful suggestions.

2This list is only meant to be indicative, and by no means exhaustive.

3Which are based on the Shapley value [18, 19], a game-theoretic concept quite different from the
core.
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1130 P. DUBEY AND A. NEYMAN

them. First there is the classical notion of a competitive payoff which depends on
prices that clear all markets, i.e., equate supply and demand. Equally well known
is the concept of the core. It is defined by the condition that no coalition of
agents in the economy can, on its own, improve upon what it gets. (See Chapter 6
of [6] for a historical survey and detailed discussion of these concepts.) Other
solutions from game theory have also been applied to the economic model. The
bargaining set [4], which contains the core, is based upon a weaker notion of
stability: each “objection” can be ruled out by a “counter-objection.” (In this
terminology there can be, a fortiori, no objection to any payoff in the core.) Then
there is the concept of the nucleolus [17]. Roughly, what is involved is minimiz-
ing the “dissatisfaction” of the most dissatisfied coalition, where dissatisfaction is
measured by the difference between what a coalition “could” get and what it is
getting. Finally, we have the Shapley value [18], which has been the focus of
active, recent research (and was the starting point of this inquiry as well). It is a
mapping that assigns to each player of a game a number that purports to
represent what he would be willing to pay in order to participate; and is uniquely
determined by certain plausible conditions for all finite games [18], and a large
class of nonatomic games (pNA) which include the economies in M [6]. The
value thus obtained can also be interpreted from a complementary standpoint: it
assigns to a player the average of his marginal contributions to coalitions he may
join (in a model of random ordering of the players).

For any economy in M, all these solutions coincide and consist of a single
payoff [6, Chap. 6; 11]. We would like to explicate certain underlying principles
which lead to this distinguished payoff. To set the stage for this, we take a map
from economies to sets of payoffs and look for a minimal list of plausible axioms
that will uniquely characterize the map. Four axioms are presented which
accomplish the job. The map they lead to is that of the above-mentioned
distinguished payoff.

This may be viewed as a meta-equivalence theorem. For instance the equiva-
lence of core and competitive payoffs follows from our result by simply checking
that both the map which takes each m in M to its core and the map which takes
each m in M to its competitive payoffs satisfy our axioms. That the value also
coincides with the core and competitive payoff is immediate because it, in fact,
satisfies even stronger axioms [16, Chap. 1]. In general: if any solution is a
candidate for equivalence, it is both necessary and sufficient that it satisfy our
axioms.

In our axioms, we try to identify the minimal common characteristics of
solutions that hold not only on M but also when the set of agents is finite, or
when utilities are not differentiable (or both). The axioms are therefore cast in as
weak a form as possible. They turn out to be categorical (i.e., imply a unique
solution) only on M (i.e., only in conjunction with nonatomicity and differentia-
bility). Besides the aesthetic value of the weak form, there is also a pragmatic
reason involved. In this form the truth of the axioms can be easily verified for a
given solution concept, and thus it provides an effective format for discussing
equivalence. Of course once a solution obeys the axioms, then an implication of
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our theorem is that on M it coincides with the value and therefore in fact must
obey the much stronger axioms of the value. But these strong axioms are often
not easy to verify directly. An example is provided by the core for which
additivity on M is not obvious (and in fact is not true outside of M) but
separability is.

The axioms will be spelled out precisely in Section 3, but let us present them at
an intuitive level now. Denote the space of agents by [7, %, u]. Here T is the set
of agents, ¢ the sigma-algebra of coalitions, and p a nonatomic population
measure on [T,4]. An economy is a pair of measurable functions (a,u) where
a: T—> R’ specifies the initial endowment of the » resource commodities, and
u:T X R} —> R, the production—alternatively, utility—functions. M is the set
of all pairs (a,u), subject to certain conditions on a and u (see Section 2). For
any m in M we can define an associated characteristic function (or game)
v, : % —> R, which assigns to each coalition the maximum output that it could
achieve by a reallocation of the resources of its own members, i.e.,

on(S) =max{fsu(t,x(t))du(z) :Lx(t)du=fsa(t)du,x TRy .

Payoffs in m € M can be thought of as integrable functions from 7 to R, ,
and in turn can be identified with nonnegative countably additive measures on
(T,¢) which are absolutely continuous with respect to u. But let us make only
the assumption that they lie in F4, the collection of functions from 4 to R which
are finitely additive and bounded. Let P(FA) be the set of all subsets of FA.
Then any assignment of payoffs to economies may be represented by a map:

¢ : M— P(FA).

We will impose four axioms on ¢: “inessential economy,” “anonymity,”
“separability,” and “continuity.” Our main result is that there is one, and only
one, map which satisfies these axioms: it maps m into the (unique) coincident
payoff of m. There is an immediate corollary to this which is useful to keep in
mind for the meta-equivalence aspect of the result. Given two solutions ¢, : M
~> P(FA) and ¢,: M — P(FA), call ¢, a “cover” of ¢, if ¢,(m) C ¢,(m) for all m
in M. Our result implies that if a solution is nonempty-valued and has a cover
which satisfies the axioms, then it must also agree on M with the coincident
payoff. Thus even though competitive payoffs, in general, violate continuity and
the nucleolus violates separability (when the agent space is finite), their equiva-
lence on M is assured because the core is readily seen to be a satisfactory cover
for both.

The inessential economy axiom has to do with economies in which agents have
no motivation to collude in order to increase the output. Indeed, suppose that m
in M is such that each coalition S € € achieves its maximum v,,(S) uniguely by
sticking to its allocation of resources. Then one would expect that no exchange,
either of the inputs or the output, will occur. And this is just what the axiom says.
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The anonymity axiom asserts that the labels of the agents do not matter. If we
were to relabel them, this would have the effect of relabelling their payoffs
accordingly.

These two axioms hold widely for most solutions, not only on M, but in
general.

The separability axiom considers an economy made up of two separate,
noninteracting parts. Take m’ and m” in M. Let us construct the economy m by,
as it were, “collating” m’ and m”. Each agent in m possesses the same initial
resources that he had in m’ and in m”; also he has access to both his production
functions from m’ and m”. However, suppose that the input commodities of m’
and m” are completely disjoint: those in m’ cannot be used for production in m”,
and vice versa (though the two economies produce, of course, the same output).
Now consider any coalition S that forms in m. Each agent in S can send his
black-hatted (white-hatted) representative to m’ (m”). If these two types of
representatives separately maximize the output in m’ and m”, then the sum of
what they get back is precisely what S can obtain in m, i.e., v,,(S) = v,(S) +
v,,(S) for all § € €. Thus m, in essence, consists of operating in m’ and in m”
independently of each other. We require that in this case if we put together a
payoff in m’ with one in m”, the outcome should be feasible in m. However, we
do not exclude the possibility that other payoffs may also be obtained in m. In
symbols: ¢(m’) + ¢(m”) C ¢(m). This is related to the additivity axiom for the
value but it is so watered down as to apply to the core even when the economy is
finite (in which case additivity, ¢(m) = ¢(m’) + $(m”), no longer holds). Clearly
it applies always to the value and to competitive payoffs; indeed, both these
satisfy additivity.

The continuity axioms say that if the distance between two economies is small,
then so is that between their sets of payoffs. It is, of course, intimately bound up
with the notion of distance. The one we employ declares the distance between
two economies to be zero if they yield the same characteristic function. Thus the
payoffs depend on the characteristic function alone, i.e., they depend on the data
(a,u) of the economy only insofar as it shows up in the net production of the
coalitions (if v, = v,,, ¢(m) = ¢(m")). Modulo this, however, our continuity
requirement is weak. We choose a “large” norm on the characteristic functions
(the bounded variation norm) and a “small” one on P(FA) (the Hausdorff
distance in the bounded variation norm, which is equivalent in FA to the
maximum norm).

Our axiomatic approach is akin to that of [6] and invites immediate compari-
son. We begin with a point-to-set map (from M to FA). That ¢(m) is a nonempty
one-element set of FA4 is a deduction, not a postulate, in our case. Also note that
we do not require that ¢(m) consist of efficient payoffs—this, too, is deduced.
Separability reduces to additivity if the solution is single-valued but not other-
wise. Clearly separability is weaker than the additivity required in [6]. Continuity
is closely related to the positivity axioms of [6]. (See Proposition 6.14 and
Corollary 6.15 of this paper and Propositions 4.6 and 4.15 of [6].) Finally, we
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emphasize that the axioms are invoked on the set of games that arise from M
alone. This set is much smaller than the general space pNA of [6]. (Its comple-
ment in pNA is open and dense.) Thus the uniqueness of ¢ does become an issue.
(Existence on the other hand is no problem: simply restrict the value on pNA to
our domain.) The very question we set out with, “What are payoffs in nonatomic
economies?”’, makes it desirable that we exclude any reference to games that do
not arise from M. Thus we stay within M throughout and give a self-contained
analysis of it. Each axiom is cast in an economic framework and can be
interpreted therein. It is fortunate that even though the scope of the axioms is
diminished by this restriction of the domain, they nevertheless are sufficiently
far-reaching to determine a unique map.

The paper is organized as follows. In Sections 2 and 3 we develop the precise
statement of the theorem. Section 4 is taken up with the preparations for the
proof. For the most part this consists of collating results from [6] for the
convenience of the reader. The proof is in Section 5. Finally in Section 6 we
establish the “tightness” of our theorem. Even in the presence of additional
axioms, enlarging the domain or dropping any one of the axioms makes the
theorem break down, i.e., ¢ is no longer unique.

2. NONATOMIC ECONOMIES WITH TRANSFERABLE, DIFFERENTIABLE
UTILITIES

Let us recall more precisely the economic model presented in Chapter 6 of [6].

We begin with a measure space [7,4, u]. T is the set of agents, € the
o-algebra of coalitions, and u the population measure. [T, 4] is assumed to be
isomorphic to the closed unit interval [0, 1] with its Borel sets. u is a finite,
o-additive, nonnegative and nonatomic measure, and we assume (w.l.o.g.) that
w(T)=1.

Each agent r & T is characterized by an initial endowment of resources,
a’' € R, and a production (utility) function u‘: R". - R. Here R” is the
nonnegative orthant of the Euclidean space R”", and n is the number of
(resource) commodities. Denoting the jth component of x € R" by X aj’ is the
quantity of the jth commodity held by agent ¢, and u(x) the amount of output
he can produce using x. Thus the economy consists of the pair of functions (a, u),
where a: T—> R, u: T X R, > R (note the identifications a(?)=a’; u(z,x)
= u'(x)).

To spell out the conditions on (a,u), we need some additional notation. For
x,y in Ry, say x=p (x=y, x>y) when x;=y, (x;Zy,, x;>y) for all
1<j<n; x>y when x =y, but not x = y. Put ||x|| =max{|x|:1< j<n}.
Also note that R’ can be regarded as a measurable space with its Borel sets. We
will require that (a, ) satisfy:

2.)H a : T— R’ isintegrable;

2.2) u : T X R - R is measurable where 7 X R’} is equipped with the
product o-field € X % where % denotes the Borel sets of R ;
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(2.3) u(x) = o(||x||), as ||x|| > o, integrably in ; i.e., for every
€ > 0 there is an integrable function n : 7= R such that
lu’(x)] < €||x|| whenever ||x|| > n(?).

For almost all* r € T

24 a' > 0 (where, without confusion, 0 also stands for the origin of R} );
2.5) x' is continuous and increasing (i.e., x > y implies #'(x) > u'(y));
(2.6) u'(0)=0;

2.7 the partial derivative du'/dx; exists and is

continuous at each point where x; > 0.

The collection of all pairs (a,u) which satisfy (2.1)-(2.7) will be called M, i.e.,
we keep the space [T, %, u] of agents fixed but vary their characteristics (a, #); in
particular, the number n of resource commodities can be any positive integer
1,2,3,... . As we said already in the introduction, to each m = (a,u) € M, we
associate a game or characteristic function, v,,: € = R by:

28)  0,(S) =max{fsu’(x’)dp(t) :x:T—>RL,x(S)= a(S)}.

(For an integrable function y: T— R, , y(S) abbreviates [gydp.) That this max
is attained is essentially the main theorem in [5].

FA is the collection of all functions from € to R that are finitely additive and
bounded, and P(FA) is the set of all subsets of FA. We are going to characterize
a map ¢: M —> P(FA) via axioms. It will turn out that, for any m € M, ¢(m) is
the set of competitive payoffs in m. To remind the reader: a pair (p,x) [where
x: T R is an integrable function with x(7") = a(T) and p a price vector in
R"] is called a transferable utility competitive equilibrium (t.u.c.e.) of the
economy (a,u) if, for almost all 1 € T,

w'(y)—p-(y—a)y<u'(x)—p-(x'-a

for any y in R ; the corresponding competitive payoff is the measure v, , defined
by

(S = [ [ (x") = p - (x' = @) ] du
for S € €. If we denote by y(m) the set of competitive payoffs in m, then under

the assumptions (2.1)-(2.7), ¢(m) is a singleton for any m € M. (See Proposition
32.3 in [6].)

“#Ie., this is true for all except perhaps a p-null set of agents.
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3. STATEMENT OF THE THEOREM

In this section we prepare for and state the four axioms, as well as our main
result.

AxioM 1 (Inessential Economy): Suppose m = (a,u) in M is such that, for each
nonnull set S € €, v,,(S) is achieved uniquely by a:S—> R’ (i.e., a: S—> R is
the unique solution to the maximization problem (2.8)). Then ¢(m) consists of just
the payoff vy given by: y(S) = [su'(a")dp(?), for S € C.

Let Q, be the set of all automorphisms of [7, 4] which preserve the measure p,
ie., Q, consists of bi-measurable bijections §: T— T such that p(6(S)) = p(S)
for all S € . For m = (a,u) € M and 0 € Q,, define m = (fa,fu) by (fa)(¢)
= a(0(1)), (Bu)(t,x) = u(0(1),x). Also, for v € BV and § € Q, define, fv: ¢ — R
by (v)(S) = v(6(S)); and for 4 C BV, define 04 = {fv:v € A}.

AxioM 2 (Anonymity): For any m in M, and 6 in Q,, ¢(8m) = 0¢(m).

Since A C FA implies #4 C FA, and m € M implies m € M, the axiom
makes sense.

For the separability axiom, we need to define the disjoint sum of two
economies. Take m = (a,u), m' = (a’,u’) where a: T—> R’ and a’: T—> R¥ . Put
mOm =@®a,u®u’), where (a®a’): T> R and (u@uw): TX R}
— R are given by:

(a® a')(1) = (a(1),a'(1))
(u®u)(t,(x, ) =u(t,x)+u(t, ).

[For x € R, and y € R% , (x, y) is the vector R’** whose first / components are
according to x, and the last k& according to y.] Note that m@®m’' e M if me M
and m’ € M. Also note that 4 + B € P(FA) if A € P(FA) and B € P(FA),
where we define 4 + B={a+ B:a € A4, 8 € B}.

AXIOM 3 (Separability): For any m and m’ in M, ¢(m) + ¢(m”) C ¢(m © m’).

The continuity axiom is stated in terms of the bounded variation norm on set
functions. A set-function v is a map from € to R such that v(d) = 0. It is called
monotonic if 77 C S implies v(S) > v(T). The difference between two monotonic
set functions is said to be of bounded variation. Let BV be the real vector space
of all set-functions of bounded variation. For v € BV, define the norm ||v|| of v
by:

[lol| = inf{u(T) + w(T)}

where the infinum ranges over all monotonic functions # and w such that
v=uU—w.
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Each characteristic function v,, of an economy m in M is monotonic and thus
is in BV. So we can introduce the distance d on M by d(m,m’) = ||v,, — v,
Also observe that F4 C BV. For A and B in P(FA), let h(A, B) be the Hausdorff
distance between 4 and B, i.e., h(A,B)=inf{eE R, :4A C B and B C A},
where 4 € is the set {a’ € FA : || — o’|| < € for some o € A} etc.; and infd = oo.
We are ready for Axiom 4.

AxioM 4 (Continuity): There is a constant K such that h(p(m),dp(m")) <
Kd(m,m").

Our main result is given by:

THEOREM: There is one, and only one, map ¢ : M — P(FA) that satisfies Axioms
1, 2, 3, and 4. It assigns to each m in M the set consisting of the competitive payoff

of m.

4. PREPARATIONS

Let F denote the set of all real-valued functions f on R’ that are continuous,
increasing, and satisfy f(x) = o(||x|]) as ||x|| = oo0. For any f in the vector space
generated by F (i.e.,f € F— F) let

@n il =sw{lfe0l/ (1+ Sx) sx e RY )
where > x denotes 37_,x;. Then || || constitutes a norm. Let

F'={f € F:3f/0x; exists and is continuous at each x € R’}
for which x; > 0},

F°=(feF:f(0)=0}, F°={f€F:fisconcave).

Denote the ith unit vector (0,...,0,1,...,0)as e’, and denote the sum of the
unit vectors Se'=(1,..., 1) in R? by e; the dimension will be clear from the
context. For § >0, let I(x,6)={y:x =y = x + de}. We define an operator
A%: F— F, where for f € F, the function A%f: R" — R is given by

(A== [

0,8)

where f,(x) = f(x + y). Note that 4 % is an average of translates of f

LEMMA 4.2: For any f in F, A°f € F' for every § >0, and |A% — f||—>0 as
8§—0.If f € F°, then A°f € F*.

Proor: The translates f, of f are increasing (and concave if f € F°) functions
and thus 4 °f is an average of increasing (and concave if f € F¢) functions and
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therefore A% is increasing (and concave if f € F¢). To show that 4% € F', let
x € R, with x; > 0. Note that then ((4°%)(x + Ae’) — (4°f)(x))/A converges as
A—0to
(43) 0 I'(x+ 6e’.6)f(y) d)’ o j;‘(x,ﬁ)f(y) dy
where 1'(z,8) is the face {y ER. :z=y=z+ 8(e — e')} of the cube I(z,8)
and dy here means dy,, . .., dy,_dy,, . .. dy,. Continuity of f implies that both
summands of (4.3) are continuous in x, which shows that 4 ‘Sf EF'.

To prove that [|[4% — f|| >0 as § >0, note that for all § >0 and f in F
OSA‘Sf(x) = f(x) < f5.(x) — f(x). As f5, converges to f uniformly on compact
sets, we deduce that

limsup||4 % f|| < limsup | f;.— fI|
80 -0

<max{(f(x +e)— f(x))/(1+ Zx) :||x]| > K}

—0.
K—o0

Finite-type Economies

An economy (a,u) in M is called finite utility (endowment)-type if there is a
finite subfield 2#° of € such that u: T X R, - R (a: T— R’ ) is measurable
with respect to the product o-field 77 X Z (the field 57°). We then say for short
that u is measurable with respect to 5#°. Note that every finite subfield 27 of € is
identified with a partition of T into finitely many measurable sets 7', ..., Tp
(the atoms of the finite subfield 2#”). A uniform field is a finite subfield 7” of ¢
such that for every atom S of 27, u(S)=1/|2|, where |7°| denotes the
number of atoms of the field 77°.

Approximation of Utilities

Let U, be the set of all functions from 7 X R’ to R which satisfy conditions
(2.2), (2.3), (2.5)-(2.7). (Note that if « € U,, then u' € F°N F' for all t € T).
For § > 0, a §-approximation of u is defined to be a member & of U,, such that
la"— u'|| <& for all ¢ except possibly a set of p-measure <8, in which

#'=y>x . (Here | || is the norm defined in (4.1).)

LeEMMA 4.4: Let (a,u) be an economy in M. Then for every € >0, there is a
8 > 0 such that if 4 € U, is a 8-approximation to u, then

||D(a‘u) - v(a.&)“ <€

Proor: This is Proposition 40.24 of [6].

The next proposition is a simple variation of Proposition 35.6 of [6].
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LemMA 4.5: For every 8 >0 and u€ U,, there is a 4 € U, that is a §-
approximation to u and is measurable with respect to a uniform field 7 .

ProoF: Proposition 35.6 of [6] asserts that there is @ in U, that is a §/2
approximation to u and is measurable with respect to a finite subfield 577,. Let
|o7°9| = s and let r be a sufficiently large integer, such that s /r < §/2. For every
atom T}, 1 < i < s, of 27 let T, be a measurable subset of T, with u(T\T) < 1/r
and ru(T,) an integer. Set T, = T\|J’_,T,. Then u(7T,) = k/r for some integer
k < s and thus p(T,) < /2. Define

Al

' it reT,,
i'= _
V> x if teT,.

Then, obviously & is a §-approximation to u. Let 57° be a uniform field with
|o7°| = rand T, € 2#°, 0 < i < 5. Then & is measurable with respect to 2#° which
completes the proof of Lemma 4.5.

For each n > 0, a real-valued function f on R’ is called a market function if it
is concave, continuous, 1-homogeneous® and nondecreasing; smooth, if df/9x;
exists and is continuous whenever x; > 0.

ItJ={(T,..., T,} is an ordered measurable partition of T, then the vector
measure p” induced by u and J is defined by

w(S)=w(T,NS) (i=1...,9.

LEMMA 4.6: Let J = (T, ..., Tq} be an ordered measure partition of T, and let
u € U, be measurable with respect to J. Then there is a smooth market function
g: R{ X R’ — R such that for all integrable a: T— R’|

Oau(S) = &(1'(5)a($))-

Proof is accomplished by piecing together results from Propositions 36.3,
39.13, and Lemmas 39.8, 39.9 of [6]; or alternatively, by Lemma 39.16 of [6] and
its proof (specifically 39.18).

5. PROOF OF THE THEOREM

First, we show (Proposition 5.1) that there are economies of a special kind that
are dense in M, and then (Proposition 5.12) that for any such economy m, ¢(m)
is a nonempty one-element set that is uniquely determined by Axioms 1, 2, 3,
and 4. Uniqueness of ¢ on all of M follows from the continuity Axiom 4.

>This means homogeneous of degree 1.
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Define a subset M* of M by: m € M* iff there are mutually singular

probability measures p,, ..., #, with 3 p =pu and a function f:[0,1F—> R
such that (i) fo (p, ..., M) = v,,; (ii) f is linear on a conical neighborhood of
the diagonal, i.e., there are 8 >0 and ay, . . ., a, in R such that f(x) = 3 a,x, on

{x €[0,1):]x;, — x;| < BZx}.

PROPOSITION 5.1: M* is dense in M (i.e., for any m in M and € > O there is m*
in M* with d (m*, m) < ¢).

ProOF: Let m = (a,u) € M. By Lemma 4.4 and 4.5, there is a & (a §-
approximation to ) that is measurable with respect to a uniform field 5#7,, such
that d(m, (a,@)) < €/3. The proof of Proposition 5.1 proceeds via two steps.
First, we approximate (a,#) by an economy m = (4, &) where @ is measurable
with respect to a uniform field 2%} D 5#°,. We then approximate (&,i#) with
m* = (4,u*) where u* is measurable with respect to 5#°, and satisfies some
additional properties that guarantee that m* is in M*.

For f defined on R’ and b € R”. write

k
11l = sup 3 1/(5) = -
2

where the sup is over all finite sequences of points
0=x"<x'<- - <xk=b;

note that for all vectors { of nonnegative measures,

(G2 Wfe&I<Ifll,  where b={(T).

We use the C'-norm || f||} for f that are C' on {y € R :0= y = b} (cf. [6, p.
42]). Note that

G3) A <IALED)

(cf. (7.5) of [6]). If £ is a vector measure, write ||£|| for max,|| || where || || denotes
the variation norm.

LEMMA 5.4: Let & £',6%. .. be g-dimensional vectors of nonnegative measures
such that ||§# — &| >0 as B— o and ¢8(T) = &T) forall B=1,2,... . Let f be
a smooth market function on RY . Then ||fo £# — fo &|—0 as B— oo.

ProoF: W.lo.g &(T)=1and £(T)= 1, for all i and k, and let b = &T). Let
€ >0 be given. For each § >0 and x € R, define B% = (x + de)/(1 +28)
and f°(x) = f(B°) — f(B°0). By Proposition 10.7 of [6], || f* — f||, 0 as 8 >0;
in particular, there is a § > 0 with

1£° = flly < e.
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In general, f6 is not 1-homogeneous, and hence not a market function, but it is
C'on RY , and in particular on [0, 1]%. Now in the C '-norm, the polynomials are
dense in the C' functions on [0, 1} (cf. Lemma 7.4 of [6]); hence by (5.3) there is
a polynomial f* such that

1=l =qlf* =l <e

Since addition and multiplication are continuous in the variation norm (Proposi-
tion 4.5 of [6]),

| f*og%—fxog| >0 as B— .
Using the triangle inequality, (5.2), and the three above displays, we find

limsupl|f o £°~ f o & < 4.

B—oo

As € may be chosen arbitrarily, the proof of the Lemma is complete.

Let (277){2, be an increasing sequence of uniform fields that generates &.
Then® |E(a|27°)) — a|| >0 as i —> o, and therefore by Lemmas 4.6 and 5.4 there
is a uniform field 2#° D 2#°, such that d((a,&),(E(a|27),a)) < €/3. Without
loss of generality we may assume that u’ is concave (cf. [6, Proposition 36.3]) for
allreT. Letp=|[2"[andlet T, ..., T, be the atoms of the uniform field 27°.
Let /', 1 <i < p, be the utility u’ where ¢ € 7,. By Proposition 36.4 and Lemma
39.8 of [6], there are z', ..., z?in R" and ¢ >0 in R’} such that

fi(x)<fi(z)y+c-(x—2z) forallxinR"

and
n . n
> w(T)z'=a(T)= 3 p(T,)a'  where a'=a(r) for teT,.
i=1 i=1

Let 8 > 0 be such that for any 48-approximation u* to &, d((a,u*),(a,)) < €/3.
Define hi: R" = R by

hs (x) = min{ f'(x), f'(z') + e¢(x — 2) = 8 }.

As hj is the minimum of finitely many increasing concave continuous functions,
hi € F¢. The inequalities 0 < f'(x) — hi(x) < 8 imply that || f' — Ai|| < 8 (]| fll
<sup, {| f(x)[}). The continuity of both f'(x) and f(z') — 8§ + ¢(x — z’) (in x)
and the strict inequality f'(z") > f'(z') — 8+ c(z' — z') imply that h'(x)
=f(z'y)= 8+ c¢(x —z') in a neighborhood N’ of z' in R" . Therefore for
sufficiently small € > 0, A%j(x) = f(z') — 8+ c¢(x + e¢/2 — z') in a neighbor-
hood N'C N' of z' in R’} and ||A%§ — hg|| < 8. For such an € >0 set g’

SE(a|27°) is the conditional expectation of a with respect to ¢, i.e., a function from 7 into R".
that is measurable with respect to 2#” and for which [¢E(a|27”)dp = [gadp for all S in 7.
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=A%} — Ah{(0). Then g’ € F'N F°N F%and || g’ — f'|| < 48. Also
(*) gi(x)< g'(y))+ec(x—yp) forally’inN'andall x€ R’ .
In particular g'(y*) = g'(z')+ ¢(y'— z') for all y' € N'. Set u*: T X R" > R
by u(t,x) = g'(x) if x € T,. Then u* is a 48-approximation to # and thus letting
m* = (4,u*), we have
d(m*,m) < d(m*,rh) + d(rh,m) < €.

Denote by J the ordered partition {Ty,...,T,} where T\, ..., T, are the
atoms of 7. As 0 < d(T)=3F_(1/p)a’ € 32_ (1/p)N" it follows that there is
B >0 such that for all S C T with |p/(S)—1/p|< B there are y’ in N',
1 =i=p with

2w (Sy'=2 u(S)a'=a(s).
Thus by Proposition 36.4 of [6] and (*)

P
0n(S) = 3 1 ()8'()

P . .
S S)& )+ ey =)

P
(2 W ©r') + (@) =S w/ () =)
- 3 W) g ]+ T eal ()

p . .
=2 W (S)[g'(z)— ez’ + ca').
i=1
This completes the proof of Proposition 5.1.

LEMMA 5.5: Let = (py, ..., p,) be a vector of mutually singular probability
measures with > u, = pu. Let h: R, —> R be a 1-homogeneous function with
[[ho || < oo, and suppose that h vanishes on a conical neighborhood of the
diagonal {te:0<t< 1)}, i.e., there is € >0 such that h(x)=0 on {x €[0,1]":
|x; — le < €3 x}. Then there is a p-measure preserving automorphism 8 such that

sup

zai0'(h0ﬁ)ll/\/7—->0, as > o0
i=1

where the supremum is taken over all sets of numbers a;, 1 < i <1, with |a]| < 1.

Proor: Without loss of generality, e < 1. Set 8=1—¢€/4. Let N > 0 be the
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smallest positive integer with N 35/ Let © be a fixed chain. We proceed to
bound from above the variation of 3, <,a,.9" (h o i) over @ where |g] < 1. As
|l llg is monotonic in §, we may assume without loss of generality (by possibly
adding additional elements to §) that for every 0 < m < N there is §™ in § with
p(S™) = B"w(T)= B and §°=T. For 0<m <N, we denote by £, the
subchain of © of all S in £ with sm+tlc § c §™and by 2 the subchain of all
in @ with S ¢ S". Then

66  [Satihen)| =3 za,a"(ho,z)“
i<l Q@ m<Nlli<i Q
< S Sadithe e, < X 2l blog,-
m<N i<l m<N i<l

For all subchains @', ||% © fillg < ||l 55, Where S is the maximal element in the

subchain €. As ||A||, is nondecreasing in b, the vector inequality ﬁ(g) < pp(§)
i(T) implies that ||k o Bllg < 1Al pusHacr) - As h is 1-homogeneous, so is ||Al}, (as
a function of b) and therefore ||A © fllg < pu(S)Allar) for all subchains &'. In
particular, if 8 is a p-measure preserving automorphism,

7 ke Bllga, < pu(S™)llgery = PB™ I Allxcr) -

For a > 0, let

)4
D, = {S & 61 1n(S) = B(SN<a S m(S)=am(s)

forall 1 <ij< p}.

Then S € D, implies that (ko g)(S) =0 and thus, for each fixed m < N and
any k, if 0%Q,, C D, then ||k o fil[g+g, = 0. Together with (5.7) we deduce that

(5-8) > Xk Bllg, < B Allpr) + §<:Np13m”h\|ﬁ(T) 211(919,,1 ¢ D)

m<N i<l

where 1(8'Q,, ¢ D,) = 1if 8'Q,, ¢ D, and 0 otherwise. Note that for a p-measure
preserving automorphism 8, if g*s™ € D, /2 for some m < N, then for every S in
Q,andall i, j, 1<i<j<p,

| (8KS) — (05| < | m(0*S™) = w(8*S™)| + pu(SH(B ™' = 1)
<(e/2)pu(S™)+pu(S)B~'-1)
<(e/2)pB~'w(S) + pr(S)(BT' 1)

=pu(S)eB™'/2+ B~ — 1)< eu(S)

and thus 0%Q,, C D,. Therefore, for any m <N and a p-measure preserving
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automorphism 8,

(5.9) ZI(B’Q,,,(IDe)g#{k:HkS’"GEDC/Z}.
i<l

We proceed to show that there is a y-measure preserving transformation 8 for
which the right hand side of (5.9) is at most 4(p — DB ™" /€ Set v =pu
=p;+ -+ +p,. For fand g in the Hilbert space, L,(»), we denote by fi g
the inner product [f(f)g(t)dv(?). Let f; = du;/dv. Then 0 < f, <1 a.e. and thus
fi€ Ly(») and ||fl5=<f,f>=1 and ||fi—fl3=2 for i#j. Let 6 be a
p-measure preserving transformation such that for all 1<i< ;< p ((1/ V2)
(fi=f)e 6%)_, is an orthonormal sequence in L,(»). To see that such a
u-measure preserving transformation exists identify (7,<,») with the product
measure space Q° (Z-the integers,  a finite measure space with p elements and
the counting measure) and identify f; with I(w(0) = i), and let § be the shift
operator on 4. Observe that S € D, iff [{xs, f; —ﬁ)[ <ar(S)forall 1 <i<j
< p and that %S € D, iff |[{xs,(f; = f) ° 0*)| < av(S). By Parseval’s inequality

> xs» (i = f) ° 0507 <2llxsllF = 2¢(S).
0<k

Thus, for any 1 <i<j< p,
# k| xss (=)o 01> e(S5)/2) <8e7%/p(S),
and therefore

(5.10) #{k:0*'s&D,,) < ( ”PT_I))&*Z/V(S),

which in particular implies that for every m < N
(5.11)  #{k:0*S" & D_,} <4(p—1)B"/¢.
Combining (5.6), (5.8), (5.9) and (5.11) we deduce that

Sabi(he m]l <PBIhllcry + 3 4p(p = De Al
Q m<

i<l

= (IPBN +4p(p— I)eﬁzN)“h”ﬁ(T) .

As this bound is independent of Q, (/8" + n)/\/7 —0 as /—> oo, completing the
proof of Lemma 5.5.

PROPOSITION 5.12: Assume m € M*. Let p = (p,, . . ., j1,) be a vector of mutu-
ally singular probability measures with >, u; = pu and let f:[0, 1] — R be such that
fo =v, and assume that f(x) = > a;x; on a conical neighborhood of the diago-
nal. Then for any ¢:M*— P(FA) satisfying Axioms 1, 2, 3, and 4, ¢(m)
= (Do}
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ProOF: Let u € ¢(m) and let w = S a;u;. By [16] there is a universal con-
stant K such that for every automorphism 6 of the measurable space and
every positive integer / there are real numbers a/ with |a/|=1, 1 <i</ and
1> a,0'(u — w)|| > 2KVI |ju — w]||. By the triangle inequality it follows that there
are numbers @/ € {0,1}, 1 < i </, with
(5.13)

!
a8 (u—w)| > KVl |ju—w|.
i

The vector measure g and the function 4 : Rf — R given by h(x) = f(x) — S o;x;
obeys the conditions of Lemma 5.5 and Ao i= fo i —w and thus there is a
u-measure preserving automorphism 6 for which

/\/7%0 as [ o0.

l

> alf'(fo B—w)

i=1

(5.14)

Consider the two set functions:
_ Ipk —
v = Zakg (fom)
k<l
and
w = > a0*w.
k<l

It is easy to verify that w, is the characteristic function of some inessential
economy 7, and thus ¢(im;) = {w;}. It is also easy to verify that v, is the
characteristic function of the market

m= > @8m.

k:al=1

By the separability and anonymity axioms

!

(5.15) > al0*ue o(m).
k=1

By (5.14), it follows that
(5.16)  d(my,m)/I>0 as >0
while from (5.13) and (5.15), it follows that
d(e(m), ¢(7)) > | Z acd u — wj| > Kl |ju = w]

which together with (5.16), contradicts the continuity axiom unless u = w which
completes the proof of Proposition 5.12.
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6. TIGHTNESS OF THE ASSUMPTIONS

In this section we discuss the tightness of the assumptions of our theorem, and
variants of our theorem.

Since a part of the continuity axiom requires that the map ¢ from M to P(FA)
satisfy:

(CF) ¢(m) depends only on v, ,

any such y is factorized with the map o from M to E = {v, : m € M} which
sends m to v,,. In other words, there is ¢ : E—> P(FA) such that ¢(m) = Y(v,,).
Note that for w in E and 4 in Q, the set function fw: ¢ — R that is given by
Ow(S)=w(8S)isin E. For m and m’' in M, v,,q,, = v, + v,,, hence E is closed
under addition. Also, any finitely additive set function in E is the characteristic
function of an inessential economy. Therefore our theorem implies (and, in fact,
is implied by the fact) that there is a unique map ¢ : E— P(FA) such that for
any o,win E and 0 in Q,:

(6.1)  Y(v)+ Y(w)=Y(v+ w),

62)  Y(Ow) = y(w),

(6.3) wEENFA=y(w)={w)},

(6.4)  there s a K such that h(y(v),y(w)) < K||o — wl].

It turns out that this unique map also satisfies the following additional
properties, which are common to many solutions:

6.5) v EY(v)y=r(T)=0v(T) (efficiency),

(6.6) v — w monotonic (non-decreasing) = y(v) C ¢(w) + FA , - (positivity),
6.7) forall A>0, Y(Av) = Ay (v) (rescaling),

6.8) wEENFA=Y(v+ w)=1(v)+ Y(w).

The map i satisfies also the following (value) properties:

6.9) Y is a point-to-point map (|y(v)| = 1);

(6.10) ¢ has an extension to the linear span £ — E of E in such
a way that (6.1)—(6.9) still hold’ (now A in (6.7) may

be negative).

In our definition of M the population measure p was held fixed. If we let it
vary over all possible nonatomic measures to obtain the larger class of economies

7Obviously such an extension is unique.
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N (M C N), then the same theorem holds on the domain N. (This follows
trivially from our theorem.) Let G denote the set of all characteristic functions
that arise from N, and &/ the set of all automorphisms (i.e., bimeasurable
bijections) on (7, % ). In conjunction with the existence of a value with norm 1 on
pNA [6, Theorem B] and the inclusion G C pNA4 [6, Theorem J] our theorem
implies that there is® a unique map ¢ : G — G — FA which for any v,w in G — G
and for every # in .o/ satisfies (6.1)-(6.9). Though this is a weaker’ result, we
should point out that we are unable to prove it in a significantly simpler way.

The assumptions of our theorem fall into two categories: conditions imposed
on the domain M (mainly nonatomicity and differentiability), and the axioms
themselves.

The nonatomicity is clearly indispensable (in economies with finitely-many
agents and concave utilities, the core and the value obey our axioms but are well
known to differ). What if we drop differentiability?

Let M’ (N’) be the larger domain of economies that is obtained by dropping
the differentiability assumption (2.7) on the utilities of the economies in M (in
N). Let E’ (G’) be the set of characteristic functions obtained from M’ (N'). Is
there a map from G’ into FA satisfying (6.1)—(6.9)? This was an open problem
(even without the requirement (6.4)) which was only recently resolved when J. F.
Mertens [15] showed the existence of a continuous value (actually a value of
norm 1) on a large space of characteristic functions which includes G’. Consider
the two maps on M":

m —> the Mertens value of v, ,
m—>core of v, .

Both of these maps obey anonymity, separability, continuity, and the inessential
economy axiom.'® It is well known that for m in M’ the core of v,, no longer
necessarily consists of a single point (though it still coincides with the competitive
payoffs), and thus the two differ. We conclude that our theorem breaks down on
M’. Restricting the domain to M”, made up of those economies in M’ with
finitely many utility types and with @ bounded (or, more generally, in L?( )), we
could still obtain two different (single-valued) maps from M” to FA that satisfy
our axioms: the “Mertens value” and the p-measure based value defined by
S. Hart [12].

Dropping any one of our axioms makes the theorem break down as the
following examples show.

ExAMPLE 6.11: The egalitarian solution ¢ : M > FA that is given by
¥(m)=0,(T)p

8 Dropping (6.6), (6.8) and any one of (6.3) or (6.5) would not affect this result.
9We refer here to the uniqueness.
10They obey also the “equivalents” of (6.5)—(6.8).
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obeys continuity, separability, anonymity, positivity, and efficiency but violates
the inessential economy axiom.

EXAMPLE 6.12: For every m in M define a(m) by a(m) = sup{v,,(S, U S,) —
0,(S)) — v,(S,):all disjoint subsets S|, S, €€ }. Let y: E—> F4 denote the
value operator. Let ¢ : M = P(FA) be given by

o(m)={v E FA, :|lv — yv,ll < a(m), v(T)=0,(T)}.

Then ¢ obeys continuity, anonymity, efficiency, and the inessential economy
axiom, but violates separability.

ExAmPLE 6.13: Let {T,,T,} be a partition of T into two measurable sets. In
this example we use the extension operator (cf. [6, Ch. IV]) that associates with
each characteristic function v an ideal game ov*, i.e., a real valued function
defined on the ideal sets (i.e., measurable function from 7 to [0, 1]) with
v*(0) = 0. For ideal sets f, g we define dv*(f, g) by

v*(f + hg) — v*(f)
: :

90*(/, ) = lim

For S in € we denote the ideal set xg by S. It is possible to prove that for almost
all0 <t <1, for all § € €, both derivatives

d00o*(tT,,S N T|) and
0o*(T + tT,,S N T))

exist and are integrable. Define ¢ : M — FA by
1 1

Y(m)(S) =f du*(1T), S N Tl)dt+f du¥(T, + tT,,S N Ty)d.
0 0

Then ¢ obeys continuity (constant K = 1), positivity, efficiency, separability, and
the inessential economy axiom, but violates anonymity.

The continuity axiom appears in the form of a Lipschitz condition. If we
added the rescaling axiom (for all (a,u) € M and A > 0, ¢(a,\u) = A¢(a, u)) it
reduces to a uniform continuity which can be stated as follows: for every € > 0
there is § > O such that for all m, # in M, d(m,m) < 8 implies h(p(m), p()) < e.
It would further reduce to just continuity if we were to assume additivity instead
of separability. However, this would clash with our intention of using axioms
expressing characteristics that are common across a wide range of solutions.

The uniform continuity is used in the proof only for pairs m, 7 where m is an
inessential economy. This last fact, in turn, can be inferred from just continuity if
we maintain the rescaling axiom and strengthen the inessential economy axiom
in the following way: there are € > 0 and 8§ > 0 such that for all m in M, if
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v,,(S; U S,) — 0,,(S)) — v,,(S,) < & whenever S, S, are in €, and v € ¢(m), then
for all S'in &, |»(S) — v,,(S)| < e.

The continuity axiom, in the presence of efficiency, is closely related to
positivity and one should wonder whether it is possible to replace our continuity
axiom by positivity and efficiency. Before taking up this inquiry we would like to
first express more formally the relation between positivity and our Lipschitz form
of continuity. This is established via the internal norm on the space generated by
a cone Q of increasing characteristic functions: if v,u € Q,

lo — ulljp, = inf{a : v, ,u, € Q with v,(T) + u,(T) = a such that

both u + u, — v and v + v, — u are monotonic}.

PROPOSITION 6.14: Let Q be a cone of monotonic characteristic functions and let
Y : Q> P(FA) be a nonempty set-valued superadditive, positive and efficient map.
Then for all v,u in Q

h(d(0), ¥ (u)) < [0 = llin -

PrROOF: Let v,u € Q and a > 0 be given. Let v, and u, be in Q and assume
that (i) v, + v — u is monotonic, (ii) #, + ¥ — v is monotonic, (iii) v, (T) + u,(T)
= a. Note that it is sufficient to prove that for every » € ¢/(v) there is n € (1)
such that [|[» — n{| <4a. Let » € Y(v) and y € Y(v,). By superadditivity » + y
€ (v + v,). The positivity of ¢ together with (i) implies the existence of 7 in
Y(u) such that » + y — m is monotonic. In particular, for every S € €, y(S) +
v(S) > n(S) and

v(T)Y—v(S)+Y(T'S)=v(T'S)+v(T'S)>n(T’'S)
=n(T)=n(S)2»(T)—a—n(S)
which implies that
azy(T)2v(S)2n(S)—n(S) = —2ea.

As || — v|| < 2sup|n(S) — »(S)| < 4a the result follows.

COROLLARY 6.15: If Q is a cone for which the internal norm on Q — Q is
equivalent to the bounded variation norm, then any nonempty set-valued map
Y : Q—> P(FA) that is efficient, positive, and superadditive is continuous.

In spite of this close connection (between positivity and continuity) it turns out
that it is impossible to replace the continuity assumption by (CF), positivity and
efficiency.



PAYOFFS 1149

EXAMPLE 6.16: The operator ¢: M — FA that is given by
(8(m)(S) = [u(t.a(1)du(2),

where m = (a, u), obeys (CF), separability, anonymity, positivity, and the inessen-
tial economy axiom, but violates continuity and efficiency.
The mapping ¢: M —> P(FA) given by

¢(m) = {v € FA :v > ¢(m), »(T) = 0,(T)},

obeys separability, anonymity, inessential economy, positivity, and efficiency,
but violates continuity.

To see that it is positive, let m,m’ be in M with v,, — v,, monotonic. Let
v € ¢(m). Then » > ¢(m’) and thus for all 0<t <1, v> v+ (1 — )¢(m')
> ¢(m’). For 0<t <1 with t(T) + (1 — )(m'((T) = v,(T), tv + (1 — )p(m")
€ ¢(m’) which shows positivity.

An implication of the last example is that the internal norm on E (char-
acteristic functions arising from M) is not equivalent to the bounded variation
norm.

Yale University
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Hebrew University
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