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RENEWAL THEORY FOR SAMPLING WITHOUT REPLACEMENT"

By ABRAHAM NEYMAN

University of California, Berkeley

Let 7 be a finite set, A a probability measure on 7,0 <x <1 and a € 7.
Let P(a, x) denote the probability that in a random order of =, a is the first
element (in the order) for which the A-accumulated sum exceeds x. The main
result of the paper is that for every £ > 0 there exist constants § > 0 and K >
0 such that if p = max.e~ A(a) < 8 and Kp < x < 1 — Kp then e, | Pla, x)
— Aa)| < &. This result implies a new variant of the classical renewal theorem,
in which the convergence is uniform on classes of random variables.

1. Introduction. Let 7 be a finite set, A a probability measure on 7,0 < x <1 and a
€ 7. Let P(a, x) be the probability that in a random order of #, a is the first element (in
the order) for which the A-accumulated sum exceeds x. That is, if for every order # of =
and a € 7, we denote 27 = {b:b € 7, bZa} the set of elements of 7 preceding a in the
order %, then P (a, x) = [{Z:M2F) <x = M2¥) + Ma) }|/(| 7|)! (where | 7| denotes the
number of elements in 7). The distance between the probability measures P(-, x ) and
A(+) on 7 is defined by || P(+, x) — A(+)|| = Yaer | P(a, x) — A(a)|. The main result of this
paper is that | P(-, x) — A(-)|| tends to 0 as max.e.A(a) tends to 0. In fact we will prove the
following stronger result.

MAIN THEOREM. For every ¢ > 0 there exist constants § > 0 and K > 0 such that if
o = max,e,A(a) <8, and Kp < x <1— Kp then | P(-, x) — A(-)|| <.

It will be shown that this result is an appropriate formulation of renewal theory for
sampling without replacement. Moreover, it implies a new variant of the classical renewal
theorem, in which the convergence is uniform on a class of random variables.

The origin of the problem. The problem arises in studying the asymptotic value for
non-atomic games. In fact it is equivalent to a special case of the problem raised by
Aumann and Shapley [1, page 10] whether bUNA C ASYMP. In paper [6], the results
obtained here are used to give an affirmative answer to this question, i.e., to prove that
indeed b’ NA C ASYMP. A very brief summary of some basic related facts about non-
atomic games will now be presented.

A game is a set-function v: ¥ — R, where (I, ¥) is a measurable space (the player
space) with v(J) = 0; it is called finite if ¥ is finite. The Shapley value of a finite game v
is the measure on ¥ given by

($0)(4) == S0 PTU 4) — 0@,

where the sum runs over all orders % on the players (atoms of ) and 2% is the set of
players preceding A (an atom of %) in the order £. )

To define a Shapley value for a game v that is not necessarily finite, one may
approximate it by finite games. Specifically, if IT is a finite subfield of ¥, define a finite
game v on II by vg = v|II. Given an S in % (a “coalition”), an increasing sequence {II;,
Il,, - -} of finite subfield of ¥ is called S-admissible if S € II; and U.I1; generates %. An
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asymptotic value of v is a set function ¢v on ¥ such that for all coalitions S and all S-
admissible sequences, we have

lim,,_, v, (S) = (¢v)(S).

Not all games have asymptotic values; but when they exist, they are obviously unique.

Let 1 be a non-atomic probability measure on %, and let f be monotonic on [0, 1]. It has
long been known [Kannai, Aumann-Shapley] that when f is absolutely continuous, fou has
an asymptotic value. Our result implies immediately that when f is a step-function
continuous at 0 and at 1, fou has an asymptotic value; the atoms of the finite fields IT
appearing in the definition of the asymptotic value, correspond to the members of the sets
7.

When f is singular continuous, we deduce in a separate paper from our result that fou
has an asymptotic value. Putting all this together yields that fou has an asymptotic value
whenever fis continuous at 0 and at 1. This is the essential content of the statement bv’NA
C ASYMP.

The relation to classical renewal theory. Let X be a random variable having positive
expectation E(X) and let Fx denote its cumulative distribution function. Let X; be a

sequence of i.i.d. random variables with distribution dFx. Let S, = ¥ %=; X;, and for every
a, t, a in R define

Vla) = ¥5-0 Prob(S, < a), U, a) = V(t) — V(t—a), gx(t a) = Ult, a) — a/E(X).

Let L(X) be the closed group generated by the support of dFx. The classical renewal
theorem is as follows.

RENEWAL THEOREM. If X is a random variable with X = 0, then for every a € L(X),

gx(t, a) 0 0.

For nonnegative random variables X with finite expectation, we deduce from the
Renewal Theorem by using Lebesgue dominated convergence theorem that [ |gx(t, «)|
dFx(a) = 0 (for instance, bound U(t, a) = V(a) = K(|a| + 1)). On the other hand, let
X be a nonnegative random variable for which [ | gx(¢, «)| dFx(a) = 0. Then U(¢, )
converges to a/E(X) (as t - «) in dFx probability and by monotonicity in a, dFx - a.s.
Obviously L = {«|gx(t, @) —,~.» 0} is a group and by the same monotonicity it is also
closed. All together it implies that L D L(X). Therefore the following statement is
equivalent to the Renewal Theorem.

VARIANT OF RENEWAL THEOREM. If X is a random variable with X = 0 and E(X)
< o then

Gx(t) = J’ |gx(t, a) | + dFx(a) —=¢w 0.

Our result implies this variant of the renewal theorem.and actually proves that this
limit holds uniformly on classes of random variables. For instance, it is possible to take the
supremum over all bounded random variables X < K. The implication follows from the
following simple observations:

(1) Define N(t) by SN(t) =t> SN([)—] and Y = XN([) = SN(t) - SN(g)_l. Then for every
measurable B C R, :

Prob(Y, € B) = j U([t — a, t)) dFx(a).
B

(2) Let X be a nonnegative random variable with finite expectation E(X), and let M, = 3(t/
E(X)). Then

Prob(Su, > 2t) »1x 1
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and for every K > 0
Prob(3k, 1=k =M, with X,=¢t/K)— 0.
(3) For every family of Borel subsets B, C R

Prob(l i 2?1’1 X,’IBI(X,‘) - f a de(a) > l:‘) 10 0,
M, 5,

and finally, for ¢ > 0.

(4) J (Ult—a, t))-dFx(a) = 1= J a/E(X)-dFx(a),

and therefore,

Gx(t) = 2 supg j (U([t — a, 1)) — a/E(X)) dFx(e)
B

=2 supB(Prob(Y, € B) — (f a de(a)>/E(X)>.

B

The variant of the renewal theorem is then obtained from our main theorem by
conditioning on the set {Xi, - -+, Xp}.

2. Reformulation of the main result and basic concepts. We will present an
equivalent formulation of the main theorem in terms of limits of sequences. We first start
with some definitions.

Let 7 be a finite set, and let (7, 27, A) be a measure space, = is said to be a partition if
A is a probability measure on 7. The parameter of a partition is the maximal measure of
an atom in (7, 27, A) and is denoted by p(x, A) or p(=), ie., p(m) = max{A(a):a € 7}. A
scquence (7:)%-1 of partitions is called shrinking if lims_..o(m:) = 0. A sequence (x;)%-; of
numbers is called null if limy_,.x; = 0, and it is called (m:)-divergent (where (m:)%-; is a
sequence of partitions) if limy_..xz/p(m) = oo.

MAIN THEOREM.* For every shrinking sequence of partitions (m)%=: and every
sequence of subsets T, C m:, and every sequence (xz)5- such that 0 < x, < 1 and both
(x£)%=1 and (1 — x2)%-1 are (m)-divergent

limy—oA(T:) — P(T%, x1) = 0.

There are three concepts basic to the proof: the random walk, the continuous embed-
ding, and the persistent numbers. We will present these concepts here.

The random walk generated by sampling without replacement. Let (4, 2%, \) be a
finite measure space. Let | A| = n, and let # be an order of A, a;%a>%as - - - Ra,. The
(n + 1)-tuple(A(@), M2P7), ---, MP2), MA)) is called the walk generated by A in the
order #. The random walk generated by A is the walk generated by A in a random order
2 (i.e., every order has equal probability, namely 1/n!). Let I C R be a subset of the reals.
The number of visits of the walk generated by A in the order £ to the set I is denoted by
NaR, I): .

Na(®, T) = [{a:a€EAANNPYYETD} if MA)EI
A1+ [{a:a€e AANP) €T if MA)EL

When £ is an order on a set containing A, we define N4 (%, I) as Na(Z , I) where Z is
the order induced on A by #. The expected number of visits of the random walk generated
by A in the set I is denoted Ua(I), i.e., Us(I) = E(Na(%, I)) = (1/F) Y» Na(®, I) where
2 runs over all orders of a set having % elements and containing A.
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The continuous embedding. Let 7 be a set. Consider the measure space (27, ¥) where
27 is the power set of 7 and % is the o-field of subsets of 27 generated by the sets that
consist of all super sets of a given finite set, i.e., % is the minimal o-field of subsets of 27,
such that for every finite subset 7" of 7, {A:A C 7, A D T'} € ¥. We associate to 7 a (“right
continuous”) stochastic process Z;:[0, 1] — 27, which is nondecreasing, has stationary
increments, and the increments are sums (unions) of independent random variables. That
means
(1) o=s=t=1=>Z,D Z, (nondecreasing);

(2) Z:\Z. has the same distribution as Z,\Z,- whenever ¢t — t' = s — s’ (stationarity);
(3) for every t, Z, is the union of independent random variables, Z; = «, and Z, = ¢.

This is done as follows: Let (2, 4, P) be a probability space such that for every a € 7
there is a real valued random variable X,, defined on (22, 4, P), having uniform distribution
on (0, 1], and such that the random variables X, are mutually independent. The stochastic
process Z;(w), which is defined by Z;(w) = {a:a € 7, X,(w) =< t}, has all these desired
properties.

This continuous embedding induces for every w € £ a weak ordering #(w) on 7 by
aR(w)b © X,(w) = Xp(w). When 7 is finite or countable then this is an order with
probability one.

The continous embedding has many important merits? part of them could be seen from
the properties that are listed previously, and others will be understood along the proof.
There is one basic hidden gain (probably the most important one) which we would like to
stress here. The probability space of orders of a finite set is a finite one, and thus has a
limited number of “equivalence classes” which restrict the “calculus of conditioning.” By
considering the orders as induced by our continuous probability space, the “calculus of
conditioning” is enriched.

The persistent numbers. Our main result implies in particular the following (much)
weaker property: Let (7) be a shrinking sequence of partition, A, C 7, with A(4) = a >
0 and let (x:) be a null, (7:)-divergent sequence. Then

lim infk_,w P(Ak, xk) > 0.

. We do not know how to prove this almost “obvious” fact without proving our result.
Having that result would not shorten our proof, but would simplify it (as will be explained
in the sequel). Actually, it would be helpful to have this property for a specific sequence A,
= m, () which we now define. For every partition 7, and every 0 < ¢ < 1 we select a subset
7(e) of 7 that satisfies the following properties:

(1) a € n(e), b € 7\m(e) = Aa) = A(b)

(ii) € =< A(7(e)) < € + max{A(a):a € n(e)}.

DEFINITION. A number 0 < € < 1 is called persistent if for every shrinking sequence
of partitions (=), and every null, (;)-divergent sequence (x:),

lim inf,_, . P (7, (6), xr) > 0.
The set of all persistent numbers is denoted by @.

REMARK. Indeed it follows from our result that every number 0 < € < 1 is persistent.
However, we could not prove it directly. We could prove that there are persistent numbers
without much difficulty, but not that all numbers in (0, 1) are persistent. Having the result
that all numbers in (0, 1) are persistent would save carrying the conditioning on the
persistent numbers in Sections 5, 6 and 7.

2 It can be used to prove many limit theorems for sampling without replacement. For instance, it
provides an extremely short proof of the central limit theorem for sampling without replacement.
Moreover, it might be used to unify the methods for proving limit theorems for sampling without
replacement.
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We close this section with some definitions and notations which will be used in the
sequel. Let = be a finite measure space (We will often use the abbreviation = for the
measure space (7, 2, A). No confusion will result.) Let x > 0 be a positive number. An
element a of 7 is the cover of x in the order % if x — A(a) < A(P¥) < x. The cover of x in
the order Z is denoted a (4%, x). Let = be a partition, and # an order of 7, then £~ denotes
the reverse order, i.e., a2 7b iff b%a. For every partition 7 we select an order %, satisfying
aR.b=>Aa) = A(b), and we denote by a (€) the cover of € in the order %., i.e., a(e) = a (R,
€). If Z is an order of 7, 0 < x < 1 then I'(#, x), the x-initial with respect to &, is defined
by

TR, x) = Narph=x) P,

and I'" (£, x) — the x-final with respect to % is defined by ' (%, x) =T'(%#~, 1 — x). For
every partition = and € > 0 denote by () the subset I'( %, €) of .

3. The structure of the proof. This section intends to guide the reader in the long
and involved proof by describing the structure (not the ideas) of the proof. The main
theorem regards the measure P(-, x) where x is far away from the “edges,” i.e., when x/
p(m) and (1 — x)/p(7) are large. However, we first derive a result concerning the measure
P(., x) for x “far but close” to the edges. We prove (Corollary 9.2) that if ()5 is a
shrinking sequence of partitions and (x;)#-; is null, (m)-divergent then [P, xe) — A
— - 0, or in other words for every A, C m, lim s, P (A, xz) — AM(Az) = 0. The derivation
of the main theorem from Corollary 9.2 is accomplished (in Section 9) by using “standard
techniques” based on laws of large numbers for sampling without replacement. For proving
Corollary 9.2 it is enough to prove that (Lemma 9.1) if ()%=, is a shrinking sequence of
partitions then for every 5 > 0 there exist sets T C m, with A(7,) — A(T%) < 5 such that
for every T, C T, and for every null, (7.)-divergent sequence (x),

lim sup e | P( T, x:) — A(Th)| <.

Now, fix a persistent number € > 0 which is not the smallest persistent number
(alternatively, €;, e € @ with 0 < €; < € < 1). Every partition 7 will be decomposed into 3
parts. These parts will be denoted by 7', #°, #° and will depend on a number K = K (¢).

7' = 7(e)
7° = {a: a € m, \M(a) = K-A(a(e))}
and 7? = o\ 7'\ 7
For every T C =, we denote by T, T? T? the subsets of T, TN ', TN 7%, T N #°
respectively. Section 5 proves that whenever ;. is a shrinking sequence of partitions, b, €
7%, and x; a null, ()-divergent sequence, then
P(by, xr)

NC

() lim sup .« =2/K

which in particular implies that for every subset T, of 7,
(%) lim sups«|P(T%, x:) — A(T3)| = 2/K.

This is done in Section 5. Actually a more general statement is proved there so that it can
be used later for the estimations regarding 3. For “taking care” of 77 we decompose 7}
into a large number of “thin sets” 7>, ..., #*™ where m = m (K, h) such that for every 1
<i=m
Ala) — A (D) -
Alale))
where the supremem is taken over all pairs a, b in 7>‘. We prove (Proposition 6.1) that if

(m) is a shrinking sequence of partitions, then for every n > 0 there exist B} C 7% with
A(7*') — N(B}) < 7 such that for every B} C B and every null, (m)-divergent sequence
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(xk ) Z°=1 ’

lim sups—..| P(B}, xx) — AN(B})| — g(h)A(B}) < 0
where g is a function satisfying g (A) —;_.0 0. From this we deduce (part of Proposition 7.1)
that if ()%= is a shrinking sequence of partitions, then for every 7 > 0 there exist subsets

By, of 7} with A(#%) — A(Bx) < 7 such that for every B, C B, and for every null, (m)-
divergent sequence (x:),

(%%%) lim sup|P(§k, Xr) _}\(Ek)l <.

Combining (#*) and (*+#), we conclude (Proposition 7.1) that if (7;)%-, is a shrinking
sequence of partitions, then for every 5 > 0 there exist sets T, C 77 U 73, (T) = B, U 7})
with A (73 U 73) — A(T%) < 5 such that for every T, C T and for every null, ()-divergent
sequence (x:),

lim sup | P(T%, xx) — M(To) | < n.
Assuming that every number in (0, 1) is persistent, it would be easy to complete the
proof as is done in Section 9. However, we do not know that every number is persistent

and thus we prove in Section 8, by using Proposition 7.1 together with Lemma 4.1, that @
=(0, 1).

4. Preliminary results. The stochastic process Z, associated with the set 7 will be
denoted by 7’. No confusion will result. The following lemma could be easily verified.

LeEMMA 4.1. Let 7 be a partition. Then for everya E rand 0 <y <1,

P(a,y) == Una ([y = A(a), y)) =f Prob(\ (7‘\ {a}) € [y —A(a), y)) dt.
0

1
[E2]
LEMMA 4.2. (The reflection principle). Let I, J C R be subsets of the reals, = a
partition and A C 7. Then if I D A(A) — JJ,
Ua(I) = Ua(J).
Proor. This follows immediately from the equality and inequality
Na(R; J) = Na(Z73MA) — J) = Na(Z7; I).

LEMMA 4.3. Let 7 be a partition, A C 7 and p = p(A) = max{A(a): a € A}. If I and
J are intervals in [0, A(A)] satisfying p(I) > p(J) + p (where u stands for Lebesgue
measure on the line) then

Ua(I) = Ua(dJ).
Proor. By the positivity of the measure Uy, it suffices to consider only a closed

interval I. Hence by conditioning on final segments of the random walk generated by A
and appealing to the reflection principle,

Ua(J) = Ua([0, p(J)]) = Ua([0, p(I) — p]) = Ua(1). o

COROLLARY 4.4. Let 7 be a partition, A C 7 and p = p(A) = max,caA(a). Then for
every interval I, I C [0, A(A)] we have

< A(4) - —
(a) UA(I)—[m] (JA]-1)
and if u(I) > 2p

A(A) -
b Us(I) =2 | ————— .
(b) A()><‘u(l)_2p+1) (JA]+1)
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Proor. (a) There exists [W;\)(li_)%

A(A)) such that the length of each of these intervals is u(I) + 2p. In the union of these
intervals there are at most | A | — 1 visits. (The entire walk has | A | + 1 visits, one of them
at 0 and another at A(A).) But in each of these intervals the expected number of visits is
at least U4(I) (Lemma 4.3) and therefore

A(A)
p(I) +2p

] disjoint intervals which are contained in (O,

UA(I)S[ ] (A[|-1).

(b) is similarly proved.
LEMMA 4.5. Let 7 be a partition and A C B C m, with a € A, b e B\A = A(a) =< \(b).
Then for each interval I C [0, A (A)] which contains 0 we have
Us(I) = Ua(1).

ProOOF. Each order Z on B induces an order # on A. (% is the order £ restricted to
A). As Ng(I, 2) = Na(I, %), the lemma is proved.

The rest of this section will be used only in Section 6.

LEMMA 4.6. For every shrinking sequence of partitions (m) 5= and for every null,
(7 )-divergent sequence () -1,
(a) Prob(\ () > 1 — 4ty) 4w 1, where 7, =mh *\w¥;
(b) Prob(| 7 | > (1 — 4ts)| 7 |) =40 1;
(c) if Ax C m and lim inf(| A, |p (7)) >0, then

PI‘Ob(I Ak\;fk l =1 l Akl) -1 as k— o
PRrOOF. A(m:) is a sum of |7, | independent random variables Y., a € m satisfying
Prob(Y, = A(a)) =1 — 2t;, and Prob(Y, = 0) = 2¢,. Therefore
E(A(ﬁk)) = ZaEme E(Ya) =1-2t

and VA7) = Yeer V(Yo) = Yaer 26:(1 — 26.)A%(a) < 2txp(m:). Using Chebyshev’s
inequality and the fact that () is (7;)-divergent, we have,

Prob(A () =1 — 44) < (2tkp(ﬂk))/(4ti) — o 0.

Similarly | 7, | is the sum of | 7, | i.i.d. random variables Y,, a € =, satisfying Prob(Y, = 1)
=1 — 2t and Prob(Y, = 0) = 2. Thus E(l '7-Tk|) =(1- 2t/¢)|‘m¢| and V() = 2t (1 —
2¢,)| m |. Using Chebyshev’s inequality we get that Prob(| 7 | < (1 — 4,)| 7 |) < (2t 7 |) ™"
As p(m) = | m|™" and as & is (m)-divergent we conclude that P (|7, | < (1 — 4¢)| m|) —
0 as £ — o, which proves (b). Similarly applying Chebyshev’s inequality to the random
variable | Ax\7 | we have

PI‘Ob(l Ak\‘l—Tk I < tkl A l) = 2/(tk l Akl) —0.-a8 k>
which completes the proof of Lemma 4.6.
LEMMA 4.7. Let ¢ be a positive integer, G a finite set, \: G — [21, 22]. Let F': (—, x)
— [0, 1] be defined by:
F(a) =271 {A:A CG, Yeca'A(a) < a}|.

Then there exists a probability space (2, B, P) with random variables X, Y such that:
(i) Plzi=sY-X=s/t-2)=1-¢/V|G|
(i) P(X = a) = Fx(a) = Fy(a) = P(Y = a) = F(a).
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Proor. We start with some notations that will serve us along the proof. If Q,, Q. are
finite sets and (Q;, 2%, P;) i = 1, 2 are measure spaces then

(91, 29], Pl) @ (92) 25]21 P2)

is defined to be the finite measure space in which the “sample space” is a union of two
disjoint copies of £, and &, (this “sample space” is denoted by £; © ) and the measure
of a subset is the sum of the P; measures of the intersections with ;. This new measure

will be denoted by P; © Ps. Let n, k, m be integers. Then (Z) will denote the binomial

. L. . n n
coefficients, and we define (n; k; m) = min k>’ ( E+m

Let |G| =n,Q = {(k; Z):0 < k = n, # an order of G}, and let Q;, i = 1, 2, 3, 4 be
disjoint copies of . We define measures P; and £; by:

Pi(k; R) =27"(n; k; ¢)/n!
Py(k; R) = 27"(n; k; £ )n!

Py(k; R) = 2‘"((2) —(n; k; é’))/n!

Py(k; R) = 2‘"((2) — (n; k; é’))/n!

Observe that P; © P; (P, ® P,) is a probability measure on ©; @ Q3 (2 ® Q). First, we
show that Ps(2s) < ¢ /vn

P3(Q) = Yrareas Ps(k; R) = Yosk=n 20 Ps(k; R)

= Yo<k=n 2_"((;:) - (n; k; f)).

Observe that if 2 = n/2 — //2 then (n; k; ¢) =(Z> and if k> n/2 — £/2 then (n; k; ¢)

= ( k:L_ /)' Hence,

_of [ n <o M )<
P3(S23) = Ynjo-ro<r=n 2 ((k) - (k + />) =¢2 ([n/2]) = //\/Z

Now, we will define a random variable X; = X on ; © €3 and a random variable Y; on
@ 4 such that F = Fx = Fy, and we will define a 1-1 measure preserving mapping 7" &,
@D Q; — Q2 D Q4 such that

1) TQ =

(2) Z°Z1 = Y1°T IQ["' X1 Ing f-Zz.

Thus, by defining the random variable Y on ©; ® €3 by Y = Y1°T, we conclude that Fx
=Fy=Fand P ® Ps3({-z1 =Y — X < {.25) = 1 — P5(Q2s). Therefore it is enough to prove
the existence of such X, Yi, and T. Define X = X; on ©; © O3 by Xi(k; Z) = A(R.(Z))
where R;(2) is the initial £ elements of G in the order # and for A C G, AM(A) = Yaea A(a).
Similarly we define Y; on Q, ® Q, by Yi(k; Z) = A(Rr(2)). Obviously F = Fx = Fy. The
mapping T':Q; © Q; — Q2 ® Q4, is defined by: if (k; Z) € then T (k; #) € Q; and T (k;
R) = (k+ ¢(mod n); Z), and if (k; Z) € Q3 then T (k; Z) € Qyand T (k; ) = (n — k;
R). It is straightforward to check that T is 1-1 and measure preserving and that (1) and
(2) are satisfied. This completes the proof of Lemma 4.7.

, and(n; k; m) = (n; k; —m).

5. The expected number of visits in small intervals. The purpose of this section
is to prove the following.

PROPOSITION 5.1. Let (m:)5-1 be a sequence of shrinking partitions, and let (x:)%-1 be
a null (m.)-divergent sequence of numbers. Then for every null sequence of numbers
(br)i=1 with
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K- Aa(e)) = by (K>2)

where €, €; are persistent numbers (e, €2 € Q) with 0 < €, < €2 < 1, we have
Uni([x2, 2 + 8e))

blz"'ffkl

lim sup—w 1(=2/K.

The proof of the proposition will make use of the following lemma.

LEMMA 5.2. Let (m:)i-1 be a sequence of shrinking partitions, and (x:)¢=1 be a null
(m)-divergent sequence. Let (y:)i-1 be a sequence of numbers such that (1 — y,)5-1 is a
null, (m,)-divergent sequence. Then for every null sequence (b,)5-1 with

2\ (a(e2)) < by
where €1, €2 € Q with 0 < €; < €2 < 1, we have
Un(le) _ Un(de) _
bl | bre|me| T
where I =[x, X + ba)

Jr = (yr — br — 2\ (a(e2)), ]
Un(It)  Un(Jk)

bk'l‘lTlel blz'lﬂkl

0

lim sup

=0

and lim inf
where Ji = (yr — br + 2A (a(e2)), yr].

Proor oF LEMMA 5.2. Define L, = min(x:/p (m), (1 — y&)/p (7)), and xk, yhi=1,

<+ b =[VL4/2] by:

xh =2, — iVLe-p(m) —A(a(e));  yb =y + iVLep (me).

We define a partition of the space of orders into two subsets; H, H, by: # € H iff there
exists 1 < i < 4, such that

(*) Aa(R, xi)) < Aa(e))
*
and AMa(27,1 - yk) = A(a(e))
and Z € H, iff # € H. Now for each 1 < i < 4 we define H; by: # € H; iff # € H and i is
the maximal index for which (*) holds.
SuBLEMMA 5.2.1. Foreveryl<i</
Un (I | Hy) < U, (Jx| H).
The idea of the proof is to condition on the x}-initial and on the y}-final and appealing
to the reflection principle.
Proor. It is enough to prove that
U,(Ie | Hi, T(R, x4), T7(R, y4)) < Uy (e | Hi, T (R, x4), T~ (R, yi)).
Let 7 = 7\['(®, xi)\I'"" (&, y.). Then,
Uw(Ik'Hly I‘(@) x;l)) F_(‘@, y;?))
(5.3)
= Uz(I, = N(T(R, x3))) = Uz (M (7) — L + A\(T(R, x}))).

As 0 = A(T(&, x£)) — xk < Aale)) and 0 < yi — NI (£, vi)) < Aa(ez)), we have
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(5.4) A7) — I + AR, x1)) C Jp — AMI(£, xk)).
From (5.3) and (5.4) we deduce that

U, (I | Hi, T(R, x4), T™(R, y4)) < Us(Ji — M(T(Z, x4)))
= Ui | Hi, (R, %), T (R, yi))

which completes the proof of Sublemma 5.2.1.
From Sublemma 5.2.1 we deduce that

(5.5) Ul |H) = U(J, | H).
We proceed with the next sublemma.
SuBLEMMA (5.2.2). The sequence (U,(I,| Ho))/(br+ | mx|) is bounded.
Proor. It is enough to prove that for every I'(#, x.) and I'" (£, y:), the sequence

UL | Ho, T'(R, xx), T (R, y2))
bk- ' Tk I

is bounded. Denote 7 = 7\I'(&, x:)\I' (£, y:) and 7 = 7 N 7(ez). We have

(5.6) U1 | T(R, x:), T™(R, y), Ho) = Us(Ix — MT(R, x1)))-
By Lemma 4.5 and the nullity of (x:), (1 — yz) and (b:) it follows that
(6.7 Us(I, — NT(A, x))) =< Us([0, br)) = U[O, b)).

We proceed by estimating U;([0, b:)). Observe that A(7) =« 1 and thus A(7) =4« €.
Using Corollary (4.4), we conclude that for sufficiently large &

_[a@ T & -
Ux([0, b)) = [m.—)] (7| -1 = [m:] o] e
- by + 2A(a(ez)) .2

6b
| ma| < — «| me.
€1 €1

Thus, for sufficiently large &, (Ux([0, bx)))/(br- | m:|) = 6/€1, which completes (with (5.7)
and (5.6)) the proof of Sublemma 5.2.2.

SUBLEMMA (5.2.3). Prob(Hj) =1« 0.
PROOF. As ¢ € @ there exist constants § > 0, M > 0, a > 0 such that if = is a partition
with p(7) < a/M and M-p(7) < x < a then
P(7(e1), x) = 4.
Otherwise there exist sequences, 0 < 8y — 0, M; — =, 0 < a; — 0, and a sequence of
partitions () and a sequence of numbers (x;) such that:
My-p(m) <xr<or and P(m(er), xx) < 6.

The first condition asserts that {:} is shrinking and that the sequence (x:) is null and
(m)-divergent while the second condition implies that P(m(e1), x,) — 0 which contradicts
the persistency of e;.

Consider the following facts:
(a) The nullity of the sequences (xx), (1 — yx) implies that for sufficiently large %, for each
l=si,j=st

Am(€)\T(2, xi)\T' (£, yi)) > e
which in particular implies that

A(m(e)\I'(%, x4)\I" (%, ¥%))
A\T(R, xi)\T(Z, y4))
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(b) For sufficiently large &, for every 1 < i, j < ¢, and for every order £ of m the following
hold:

(b.l) X< a

b2 l-wm<a

(b3)  xi' = NI, x})) > 2M-p(7)

(b4) AN, xi) UT(ZR, yi) < (&2 — 1) /2.

Therefore for sufficiently large 2
P(m(e), x5 | T(R, x4), T7(R, yi)) = 8
and P(n(e2), y4 ' | T(R, x57), T(R, y})) = 6.
Hence, by denoting H, = Q\U;»; H,, we have
Prob(H;| H;, T(%, xit'), T(&, yit')) = 82

which yield that Prob(H;| H;) = 8 and therefore Prob(H;) < (1 — 8%)" —4_. 0 which
completes the proof of Sublemma (5.2.3).
From Sublemmas (5.2.1), (5.2.2) and (5.2.3) we conclude that

Un(Ik) _ Uﬂ(Jk)

lim sup

bp-|me|  bre|m|
slimsup((U"(Ile)— U"(J""H)>P ob(H) + L2 ) oy, ))
be- || be- [ me| by | m|
=< lim sup——l(—klﬁ)lP ob(H,) =
by | |

This completes the proof of the first part of Lemma 5.2. The second part is similarly
proved.

PROOF OF PROPOSITION 5.1. Define A, = b, + 2A(a(e;)) and let yi = 1 — x, — i-As,
i=0, ..., ne. Denote

I, =[x, x + bg)

Jh=(yh,y5'] i=1, .-, m
and Jp= Ul Jh = (1 — xp — npAr, 1 — 22}
Let (n.)i-1 be a sequence of integers such that:

(@) niAr/p(m) 4w 0 and

(b) (1 — yi)i-1 is a null sequence.

From Corollary 4.4 and (a) we have that
Uni(J)

lim ————
nk-Ak- I 7Tk|

=1

On the other hand we deduce from Lemma 5.2 that for any selection of iz, 1 < i, < ns

m;(Ik) Ume(J;;z)

b+ lml br+ | |

=0.

limsp

As U, (J:) = ¥, U, (J%) we conclude that
U,..(Ix) Ale
bk I Tk I bk

wk(k)
by~ | |

lim sup =0,

which yield that lim sup =1+ 2/K
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Similarly, by using the other part of Lemma 5.2 we can show that
ka (Ik )

lim inf =1-2/K
bk' | Tk I
which completes the proof of Proposition 5.1.

From Proposition 5.1 we easily deduce the following corollary.

COROLLARY OF PROPOSITION 5.1. Let (m:)7-1 be a shrinking sequence of partitions,
and let (xx)i-1 be a null sequence (m.)-divergent. Then for every K > 2 and b), € m, with
A(br) = K-Aa(e:)) wheree;, e € Q,0< e <e <1,

Uni o) ([22 — A(Br), x1))
A(br) - |7 |

lim sup —-1|=2/K

6. Coverage probabilities by “thin sets.”
PROPOSITION 6.1.  Let (m:)%-1 be a shrinking sequence of partitions, and let €,, €; € @
with 0 < e<e<l. IfAk C ﬂk\wk(EZ) satisfies
Ala) — A(b)
Aale))

then for every n > 0 there exist B, C A, with AM(Ax) — AN(By) < n such that for every B} C
B, and every null, (m.)-divergent sequence xy,

lim sup | P(B%, x¢) — AM(B%) | — 5A(Bx)h'* < 0.

mMaxe, sea, =h<107°

Proor. Letn > 0 be given. Without loss of generality we may assume that A(4;) = 7.
For every 0 < £ < 1, there exists a decomposition A, = A, (£, —1) U Ax(§, 0) U AL(£, 1) of
A, into disjoint subsets such that

(a) Forevery a;€ Aw(&, i), i=-1,0,1, A(a:) =A(ao) =A(a—;), and
(b) |Ax§, 1) | =[Ar§, —1)| and [|Aw(& 0)| — ¢ Ak]| = 1.

" Let ¢ satisfy 2(1 — £) < n and let B, = A, (£, 0). Then for sufficiently large &, A(A:) — A(B:)
= 7. Let (xz) be a given null (m)-divergent sequence and let £, = x/8. Let my(w) =
7k *(w)\7# (w) and let H be the o-field generated by the set-valued random variable 7.
For every subset D;. of m, we denote by D, the set-valued random variable D, N 7. Let f;
denote the indicator of the joint events (%) > 1 — 4t, || > (1 — 4¢:) | m| and (1 —
4t) |Ar€,0) | = | Ak, D) | = (1 — &) | Aw(€, §) |, i = —1,0, 1. Observe that f, is H-measurable
and that on f, = 1, for every sequence B}, C By, A(B%:) — A(By') < 4t;.. Also by Lemma 4.6,
Prob(f, = 1) = 1 as k — . Therefore in order to prove Proposition 6.1, it is enough to
show that for every B}, C B, and for every sequence w; with f(w:) = 1,

lim sups.«o| P(B}, ¢ | H)(wr) — A(Bi(wk)) | — 5A(Br)A® < 0.

Since P(B%, xx| H)(wr) = P(B%, x| H) (w) (felwr) = 1), it is enough to show that for
every sequence by, € Bj(wy),
Plow, x| H)wn) _
A(be)

In all that follows in this section, U () will stand for the expected number of visits of the
random walk generated by m:\bs (7\bz).

(6.2) lim sups_.« 1| =5n'8

LEMMA 6.3. For every interval I, with I, C [5t, 9t,) and KA(a(ez)) = u(I) = 2\ (a(ez)),
we have for sufficiently large k,

(nIr) = 3N a(e2))) | mi | = ULx| 7, m#) (@) = (3N (alez)) + u(Le)) | me].
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PROOF.  As fi(we) = 1, Ui | 7, m) (wr) = U(Ii — M lé(wg)) | M) (we) and I, — A(m f+(wr )
C [, 9%+). Moreover, on fi = 1, | 7| = (1 — 4¢) |m:| and 1 = A() = 1 — 4, and thus in
particular A(7,(e2)) > ((e1 + €2)/2)A(7:). Therefore we could apply Proposition 5.1 to show
that

U(Ix — Mrrf(wr)) | 75) (wr) —1l= 2\ (a(e)) _
pe) | m | pde)

As Aa(ez))| m | is bound from below (by e), the result follows.

lim sups_.

LEMMA 6.4. On f, = 1, for every 6t, <y, < 9¢,

U([yk - Sk,.)'/e)IH)
Na@)|m] =V

where 8, = max {A(a) — A(b):a, b € B,).

lim sup

PROOF. As A, (¢, i)\7, is H-measurable, the integer valued random variable m(w) =
min {| Az (4, i)\7,|:i = —1, 1} is H-measurable and there are H-measurable selections of a
subset D, of A, (¢, —1)\7 with | D,| = m(w) and of a 1 — 1 function u:Dp— A& 1)\ 7.
Define

S(w) = {dEDki()SXd/\Xu(d)Stk< 1-t<Xav Xuw =1}.

Observe that | S(w)| is the sum of m(w) ii.d random variables Y.(a € D) with Prob(Y,
=0)=1/2and Prob(Y,=1) =1/2. Ason f, = 1, m(w) = t, | A (€, —1) | = ta(1 — £)| Ar| /4
= ((1 = §)m/32)(xx/p(m)) — 0 as k — oo, it follows that on f, = 1,

(6.5) P(|S(w)| = n| H) — 1 (uniformly) as % — oo,

Let H, be the o-algebra generated by H and S. Let n = [1/Ah] (the smallest integer = 1/A)
and let S;(w) be an H;-measurable set valued random variable with Si(w) C S(w) and
| S1(w)| = min{| S(w)|, n} (e.g., fix a well ordering of A (£, —1) and let S; (w) be the first n
elements of A, (¢, —1) in S(w) if | S(w)| = n and otherwise S; (w) = S(w)). Let H; be the o-
field generated by H; and 7'*\S;\u(S:).Our next step is to show that on fr=1and|S| =
n,

U(lyr — 6, yk)le)

}\(a(Gz))l 77/«]

Denote ¥ = AM#*\S\u(S:))
Tw)={a€S:X,(w) =t}
Ye(T) =y =y = MT U @S N\wT))) = 3 — v — Au(S1) + Toer A (u(a)) — A(a))
L(T) = [yx(T) — 8, 3 (T)).

Observe that for every T C Si, Prob(T(w) = T|H) = 27'5!! and therefore on fo =1,
ULye = 8k, y&)| Hz) = 27'9 $rcs, UL (T)). Observe the following facts:

i) T, - T, CS=L(T)NI(T:) =¢

(which follows from yx(T2) — ye(T1) = Yaer,\r, (Mu(a)) — X(a)) = ).

(ii) For each T C Sy, Ii(T) C I = [yx — & — Au(S1)), yx — A(S1)) — Y.

By (i) we have that for every x, the set I(x) = {T:TCS:and x € I,(T)} is a set of subsets
of S; in which no two elements are éomparable (in the inclusion partial order) and thus by

a well known result
-~ (IS:] \/2- 15174/
I(x)_<|31|/2 = 772 /V| S|

which together with (ii) implies that on f, = 1,
(6.7) U(yr — Or, yr | H2) = U(IkIHZ)/VISII-

(6.6) lim sup = 5/\/; = 5vh.
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Ason f, =1, I, C [5t, 9t) and u(l) < 8 + | S1| A\ (a(e2)) = (2 + 1/h)hA(a(e2)) < 2A(a(ez))

U(Ik I Hz) . )
m = 5 which together with

(6.7) and (6.5) proves (6.6) which completes the proof of Lemma 6.4.

we conclude by Lemma 6.3 that on f, = 1, lim sups—,

LEMMA 6.8. Let ¢ be a fixed positive integer. Then for every sequence (yi)%-1 with Tt
< yi < 8t;, and for every sequence.(by) and (w:) with fi(w) = 1 and by € By (wy),

Ui | H)(wr) _ U |H) _
A(B) | | A(be) | me| —

where I = [yx — Abs), y) — ¢A(bx) and To = I + ¢N(bi) + [~ 8k, £8:).

lim inf

PROOF. Let Hj; be the o-field generated by H and 7\ B;.. Denote by F the cumulative
distribution function of A(w# N B:) given H;(w:), and by y the Hi-measurable random
variable A(7\B:). Then for every interval I contained in (4f;, 1 — 4¢:) we have,

U | Hs)(we) = fU(I— y — x| Hs)(wx) dF(x).

By Lemma 4.7 there exists a probability space (&, 4, P) with random variables x, y, such

that

(i) Fx=F,=Fand 5

(i) P(Q) = 1 — ¢/V|Bi\7:| where @, = (& € Q: (A (b)) — &) =y —x < £(N(bi) +
8}

Observe that on ,, I.- vy — y(@) D I — y — x(®) and therefore

U(Te| Hs) (wr) EJ U, — v = y(@)| Hy) () dP (w)

Q

= f U, — v — x(w)| Hs) (@) dP ().
2

By Lemma 6.3, Uy — y — x(w)| Hs)(ws) =< 4\(bs)| 7| for & sufficiently large (I C I} C
[5¢:, 9¢,) where I} is some interval with u(I.) = 2A(b:)), and therefore U(l,| Hs)(we) =
U(I:| Hs)(wr) — 4A(be) | 7| €| Bi\7r(wr)|. As | Bp\me(wr)| = .| Be| = (&n/2)t/p(m2)
— 4.« %, the lemma follows. (H C H;).
ProoF oF (6.2). Observe that
P(b, x| H)(wr) = U([xx — A(br), x2) | H)(wr)/ | 7o wr)|.
Let ¢ = [A™"/%] and define
I = [xx — Mbr), x2), I, = I + [ ¢8s, £8:]
J;;=Ik_iA(bk),i=0,"',/’ Jk=Uis/ Jlk~
By Lemma 6.8 we have for every0 < i< ¢ .
Ui | H)(wr) _ Ui | H) () _
A(be) | 7| A(be)| |
UM | H)(wr) _ U(Je | H) (o)
A(be) | 7 | (£ + DA(br)| 7
By Lemmz‘al_6.3, lim inf(U(J | H) (wr)/((¢ + 1)A(be)| 72 |)) = 1 — 3/(¢ + 1) and therefore,
lim inf(U(I; | H)(wr)/A(be)| 7 ])) =1 — 3/(¢ + 1). By Lemma 6.4,

lim sup((UTx | X) (@r) — Ul | H) (@) /A(Be) | 7 |) < 10¢ V.

lim infy_. .

Hence lim infy_. o | = 0.
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Thus we conclude that

. U(Ile)(wk) 3 1/6
lim inf, .« oo [m] =TTz 10¢vVh =1 — 4h"°,

Similarly, setting Ji = L.— i), i=0, .-, £ we have by using Lemmas 6.3 and 6.4,

Ul | H)(wr)

b o]~ 1 suPse Bime Ui H)(x)/ (£ + 1)

lim supz—w

U(Jx | H) (wr)

Ao [ml+ D T 10k

=< lim sups—,«

3 )
<14+———+10A"3 <1 + 5h"S.
Z+1

P(br, x)

As lim | 7| /| m | = 1, we conclude that lim sup o)
&

1 l =< 5hY%, This completes
the proof of 6.2 and thus of Proposition 6.1.

7. An intermediate result.

PROPOSITION 7.1 Let (m:)%-1 be a shrinking sequence of partitions and let €,, € be
two persistent numbers with 0 < €, < €2 < 1. Then for every n > 0 there exist sets Tx, T}
C me\me(€2), with N(m\m(€2)) — N(T)) < 7 such that for every T C T and for every null
(7 )-divergent sequence (x),

lim sup | P(T%, x2) — M(Th)| =< 7.
ProoF. There exists K; such that 2/K; < 5, and K; > 2. Define T}, = {a:a € m, A(a)

= K, -A(a(es))}. By the Corollary of Proposition 5.1, we have that for every sequence of
subsets T, Th C T4, and for every null (7 )-divergent sequence (xz),

(7.2) lim sups_... | P(T}, x2) — M(T})| — (2/K)A(T}) < 0.

There exists h, 0 < h < 10° for which 54'® < 7. For every k there exists a decomposition
m\me(€2) = TLUALU ... UAf

where ¢ < K, /h, such that for every 1 =i = ¢,

Aa) — A(b

By proposition 6.1 it follows that for every 1 < i =< ¢ there exist subsets B} of A}, satisfying
A(A%) — A(B%) < 27'n such that every B}, C B}, and for every null, (7;)-divergent sequence
(xk ) ’

(7.3) lim sups—... | P(B}, xx) — A(B%)| — nA\(B}) < 0.

maxq,sea;

Define T, = T} U B} U --- U B{. By (7.2) and (7.3) it follows that for every T\ C T}
lim sups—w | P(Ts, x:) — M(T2)| = AT N T}) + T MBL) =0

and thus

v lim sups_.«o | P(T%, 2) = M(Tw) | <7

which completes the proof of Proposition 7.1.

8. Characterization of persistent numbers.

ProrosiTiON 8.1. @ = (0, 1).

LEMMA 8.2. Let 7 be a partition and let 2p(m) < x < 1 — 2p(m). Then for every 0 < €
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=< 1 and every a € 7\7n(e),

P(a, x) = 4\ (a)/e.

ProoF. Let 2o(7) < x <1 — 2p(m), b € m(e) and a € 7\n(€). Then A(b) < A(a) which
together with the obvious implications A(7‘\{a}) € [x — A(a), x) = A(7'\{b}) € [x — A(a)
= Ad), x + Aa)) = p {y € [x — 2A(a), x + 2A(@)]:A (7 \(b}) € [y — A(]), )} = A(D),
imply that (using Fubini’s theorem)

Prob(\(7*\{a}) € [x — A(a), x)) < Prob(A(#\ {}) € [x — A(a) — A(d), x + A(a)))
x+2\(a)

1
= Wf Prob(\(w\(6}) € [y = A(b), 7)) d,

x—2\(a)

and therefore (using Lemma 4.1 and Fubini’s theorem)

1
A(D)P (e, x) =A(b) J Prob(A(7z*\{a}) € [x — A(a), x)) dt
(]

x+2\(a)

1 rx+2\(a)
_<_J j Prob(A (z\{b}) € [y — A(b), y)) dy dt=j P(b, y) dy.
0 x

—2\(a) x—2A(a)

Thus summing over all b in 7(e) and using the obvious inequality Ysenrq P(b, y) =
P(m(e), y) = 1, we conclude that P(a, x) < 4A(a)/e.

ProoF oF PrROPOSITION 8.1. Summing the inequalities of Lemma 8.2 for all a in
7\7(5/6) we have

P(m\n(5/6), x) = (4/6)/(5/6) < 4/5

and therefore P (w(5/6), x) = 1/5 which proves that 5/6 € @. Observe that if x € @ then
[x, 1) C Q. Let € € Q. Let () be a shrinking sequence of partitions, and let (x.) be a null
(m:)-divergent sequence. Proposition 7.1 asserts the existence of sets T, C .\ (€) with
AT >1-€- €%/17 such that lim sups_,« P(Tk, x2) <1 — € + ¢/4. Let € = € — €2/17 and
" let Ay = m,\m.(€)\Ts. Then A (A) < € — € + €2/17 and by Lemma 8.2 lim sups_,. P(Ax, x)
<4(e — €+ €2/17) /e < €/2. As P(m (€), xx) + P (A, x1) + P(T%, x1) = 1 we conclude that
lim inf, .. P(m:(€), xx) =1 — (1 — € + €/4) — €/2 = €/4. Therefore if ¢ € @ then € = € —
€2/17 € @ which shows that @ = (x, 1) for some 0 < x < 1. As for any 0 < x < 1 there is
e>xsuchthate =€ — /17 < x, @ = (0, 1).

9. Completing the proof of the main result. First, we state an immediate gener-
alization of Proposition 7.1 by applying to it the fact that @ = (0, 1).

LEMMA 9.1. Let (m:.)s-1 be a shrinking sequence of partitions. For every n > 0 there
exist sets Ty, C mp, with A(Tx) > 1 — n such that for every T, C T, and for every null,
(m)-divergent sequence (x),

lim sup_.o | P(T%, 22) — A(Th)| <.
COROLLARY 9.2. Let (m:.)5=1 be a shrinking sequence of partitions. Then, for every

null, (m,)-divergent sequence (xi) and for every A, C =, the following limit and equality
hold:"

lims .o, (P (A, x2) — A(Ax)) = 0.
Proor. Otherwise, there exist a shrinking sequence of partitions (7:)7-1, a null, (m)-
divergent sequence (x:) and sets A; C m such that

limy—.. | P(Ax, ) — AM(As) | = a > 0.
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Take n = a/5. According to Lemma 9.1 there exist T, C m, with A(T%x) > 1 — 1 such that
lim supeoe | P(Tk N Ak, 22) — AT N Ax)| <7
and lim sups_e | P(T, x2) — AMT2)| <7.
Thus,
" lim sup | P(Ax, x) — A(Ax)| < lim sup | P(Tx N Az), x) — ATk N As) |
+ lim sup | P(Ax\T%, xx) + lim sup | A(A\T%)|
=qy+limsup |1 — P(Tk, x)| + 1= <a
which contradicts the assumption. This completes the proof of Corollary 9.2.
We reformulate now the corollary in the “¢, § language.”
COROLLARY 9.2*. For every n > 0 there exist § > 0, K > 0, a > 0 such that if 7 is a
partition and 0 < x < 1 with p(7) < 8 and Kp(7) < x < a then for every TC =
| P(T, x) = A(T)| <.
THEOREM 9.3. Let 0 < a < 1 be given. For every n > 0 there exist § > 0, K > 0 such

that if = is a partition with p(m) < § and 0 < x < 1 with Kp(7) < x <1 — a then for every
TCam,

|P(T, x) = \(T)| <m.

ProoF. Let0<n<1andO<a<1be given. Let Kj, 81, a; be the constants associated
to n/5 by Corollary 9.2*. Without loss of generality K, = 1 = a1 = a. Denote B = na10a/2,
¢t = max(0, x — B). By Chebyshev’s inequality,

V(A (7' (w))) _16

p(m)
and for every T C 7
Prob<|)\((7r\7r’(w)) NT)—1-t)TD)| >%) s%p(w).

Let 8, be a constant satisfying,
(64/a’n* + 16/8%)8. < 1/8
and take

2
8 = min ("—“1"?‘11‘1 62), K = Ki/a.

Let 7 bg a partition and 0 < x < 1 with p(7) < § and K.p(7) <x <1 — a and let T C .
Define 2 C  by:

Q = Q; N 2 where ©; = {w: |A(7'(w)) — t| = B/4)},
Q= {w: [A(T\7' (@) N T) = (1 — HOA(T) | < %} .

~ As § = 8, we have
(9.4) Prob(Q) > 1 — 7/8.
From the definition of & it follows that for every w € &,

A((m\7'(w)) N T) an/8 ‘ N ‘ (1= &A(T)
9.5) A\ 74 (w)) A(m\7(w))

= /8 + naa:/8a < n/4.

a

- XT) ‘ = - NT) ‘
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For x > B (i.e., t > 0) it follows from the definition of & that for every w € &

pm g 8 _maan _x— A(r'(w)) _ maen
A7) ~ tas 4 1-A(w)

and for x = B, (i.e., t = 0) A(7*(w)) = 0, and therefore
9.7 Kip(n) = Kp(n) = x < ay.

(9.6) K, <a

By (9.4) it follows that
| P(T, x) = \(T)| = | P(T, x| ) = \(T)|
+ (1 — Prob(Q))P(T, x| Q) + | P(T, x| 2\$)-Prob(Q\Q)|
=|P(T, x|Q) = N\(T)| +n/8 + n/8.
But from Corollary 9.2*%, (9.5), (9.6) and (9.7) it follows that
|P(T, x|Q) — N(T)| = n/4 + n/4
thus,
| P(T, x) = AN(T)| <n
which completes the proof of Theorem 9.3.
THEOREM 9.8. For every n > 0 there exists § > 0, K > 0 such that if = is a partition
with p(m) < 8 and 0 < x < 1 with Kp(7) < x <1 — Kp(n), then
Yaer | Pla, x) = A(a) | <n.

ProoF. By defining P’(a, x) = Prob(x — A(a) < A(#{") < x), and thus P’(a, y) =

-|-7—1;-| Una)((y = A(a), ¥]), we obtain (as in the derivation of Theorem 9.3) the following:

THEOREM 9.3*. Let 0 < a < 1 be given. For every n > 0 there exist § > 0, K > 0 such
that if 7 is a partition with p(7) < § and 0 < x < 1 with Ko(7) < x <1 — «a then for every
TCx

|P/(T, x) = \(T) | <.

Now, observe that P’ (T, x) = P(T, 1 — x) and therefore by Theorems 9.3 and 9.3* and by
the following obvious identity

1
suprc. | P(T, x) = AM(T) | = 3 Yaer | Pla, x) —A(a) |,
Theorem 9.8 follows.
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