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Abstract We introduce asymptotic analysis of stochastic games with short-stage duration.
The play of stage k, k ≥ 0, of a stochastic game Γδ with stage duration δ is interpreted as
the play in time kδ ≤ t < (k + 1)δ and, therefore, the average payoff of the n-stage play
per unit of time is the sum of the payoffs in the first n stages divided by nδ, and the λ-
discounted present value of a payoff g in stage k is λkδg. We define convergence, strong
convergence, and exact convergence of the data of a family (Γδ)δ>0 as the stage duration δ

goes to 0, and study the asymptotic behavior of the value, optimal strategies, and equilib-
rium. The asymptotic analogs of the discounted, limiting-average, and uniform equilibrium
payoffs are defined. Convergence implies the existence of an asymptotic discounted equi-
librium payoff, strong convergence implies the existence of an asymptotic limiting-average
equilibrium payoff, and exact convergence implies the existence of an asymptotic uniform
equilibrium payoff.

Keywords Stochastic games · Equilibrium of stochastic games · Continuous-time
stochastic games · Multistage games with short-stage duration · Uniform value · Uniform
equilibrium payoffs

1 Introduction

Most strategic interactions evolve over time, and are often modeled as a discrete-time mul-
tistage game. The discrete-time modeling enables us to use the classic theory of extensive
form games, which entails no conceptual difficulties. This, however, comes at implicit costs:
Players cannot change their actions within a stage and additional information about others’
actions and nature’s moves is obtained only at a discrete set of times. An alternative mod-
eling of dynamic interactions is continuous-time games, which avoids the above mentioned
costs, but entails some conceptual difficulties.
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The present paper develops a complementary approach that studies the asymptotic be-
havior of multistage games when the stage duration goes to zero. We focus on the theory of
stochastic games.

A discrete-time stochastic game, introduced by Shapley [9], proceeds in stages. The stage
payoff is a function g(z, a) of the stage state z and the stage action a, and the transitions
to the next state z′ are defined by conditional probabilities P (z′ | z, a) of the next state z′
given the present state z and the stage action a. Players’ stage-action choices are made
simultaneously and are observed by all players following the stage play.

Discrete-time stochastic games are multistage game-theoretic models that enable us to
account for changes of states between different stages of the interaction, and where the
change is impacted by the players’ actions. However, no single discrete-time stochastic game
can model the case where the probability of a state change in any short time interval can
be positive yet arbitrarily small. This feature can be analyzed by studying continuous-time
stochastic games, introduced in [13], and studied in, e.g., [2–4, 8, 13]. An alternative and
complementary approach is to study the asymptotic behavior of discrete-time stochastic
games, where the individual stage represents short time intervals that converge to zero and
the transition probabilities to a new state also converge to zero.

The continuous-time stochastic game model provides us with a tractable analytic model
(whose results are neatly stated), but, as mentioned earlier, the model entails some concep-
tual difficulties. The complementary asymptotic approach builds on the classic discrete-time
(well-defined) game model and, therefore, avoids the conceptual issues of continuous-time
games. The results of the asymptotic approach supplement and cement the conclusions of
the analytic continuous-time model.

We consider a family of discrete-time stochastic games Γδ , where the positive parameter
δ > 0 represents the stage duration. The sets of players N , states S, and actions A are in-
dependent of the parameter δ, and the conditional transition probabilities Pδ and the payoff
function gδ depend on the parameter δ. We study the asymptotic behavior of the strategic
analysis of Γδ as δ goes to zero.

The payoff function gδ describes the stage payoff in Γδ . As the stage duration is δ the
stage payoff per unit of time is gδ/δ. One natural condition, (g.1), on the family of discrete-
time stochastic games Γδ is that the stage payoff function per unit of time is a function of the
current state and action, and independent of δ, i.e., gδ/δ = g, where g : S ×A → R

N . A less
restrictive condition, (g.2), is that the stage payoff function per unit of time converges (as δ

goes to zero) to a payoff function g : S × A → R
N . In the asymptotic results, the distinction

between assumptions (g.1) and (g.2) is immaterial.
The transition rates, pδ , are the functions defined on S × S × A by pδ(z

′, z, a) = Pδ(z
′ |

z, a) if z′ �= z and pδ(z
′, z, a) = Pδ(z

′ | z, a) − 1 if z′ = z. The transition rate pδ(z
′, z, a)

represents the difference between the probability that the next state will be z′ and the prob-
ability (0 or 1) that the current state is z′ when the current state is z and the current action
profile is a. Note that it follows that for every (z, a) the sum of pδ(z

′, z, a) over all states z′
is zero and pδ(z

′, z, a) is nonnegative whenever z′ and z are two distinct states. It is conve-
nient to express our conditions on the conditional transition probabilities Pδ as conditions
on the transition rates pδ .

There are several natural conditions on the transition rates function pδ , each reflect-
ing a dependence of pδ on the stage duration parameter δ. One such condition, (p.1), is
that the transition rates per unit of time is constant, i.e., for each δ > 0, pδ/δ = μ, where
μ : S × S × A → R. A weaker asymptotic condition, (p.2), called convergence, is that the
equality with μ holds in the limit, i.e., for all triples (z′, z, a) of states z′, z and action pro-
file a, pδ(z

′, z, a)/δ converges (as δ goes to zero) to a limit μ(z′, z, a). Condition (p.3),
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called strong convergence, requires that condition (p.2) hold and that pδ(z
′, z, a) > 0 if and

only if μ(z′, z, a) > 0. Condition (p.1) implies condition (p.3) and condition (p.3) implies
condition (p.2).

An exact family of discrete-time stochastic games Γδ is one that obeys (g.1) and (p.1).
A family of discrete-time stochastic games Γδ is said to converge in data if it obeys (g.2)
and (p.2), and it is said to converge strongly if it obeys (g.2) and (p.3).

The above-mentioned convergence conditions on a family (Γδ)δ>0 are stated as condi-
tions on the data of the games in the family. The data convergence condition seems natural
and, therefore, the study of the asymptotic behavior of equilibria of a data-convergent fam-
ily is of interest. However, one may wonder if the strategic dynamics of some other families
of games that do not converge in data have a limit and, therefore, such families deserve an
asymptotic analysis as well. This leads us to the study of convergence conditions on a family
(Γδ)δ>0 that depend on the stochastic processes of payoffs and states that are defined by the
initial state and a strategy profile σ , in particular, when the strategy profile σ is stationary.
This leads to our definition of stationary convergence. Roughly speaking, stationary conver-
gence states that for every stationary strategy profile σ and real time t , both the cumulative
payoff (in Γδ) up to time t and the distribution of the state at time t converge as the stage
duration δ goes to zero.

Proposition 1 asserts that stationary convergence is equivalent to data convergence. This
result shows that the continuous-time model (see, e.g., [8]) captures all possible limits of
“nicely behaved” families of discrete-time stochastic games with short-stage duration.

Data (or its equivalent stationary) convergence is sufficient for our asymptotic results
(e.g., Theorems 1 and 8) on the stationary (as well as the nonstationary) discounted games.
In these results, we associate with a discount rate ρ and a stage duration δ the discount factor
1 − ρδ. These results remain intact if the (δ, ρ)-dependent discount factor λδ,ρ is such that
the limit, as δ goes to zero, of (1 − λδ,ρ)/δ exists and equals ρ. For example, λδ,ρ = e−ρδ .

The unnormalized ρ-discounted payoff of a play (z0, a0, z1, . . .) of the game Γδ is∑∞
m=0(1 − ρδ)mgδ(zm, am). The corresponding ρ-discounted game is denoted by Γδ,ρ . In

the two-person zero-sum case, Sect. 4.1 shows that, given a converging family (Γδ)δ>0 of
two-person zero-sum games, (1) the value of Γδ,ρ , denoted by Vδ,ρ , converges as δ goes to
zero, and (2) there is a stationary strategy σ that is ε(δ)-optimal in the game Γδ,ρ , where
ε(δ) goes to zero as δ goes to zero.

An asymptotic ρ-discounted stationary equilibrium strategy of the family (Γδ)δ>0 of non-
zero-sum stochastic games is a profile σ of stationary strategies that is an ε(δ)-equilibrium
of Γδ , where ε(δ) → 0 as δ goes to zero. In the discounted non-zero-sum case, we prove
(Theorem 8) that (for every ρ > 0) a converging family has an asymptotic ρ-discounted
stationary equilibrium strategy.

The average (per unit of time) payoff to player i up to time s (in the game Γδ) is
gi

δ(s) := 1
s

∑
0≤m<s/δ gi

δ(zm, am), where gi
δ is the ith coordinate of gδ . The lim inf, respec-

tively lim sup, game Γδ is the game where the payoff to player i is gi

δ
:= lim infs→∞ gi

δ(s),

respectively ḡi
δ := lim sups→∞ gi

δ(s). The limiting-average value or equilibrium payoff is a
payoff v such that for every ε > 0, there is a strategy profile such that (1) for every player i,
his payoff in the lim inf game is at least vi − ε, and (2) every unilateral deviation of player i

results in a payoff to him in the lim sup game of no more than vi + ε.
For every δ > 0, vδ,ρ := ρVδ,ρ converges to a limit (denoted by vδ,0) as ρ → 0+ [1].

The limit vδ,0 is the uniform and limiting-average value of Γδ [5]. Convergence in data is
not sufficient to guarantee the convergence of vδ,0 as δ goes to zero (Remark 10). Strong
convergence implies that vδ,ρ converges as δ goes to zero uniformly in ρ (Theorem 2) and,
therefore, vδ,0 converges as δ goes to zero.

Author's personal copy



Dyn Games Appl (2013) 3:236–278 239

A family (Γδ)δ>0 of two-person zero-sum stochastic games has an asymptotic limiting-
average value v if for every ε > 0 there are strategies σδ of player 1 and τδ of player 2 and
a duration δ0 > 0, such that for every 0 < δ < δ0, strategy σ of player 1, and strategy τ of
player 2, ε + Ez

σδ,τ
g

δ
≥ v(z) ≥ −ε + Ez

σ,τδ
ḡδ .

A family (Γδ)δ>0 of non-zero-sum stochastic games has an asymptotic limiting-average
equilibrium payoff v if for every ε > 0 there are strategy profiles σδ and a duration δ0 > 0,
such that for every 0 < δ < δ0, player i, and strategy τ i of player i,

ε + Ez
σδ

gi

δ
≥ vi(z) ≥ −ε + Ez

σ−i
δ ,τ i

ḡi
δ(s).

A family (Γδ)δ>0 that converges strongly has an asymptotic limiting-average value in the
zero-sum case (Theorem 4), and an asymptotic limiting-average equilibrium payoff in the
non-zero-sum case (Theorem 11).

A family (Γδ)δ>0 of two-person zero-sum stochastic games has an asymptotic uniform
value v if for every ε > 0 there are strategies σδ of player 1 and τδ of player 2, a duration
δ0 > 0, and a time s0 > 0, such that for every 0 < δ < δ0, s > s0, strategy σ of player 1, and
strategy τ of player 2, ε + Ez

σδ,τ
gδ(s) ≥ v(z) ≥ −ε + Ez

σ,τδ
gδ(s).

A family (Γδ)δ>0 of non-zero-sum stochastic games has an asymptotic uniform equilib-
rium payoff v if for every ε > 0 there are strategy profiles σδ , a duration δ0 > 0, and a time
s0 > 0, such that for every 0 < δ < δ0, s > s0, player i, and strategy τ i of player i,

ε + Ez
σδ

gi
δ(s) ≥ vi(z) ≥ −ε + Ez

σ−i
δ ,τ i

gi
δ(s).

An exact family of games Γδ has an asymptotic uniform value in the zero-sum case
(Theorem 6), and an asymptotic uniform equilibrium payoff in the non-zero-sum case (The-
orem 12).

2 The Model and Results

Throughout the paper, the set of players N , the set of states S, and the set of actions A,
are finite. The set of feasible actions may depend on the state z ∈ S. We denote by Ai(z)

the set of actions of player i ∈ N in state z ∈ S. A(z) is the set of action profiles at state z,
A(z) = ×i∈NAi(z). For notational convenience, we set A = {(z, a) : z ∈ S, a ∈ A(z)}.

The data of the stochastic game Γδ that depend on the parameter δ are the R
N -valued

payoff function gδ that is defined on A and the conditional probabilities Pδ(z
′ | z, a) that

are defined for all z′ ∈ S and (z, a) ∈ A. The payoff function gδ defines the stage payoff
gδ(z, a) ∈ R

N as a function of the stage state z and the stage action profile a. The ith coordi-
nate of a vector g ∈ R

N is denoted by gi . The conditional probabilities Pδ(z
′ | z, a) specify

the conditional probability of the next state being z′ conditional on playing the action profile
a at the current state z.

The conditional probabilities Pδ(z
′ | z, a) obey Pδ(z

′ | z, a) ≥ 0 and
∑

z′∈S Pδ(z
′ |

z, a) = 1. We describe the conditional probabilities by specifying the function pδ(z
′, z, a)

that is defined on S × A by pδ(z
′, z, a) = Pδ(z

′ | z, a) if z′ �= z and pδ(z
′, z, a) =

Pδ(z
′ | z, a) − 1 if z′ = z. Obviously, pδ(z

′, z, a) ≥ 0 if z′ �= z, p(z, z, a) ≥ −1, and∑
z′∈S pδ(z

′, z, a) = 0.
The set H of plays of Γδ is the set of all sequences h = (z0, a0, . . . , zk, ak, . . .) with

(zk, ak) ∈ A. The events are the elements of the minimal σ -algebra H of subsets of H for
which each one of the maps H 	 h = (z0, a0, . . .) 
→ (zk, ak) ∈ A, k ≥ 0, is measurable. We
denote by Hk the σ -algebra generated by (z0, a0, . . . , zk).
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The set of strategies in the stochastic game Γδ is independent of δ. The transition proba-
bilities, however, do depend on δ. For every strategy profile σ = (σ i)i∈N we denote by P z

δ,σ

the probability distribution defined by the transition probabilities of the game Γδ , the initial
state z0 = z, and the strategy profile σ , on the measurable space (H, H) of plays. The expec-
tation with respect to the probability P z

δ,σ is denoted by Ez
δ,σ . The parameter δ that appears

in the probability and expectation above is formally needed as the transition probabilities de-
pend on δ. However, wherever there is an implicit reference to the parameter δ, we suppress
(the formally needed) δ; e.g., we write Ez

σδ
, for short, instead of the more explicit Ez

δ,σδ
.

2.1 The Discounted Games

Given a discount factor 0 < λ < 1, the discrete-time stochastic game Γ with a dis-
count factor λ is the game where the (unnormalized) valuation of the stream of payoffs
(gm = g(zm, am))m≥0 is

∑∞
m=0 λmgm. The normalized valuation is the unnormalized one

times 1 − λ. The generalization to the case of individual discount factors is straightforward.
Given a vector �λ = (λi)i∈N of discount factors, the game with discount factors �λ is the game
where the unnormalized (respectively, normalized) valuation of player i of the stream of
vector payoffs (gm)m≥0 is

∑∞
m=0 λm

i gi
m (respectively, (1 − λi)

∑∞
m=0 λm

i gi
m).

We study the family of discrete-time stochastic games Γδ with discount factors λδ that
depend on the stage duration parameter δ. We require that the limit, as δ goes to zero, of
the valuation of a unit payoff per unit of time (i.e., gδ = δ for all δ > 0) with the discount
factor λδ , exist. This requirement is equivalent to the existence of the limit of 1−λδ

δ
as δ goes

to zero. A family of δ-dependent discount factors λδ is called admissible if limδ→0+ 1−λδ

δ

exists. The limit is called the asymptotic discount rate (and is equal to limδ→0+ − lnλδ

δ
). Two

examples of admissible δ-dependent discount factors, with asymptotic discount rate ρ > 0,
are λδ = e−ρδ and λδ = 1 − ρδ.

A family of δ-dependent discount factors, λδ , is admissible and has an asymptotic dis-
count rate ρ > 0, if and only if for all streams xδ = (gδ,0, gδ,1, . . .) of payoffs, with uniformly
bounded payoffs per unit of time (i.e., |gδ,m| ≤ Cδ), the difference between the valuation of
xδ according to the discount factors λδ and its valuation according to the discount factors
e−ρδ goes to zero as δ goes to zero.

Our asymptotic results on the δ-dependent discounted games depend only on the asymp-
totic discount rate ρ (and not on the exact choice of the δ-dependent discount factor with
asymptotic discount rate ρ). Therefore, it suffices to select, for each ρ > 0, an admissible
family of δ-dependent discount factors λδ,ρ with asymptotic discount rate ρ. Our choice
of the δ-dependent discount factor with asymptotic discount rate ρ is λδ,ρ = 1 − ρδ. This
simplifies some parts of the presentation.

The ρ-discounted game, denoted by Γδ,ρ , is the game Γδ with discount factor 1 − ρδ.
In the zero-sum case, we say that the family (Γδ)δ>0 of two-person zero-sum games1 has
an asymptotic ρ-discounted value Vρ if the values of Γδ,ρ , denoted by Vδ,ρ , converge to Vρ

as δ goes to zero. Theorem 1 asserts that a family (Γδ)δ>0 that converges in data has an
asymptotic ρ-discounted value. In addition, it provides a system of S equations that has a
unique solution, which equals Vρ , and proves the existence of a (δ-independent) stationary
strategy that is ε(δ)-optimal in Γδ,ρ , where ε(δ) → 0 as δ goes to zero. In the non-zero-sum
case, Theorem 8 asserts that a family (Γδ)δ>0 that converges in data has a (δ-independent)
stationary strategy that is an ε(δ)-equilibrium of Γδ,ρ , where ε(δ) → 0 as δ goes to zero.

1Henceforth, whenever we discuss a value concept of a family (Γδ), we will omit the statement of the implicit
condition that it is a family of two-person zero-sum games.

Author's personal copy



Dyn Games Appl (2013) 3:236–278 241

Section 4.1 notes that the map ρ 
→ Vρ is semialgebraic and bounded and, therefore,
vρ := ρVρ = ∑∞

k=0 ck(z)ρ
k/M in a right neighborhood of zero. This fact, in conjunction with

the covariance properties of vρ as a function of (g,μ) (see Sect. 4.1), is used in the study of
the asymptotic uniform value (see Sect. 4.5). It shows that for an exact family (Γδ)δ>0 there is

an integrable function ψ : [0,1] → R+ and δ0 > 0 such that ‖ρVδ,ρ −ρ ′Vδ,ρ′ ‖ ≤ ∫ ρ′
ρ

ψ(x)dx

for 0 < ρ < ρ ′ ≤ 1 and δ ≤ δ0.
The covariance properties (in conjunction with [10, Theorem 6]) are used in the proof

of Theorem 2 that asserts that if Γδ converges strongly, then vδ,ρ (:= ρVδ,ρ ) converges, as δ

goes to zero, uniformly on 0 < ρ < 1.

2.2 The Nonstationary Discounted Games

A time-separable valuation u of streams of payoff is represented by a positive measure
w on the nonnegative integers. It is given by the valuation function uw(g0, g1, . . .) =∑∞

m=0 w(m)gm. The valuation function uw is (well) defined over all bounded streams
(g0, g1, . . .) of payoffs. The valuation uw is normalized if the total mass of w equals 1,
i.e.,

∑∞
m=0 w(m) = 1. The generalization to the case of individual time-separable valuations

is straightforward. Given a vector �w = (wi)i∈N of positive measures on the nonnegative in-
tegers the game with valuation u �w is the game where the valuation of player i of the stream
of vector payoffs (gm)m≥0 is

∑∞
m=0 wi(m)gi

m. The discrete-time stochastic game Γ with the
valuation u �w is denoted by Γ �w .

The set of all probability measures on a set ∗ is denoted by 
(∗). As Ai(z) is finite, the set
Xi(z) := 
(Ai(z)) is a compact subset of a Euclidean space. The set of profiles of Marko-
vian strategies in a discrete-time stochastic game is identified with the Cartesian product
×(i,z,n)∈N×S×NXi(z), which is a compact space in the product topology. Let Γ be a discrete-
time stochastic game (with finitely many states and actions). A profile σ of Markovian
strategies is an equilibrium of Γ �w whenever: (1) for every k ∈ N, �wk is a vector of positive
measures on the nonnegative integers, (2) for every k ∈ N, σ(k) is a profile of Markovian
strategies that is an equilibrium of Γ �wk

, (3) σ(k) →k→∞ σ (in the product topology), and
(4) for every i ∈ N ,

∑∞
m=0 |wi

k(m) − wi(m)| →k→∞ 0.
By backward induction, if �w has finite support, the game Γ �w has an equilibrium in

Markovian strategies. Therefore, the above-mentioned comment implies that a discrete-time
stochastic game with individual time-separable evaluations has an equilibrium in Markovian
strategies. The discrete-time stochastic game Γδ with the individual time-separable valua-
tion �wδ is denoted by Γδ, �wδ

. In this game, the payoff to player i of a play (z0, a0, . . .) is
gi

δ(w
i
δ) := ∑∞

m=0 wi
δ(m)gi

δ(zm, am). The discrete-time stochastic game Γδ with the common
time-separable valuation wδ , denoted by Γδ,wδ

, is the game Γδ, �wδ
with wi

δ = wδ for every
player i.

If �w = (wi)i∈N is a profile of nonnegative measures on [0,∞], we say that the vector
�wδ = (wi

δ)i∈N of N measures on N ∪ {∞} converges (as δ → 0+) to �w if (1) �wδ(N ∪ {∞})
converges (as δ goes to 0) to �w([0,∞]), and (2) for every 0 ≤ t < ∞ there is a family of
nonnegative integers mδ with δmδ →δ→0+ t , and such that

∑mδ

m=0 �wδ(m) →δ→0+ �w([0, t]).
Note that by identifying the N -vector measure �wδ with the N -vector measure �w′

δ on [0,∞]
(the one-point compactification of [0,∞)) that is supported on {δm : m ≥ 0}∪{∞} and satis-
fies �w′

δ([δm, δ(m + 1))) = �wδ(m) and �w′
δ(∞) = �wδ(∞), our definition of convergence here

is equivalent to w∗ convergence of measures on compact spaces. Explicitly, �wδ converges
as δ → 0+ to the N -vector measure �w on [0,∞] if for every continuous function f on
[0,∞], ∫

[0,∞] f (x)d �w′
δ(x) (which equals f (∞) �wδ(∞) + ∑∞

m=0 f (δm) �wδ(m)) converges
as δ → 0+ to

∫
[0,∞] f (x)d �w(x).
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In this section, we focus on the case that �wδ is supported on N and �w is supported on
[0,∞). The more general convergence definition (above) is used in subsequent parts of the
paper.

Of special interest are the nonstationary discounting valuations and their limits. In the
discrete-time model, the nonnegative measure w on N ∪ {∞} is called a nonstationary dis-
counting valuation (measure) if w(m) ≥ w(m + 1). The vector measure �w is said to be non-
stationary discounting if each of its components wi is a nonstationary discounting. A non-
negative measure w on [0,∞] is said to be nonstationary discounting if for every s > 0 the
function [0,∞) 	 t 
→ w([t, t + s)) is nonincreasing in t . Note that if the family of nonsta-
tionary discounting measures wδ on N converges to the nonnegative measure w on [0,∞],
then w is a nonstationary discounting measure.

Let �w be a nonstationary discounting N -vector measure on [0,∞). We say that v ∈ R
N×S

is an asymptotic �w equilibrium payoff of the family of N -person games (Γδ)δ>0, if for every
ε > 0 and a family of nonstationary discounting N -vector measures �wδ on N that converges
to �w, v is an ε-equilibrium payoff of Γδ, �wδ

for every δ > 0 sufficiently small.
Let w be a nonstationary discounting measure on [0,∞). We say that v ∈ R

S is an asymp-
totic w value of the family of two-person zero-sum games (Γδ)δ>0, if for every ε > 0 and
a family of nonstationary discounting measures wδ on N that converges to w, the value vδ

of Γδ,wδ
satisfies |vδ(z) − v(z)| < ε for every δ > 0 sufficiently small and state z. Note that

v ∈ R
S is an asymptotic w value of the family of two-person zero-sum games (Γδ)δ>0 if and

only if (v,−v) is an asymptotic (w,w) equilibrium payoff of (Γδ)δ>0.
Theorem 9 asserts (in particular) that if (Γδ)δ>0 converges in data, then for every non-

stationary discounting N -vector measure �w on [0,∞) the family (Γδ)δ>0 has an asymptotic
�w equilibrium payoff. In addition, if the nonstationary discounting N -vector measure �wδ

converges (as δ goes to 0) to the N -vector measure �w on [0,∞), then for every ε > 0 there
is δ0 > 0 and a family of Markovian strategy profiles σδ , such that (1) for 0 < δ < δ0, σδ is
an ε-equilibrium of Γδ, �wδ

and its corresponding payoff is within ε of an asymptotic �w equi-
librium payoff v, and (2) σδ converges to a profile of continuous-time Markov strategies.2

In Sect. 3.2, we define the convergence of Markovian strategies.
Theorem 9 implies in particular that a finite-horizon continuous-time stochastic game has

an ε-equilibrium in Markov strategies. Reference [4] shows that a finite-horizon continuous-
time stochastic game need not have an equilibrium in Markov strategies. Therefore, it is
impossible to require (in the additional part) that σδ be an equilibrium (rather than an ε-
equilibrium) of Γδ, �wδ

and at the same time converge to a profile of continuous-time Markov
strategies.

In several dynamic interactions, the game payoff is composed of stage payoffs and a
terminal payoff. Such games are also useful in backward induction arguments. For exam-
ple, in order to find an equilibrium (or an approximate equilibrium) of an extensive form
game, a classical procedure is to replace a subgame of the game with a terminal node whose
payoff equals an equilibrium (or approximate equilibrium) payoff of the subgame. An equi-
librium (or approximate equilibrium) of the original game is obtained by patching together
an equilibrium (or an approximate equilibrium) of the truncated game with an equilibrium
(or approximate equilibrium) of the subgame. This motivates the definition of the following
useful family of games.

Let �wδ = (wi
δ)i∈N be a vector of positive measures on N, mδ > 0, and let νδ = (νi

δ)i∈N

be a vector of N payoff functions νi
δ : A → R. The game Γ

mδ,νδ

δ, �wδ
is the game Γδ where the

2A continuous-time strategy σ is a mixed-action-valued measurable function defined on S × R.
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valuation of player i of the play (z0, a0, z1, . . .) is the sum of two terms: νi
δ(zmδ

, amδ
) +∑∞

m=0 wi
δ(m)gi

δ(zm, am). The first term accounts for a one-time (e.g., terminal) payoff. This
variation enables us to view games like soccer, where the objective is to reach the best score
at the end of the game, as stochastic games.

We say that (mδ, νδ) converges to (t, ν), where 0 ≤ t < ∞ and ν : A → R
N , if (1) νδ(z, a)

converges to ν(z, a) for all (z, a) ∈ A, and (2) δmδ converges to t as δ goes to zero.
Let �w be a nonstationary discounting N -vector measure on [0,∞), 0 ≤ t < ∞, and

ν : A → R
N . The N ×S payoff vector v ∈ R

N×S is called an asymptotic ( �w, t, ν) equilibrium
payoff of the family (Γδ)δ>0, if for every (1) family of nonstationary discounting N -vector
measure �wδ on N that converges (as δ goes to 0) to �w, (2) mδ ∈ N and νδ : A → R

N such
that (mδ, νδ) converges to (t, ν), and (3) ε > 0, there is δ0 > 0, such that for 0 < δ < δ0,
Γ

mδ,νδ

δ, �wδ
has an ε-equilibrium payoff within ε of v.

Theorem 9 asserts if (1) �w is a nonstationary discounting N -vector measure on [0,∞),
(2) 0 ≤ t < ∞, and (3) ν : A → R

N , then a family (Γδ)δ>0 that converges in data has an
asymptotic ( �w, t, ν) equilibrium payoff. In addition, if (1) �wδ is a nonstationary discounting
N -vector measure on N that converges (as δ goes to 0) to �w, and (2) mδ ∈ N and νδ :
A → R

N are such that (mδ, νδ) converges to (t, ν), then for every ε > 0 there are (1) δ0 >

0, (2) Markov strategy profiles σδ , and (3) a continuous-time Markov strategy profile σ ,
such that (1) for 0 < δ < δ0, σδ is a ε-equilibrium of Γ

mδ,νδ

δ, �wδ
with a payoff within ε of an

asymptotic ( �w, t, ν) equilibrium payoff v, and (2) the Markov strategy profiles σδ converge
w∗ to σ .

2.3 The Limiting-Average Games

The classic limiting-average valuation of a stream (g0, g1, . . .) of payoffs is the limit of
the average payoff per stage, limn→∞ 1

n

∑
0≤m<n gm, if the limit exists. The interpretation

is that the stage duration is one unit of time, and therefore the average 1
n

∑
0≤m<n gm rep-

resents the average payoff per unit of time. In studying the limiting-average valuation of
streams (gδ,0, gδ,1, . . .) of payoffs in Γδ , one has to take into account that the stage dura-
tion is δ. Therefore, the average payoff per unit of time up to time s is (gi

δ(s))i∈N = gδ(s)

(= 1
s

∑
m:0≤mδ<s gδ,m). In the two-person zero-sum case, the set of players is N = {1,2} and

we write g for g1 and gδ for g1
δ . No confusion should result.

The averages gi
δ(s) need not converge as s goes to infinity. Therefore, in defining the

limiting-average (value or) equilibrium payoff v = (vi)i∈N , we require that for every ε > 0
the (ε-optimal or) ε-equilibrium strategy result in a distribution on streams of payoffs such
that the expectation of gi

δ
(= lim infδ→0+ gi

δ(s)) is within ε of v, and no unilateral deviation
by a player, say player i, can result in a distribution on streams of payoffs with an expectation
of ḡi

δ (= lim supgi
δ(s)) greater than vi + ε.

Note that if wδ,s is the probability measure on N with wδ,s(m) = 1/�s/δ� (where �∗�
denotes the smallest positive integer that is ≥ ∗) if mδ < s and wδ,s(m) = 0 otherwise, then
gi

δ(s) = gi
δ(wδ,s). For each δ > 0, the probability measures wδ,s , s > 0, are the extreme

points of the convex set M1
d (N) of nonstationary discounting probability measures wδ on N.

Indeed, wδ = ∑∞
m=1(wδ(m−1)−wδ(m))mwδ,mδ and

∑∞
m=1(wδ(m−1)−wδ(m))m = 1. As

∑k

m=1(wδ(m − 1) − wδ(m))m ≤ wδ(0)k2 →wδ(0)→0+ 0, we deduce the following (known)
property of the lim inf valuation gi

δ
and the lim sup valuation ḡi

δ :

gi

δ
= lim

η→0+
inf

{
gi

δ(wδ) : wδ ∈ M1
d (N) with wδ(0) < η

}
, and

ḡi
δ = lim

η→0+
sup

{
gi

δ(wδ) : wδ ∈ M1
d (N) with wδ(0) < η

}
.
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A two-person zero-sum discrete-time stochastic game (with finitely many states and ac-
tions) has a limiting-average value [5]. However, this does not imply that a convergent family
(Γδ)δ>0 has an asymptotic limiting-average value. A non-zero-sum discrete-time stochastic
game (with finitely many states and actions) has a limiting-average correlated equilibrium
payoff [11], but it is unknown if it has a limiting-average equilibrium payoff.

Recall that v ∈ R
S is an asymptotic limiting-average value of the family (Γδ)δ>0 if for

every ε > 0 there are strategies σδ of player 1 and τδ of player 2 and a duration δ0 > 0, such
that for every strategy τ of player 2, strategy σ of player 1, and 0 < δ < δ0, we have

ε + Ez
σδ,τ

g
δ
≥ v(z) ≥ −ε + Ez

σ,τδ
ḡδ.

The definition implies that a family (Γδ)δ>0 has at most one asymptotic limiting-average
value.

Recall that v ∈ R
N×S is an asymptotic limiting-average equilibrium payoff of the family

(Γδ)δ>0 if for every ε > 0 there are strategy profiles σδ and a duration δ0 > 0, such that for
every strategy τ i of player i and every 0 < δ < δ0, we have

ε + Ez
σδ

gi

δ
≥ vi(z) ≥ −ε + Ez

σ−i
δ ,τ i

ḡi
δ .

We prove that a family (Γδ)δ>0 that converges strongly has an asymptotic limiting-
average value in the zero-sum case (Theorem 4), and an asymptotic limiting-average equi-
librium payoff in the non-zero-sum case (Theorem 11).

A variation of the limiting-average value, respectively, limiting-average equilibrium pay-
off, is the weak limiting-average value, respectively weak limiting-average equilibrium pay-
off, obtained by exchanging the order of the limiting and the expectation operations. There-
fore, we say that v ∈ R

N×S is an asymptotic weak limiting-average equilibrium payoff of the
family (Γδ)δ>0 if for every ε > 0 there are strategy profiles σδ and a duration δ0 > 0, such
that for every strategy τ i of player i and every 0 < δ < δ0, we have

ε + lim inf
s→∞ Ez

σδ
gi

δ(s) ≥ vi(z) ≥ −ε + lim sup
s→∞

Ez

σ−i
δ ,τ i

gi
δ(s).

In the general model of repeated games (which includes repeated games with incomplete
information), the existence of a limiting-average (value or) equilibrium payoff implies the
existence of a weak limiting-average (value or) equilibrium payoff, but not vice versa. In the
game models studied in the present paper, all results that we can prove regarding the weak
limiting-value hold also for the limiting-average value. Therefore, no special consideration
is given to these weaker concepts. It should be noted, however, that in the analogous study
of the general model of repeated games, in particular, in repeated games with incomplete
information, the limiting-average value, or equilibrium payoff will typically not exist, while
the weak limiting-average value and equilibrium payoff may exist in some of these models.

2.4 The Mixed Discounting and Limiting-Average Games

The mixed time-separable and the limiting-average (respectively, the weak limiting-average)
valuation of payoffs is a positive linear combination of a time-separable valuation uw and
the limiting-average (respectively, the weak limiting-average) valuation. It is represented by
a measure w on N ∪ {∞}, where w(∞) represents the weight given to the limiting-average
(or weak limiting-average) valuation, and w(m) represents the weight of the payoff at stage
m ∈ N. A normalized mixed time-separable and limiting-average (or weak limiting-average)
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valuation of payoffs is a convex combination of a normalized time-separable valuation uw

and the limiting-average (or the weak limiting-average) valuation, and is represented by a
probability measure on N ∪ {∞}.

Let �wδ = (wi)i∈N be a vector of positive measures on N ∪ {∞}, mδ > 0, and let νδ =
(νi

δ)i∈N be a vector of N payoff functions νi
δ : A → R. The game Γ

mδ,νδ

δ, �wδ
is the game Γδ

where the valuation of player i of the play (z0, a0, z1, . . .) is the sum of three terms

νi
δ(zmδ

, amδ
) + wi

δ(∞) lim
s→∞gi

δ(s) +
∞∑

m=0

wi
δ(m)gi

δ(zm, am),

if the limit exists.
The limit of gi

δ(s) as s → ∞ need not exist. Therefore, in defining (the value or)
an equilibrium payoff v of Γ

mδ,νδ

δ, �wδ
, we require that for every ε > 0 the (ε-optimal or)

ε-equilibrium strategy result in a distribution on plays such that the expectation of the
νi

δ(zmδ
, amδ

) + wi
δ(∞)gi

δ
+ ∑∞

m=0 wi
δ(m)gi

δ(zm, am) is within ε of vi , and no unilateral devi-

ation by a player, say player i, can result in a distribution on plays with an expectation of
νi

δ(zmδ
, amδ

) + wi
δ(∞)ḡi

δ + ∑∞
m=0 wi

δ(m)gi
δ(zm, am) greater than vi + ε.

Theorem 13 asserts that if (1) (Γδ)δ>0 is an exact family, (2) the nonstationary discounting
N -vector measure �wδ converges (as δ goes to 0) to the N -vector measure �w on [0,∞], and
(3) (mδ, νδ) converges to (t, ν), then for every ε > 0 there are strategy profiles σδ , an N × S

vector v, and δ0 > 0, such that for 0 < δ < δ0, σδ is an ε-equilibrium of Γ
mδ,νδ

δ, �wδ
with a payoff

within ε of v.

2.5 The Uniform Games

In a uniform (value or) equilibrium payoff v, we require that for every ε > 0 there be a time
s0 and a strategy profile for which for every s > s0 the expectation of gδ(s) is within ε of v,
and that there be no unilateral deviation by a player, say player i, and a time s > s0 such that
the expectation of gi

δ(s) is more than vi + ε. It is known that a uniform value exists in the
zero-sum case (with finitely3 many states and actions) [5]. In the discrete-time non-zero-sum
case (with finitely many states and actions), (a uniform correlated equilibrium payoff exists
[11], but) it is unknown if a uniform equilibrium payoff exists in this case.

We say that v ∈ R
S is an asymptotic uniform value of the family (Γδ)δ>0 if for every ε > 0

there are (1) a time s0 > 0, (2) a duration δ0 > 0, and (3) strategies σδ of player 1 and τδ of
player 2, such that for all strategies τ of player 2 and σ of player 1, duration 0 < δ < δ0, and
time s > s0, we have

ε + Ez
σδ,τ

gδ(s) ≥ v(z) ≥ −ε + Ez
σ,τδ

gδ(s).

The definition implies that a family (Γδ)δ>0 has at most one asymptotic uniform value.
Similarly, we say that v ∈ R

N×S is an asymptotic uniform equilibrium payoff of the fam-
ily (Γδ)δ>0 if for every ε > 0 there are (1) a time s0 > 0, (2) a duration δ0 > 0, and (3) strategy
profiles σδ , such that for every player i, strategy τ i of player i, duration 0 < δ < δ0, and time
s > s0, we have

ε + Ez
σδ

gi
δ(s) ≥ vi(z) ≥ −ε + Ez

σ−i
δ ,τ i

gi
δ(s).

3Without the assumption of finitely many actions, a uniform value need not exist [12]. The assumption of
finitely many states is obviously needed.
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An exact family has an asymptotic uniform value in the zero-sum case (Theorem 6), and
an asymptotic uniform equilibrium payoff in the non-zero-sum case (Theorem 12).

Remark 1 The existence of an asymptotic uniform equilibrium payoff has the following
corollaries.

If v is the asymptotic uniform equilibrium payoff of a family (Γδ)δ>0 then for every
ε > 0 there is δ0 > 0 such that if 0 < δ < δ0 and �wδ = (wi)i∈N is a profile of nonstationary
discounting probability measures on N with wi

δ(0) < δδ0, then the game Γδ,w has an ε-
equilibrium payoff within ε of v.

2.6 The Robust Nonstationary Discounted Solutions

Given a nonstationary discounting measure w on [0,∞], we define gi

δ
(w) by

gi

δ
(w) := lim inf

wδ→w
gi

δ(wδ) and ḡi
δ(w) := lim sup

wδ→w

gi
δ(wδ),

where the lim inf and lim sup are over all nonstationary discounting measures wδ on N that
converge to w. If 1∞ denotes the probability measure on [0,∞] with 1∞(∞) = 1, then
gi

δ
(1∞) = gi

δ
and ḡi

δ(1∞) = ḡi
δ .

Fix a nonstationary discounting measure w on [0,∞] and a profile �w = (wi)i∈N of non-
stationary discounting measures wi on [0,∞].

We say that v ∈ R
S is an asymptotic w-limiting-average value of the family (Γδ)δ>0 if

for every ε > 0 there are strategies σδ of player 1 and τδ of player 2, and a duration δ0 > 0,
such that for every strategy τ of player 2, strategy σ of player 1, and 0 < δ < δ0, we have

ε + Ez
σδ,τ

g
δ
(w) ≥ v(z) ≥ −ε + Ez

σ,τδ
ḡδ(w).

We say that v ∈ R
S is an asymptotic w-uniform value of the family (Γδ)δ>0 if for every

ε > 0 there are strategies σδ of player 1 and τδ of player 2, such that for all strategies τ ∗
δ

of player 2, strategies σ ∗
δ of player 1, and nonstationary discounting measures wδ on N that

converge (as δ → 0+) to w, we have

ε + lim inf
δ→0+

Ez
σδ,τ

∗
δ
gδ(wδ) ≥ v(z) ≥ −ε + lim sup

δ→0+
Ez

σ∗
δ ,τδ

gδ(wδ).

Similarly, we say that v ∈ R
N×S is an asymptotic �w-limiting-average equilibrium payoff

of the family (Γδ)δ>0 if for every ε > 0 there are strategy profiles σδ (δ > 0) and a duration
δ0 > 0, such that for every player i, strategy τ i

δ of player i, and 0 < δ < δ0, we have

ε + Ez
σδ

gi

δ

(
wi

) ≥ vi(z) ≥ −ε + Ez

σ−i
δ ,τ i

δ

ḡi
δ

(
wi

)
.

We say that v ∈ R
N×S is an asymptotic �w-uniform equilibrium payoff of the family

(Γδ)δ>0 if for every ε > 0 there are strategy profiles σδ , such that for every player i, all
strategies τ i

δ of player i, and all nonstationary discounting measures wi
δ on N that converge

(as δ → 0+) to wi , we have

ε + lim inf
δ→0+

Ez
σδ

gi
δ

(
wi

δ

) ≥ vi(z) ≥ −ε + lim sup
δ→0+

Ez

σ−i
δ ,τ i

δ

gi
δ

(
wi

δ

)
.

Note that v is an asymptotic limiting-average, respectively asymptotic uniform, equi-
librium payoff of a family (Γδ)δ>0 if and only if it is an asymptotic 1∞-limiting-average,
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respectively, asymptotic 1∞-uniform, equilibrium payoff of this family. Therefore, the re-
sults in the paragraph below generalize our results about the existence of an asymptotic
limiting-average, respectively, asymptotic uniform, equilibrium payoff.

A strongly convergent family (Γδ)δ>0 has an asymptotic �w-limiting-average equilibrium
payoff, and an exact family (Γδ)δ>0 has an asymptotic �w-uniform equilibrium payoff.

In what follows, we define the asymptotic w-robust value and the asymptotic �w-robust
equilibrium payoff.

We say that v ∈ R
S is an asymptotic w-robust value of the family (Γδ)δ>0 (of two-person

zero-sum games) if for every ε > 0 there are strategies σδ of player 1 and τδ of player 2, such
that for all strategies τ ∗

δ of player 2, strategies σ ∗
δ of player 1, and nonstationary discounting

measures wδ on N ∪ {∞} that converge (as δ → 0+) to w, we have

ε + lim inf
δ→0+

Ez

σ 1
δ ,τ2

δ

gi

δ
(wδ) ≥ vi(z) ≥ −ε + lim sup

δ→0+
Ez

τ1
δ ,σ 2

δ ,
ḡi

δ(wδ).

We say that v ∈ R
N×S is an asymptotic �w-robust equilibrium payoff of the family (Γδ)δ>0

if for every ε > 0 there are strategy profiles σδ , such that for every player i, all strategies
τ i
δ of player i, and all nonstationary discounting measures wδ on N ∪ {∞} that converge (as

δ → 0+) to w, we have

ε + lim inf
δ→0+

Ez
σδ

gi

δ

(
wi

δ

) ≥ vi(z) ≥ −ε + lim sup
δ→0+

Ez

σ−i
δ ,τ i

δ

ḡi
δ

(
wi

δ

)
.

An asymptotic �w-robust equilibrium payoff of a family (Γδ)δ>0 is (by definition) an
asymptotic w-limiting-average equilibrium payoff and an asymptotic �w-uniform equilib-
rium payoff.

Theorem 13 asserts that for every nonstationary discounting N -vector measure �w on
[0,∞], an exact family (Γδ)δ>0 of N -person games has an asymptotic �w-robust equilibrium
payoff.

2.7 The Variable Short-Stage Duration Games

The paper states and proves asymptotic results on families (Γδ)δ>0 of discrete-time stochas-
tic games. In each game Γδ , the stage duration is a constant positive number δ > 0. The
results remain intact also in the case where the parameter δ is a sequence of stage durations
δ = (δm)m≥0 with dn := ∑

0≤m<n δm →n→∞ ∞, where δm is the duration of the mth stage,
the mth stage payoff function is gδ,m (or gm for short), and the mth stage transition function
is pδ,m (or pm for short).4

The condition that the constant stage duration is sufficiently small needs to be re-
placed with the condition that the supremum of the stage durations, d(δ) := supm≥0 δm,
is sufficiently small. A family (Γδ)δ with variable stage duration converges in data if
supm≥0 ‖gm/δm − g‖ and supm≥0 ‖pm/δm − μ‖ converge to zero as d(δ) goes to zero. It
is an exact sequence if gm = δmg and pm = δmμ, and it converges strongly if it converges in
data and for every δ, m ≥ 0, z′ �= z, and a ∈ A(z), pm(z′, z, a) �= 0 iff μ(z′, z, a) �= 0.

The ρ-discounted present value of the payoff gm at stage m is gm

∏
0≤j<m(1 − δjρ)

(where a product over an empty set of indices is zero). Therefore, in the ρ-discounted

4Moreover, the stage-dependent duration δm , payoff gm, and transition function pm can depend on past
history.
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game Γδ , the valuation of a play (z0, a0, . . . , zm, am . . .) by player i is
∑∞

m=0 gm(zm, am) ·∏
0≤j<m(1 − δjρ).
In the case of a time-separable valuation, wδ is said to be nonstationary discounting if

wδ(m)

δm
is nonincreasing in m. We assign to the measure wδ on N the measure w′

δ on [0,∞)

that is supported on {dn : n ∈ N} and w′
δ(dn) = wδ(n). We say that wδ converges, as d(δ) →

0+, to the measure w on [0,∞) if w′
δ converges w∗ to w.

Similarly, in the limiting-average games with variable stage duration δ, we set g(s) =
1
s

∑
0≤m:dm<s gm(zm, am) and in the definitions of gi

δ
and ḡi

δ , the condition wδ(m) < η needs
to be replaced with wδ(m) < ηδm.

3 Convergence of Stochastic Games with Short-Stage Duration

We study the “convergence” of the family (Γδ)δ>0, and the presentation of the “limit” as a
continuous-time stochastic game Γ .

We define various conditions of the dependence of the transition rates pδ on the stage
duration δ. Some of these conditions relate directly to assumptions on the homogeneous
Markov chain of states that are defined by an initial state, a stationary strategy, and the stage
duration δ. Each one of the conditions can be interpreted as a consistency, or approximate
consistency, of the models Γδ as δ varies.

Condition (p.0) asserts that the probability of a state change within the first m stages
(namely, in a time t ≤ mδ) converges to zero as mδ goes to zero. In particular, the probability
of a state change in a single stage converges to zero as δ goes to zero. Condition (p.0)
is equivalent to mpδ(z, z, a) converging to zero as mδ goes to zero. Recall that condition
(p.2) is limδ→0+ pδ/δ = μ where μ : S × A → R, and note that condition (p.2) implies
condition (p.0).

Recall that condition (p.3) requires (p.2) and that pδ(z
′, z, a) > 0 if and only if

μ(z′, z, a) > 0 (where μ(z′, z, a) is the limit, as δ goes to zero, of pδ(z
′, z, a)/δ). Condi-

tion (p.3) implies that the ergodic classes of the homogeneous Markov chain that is defined
by a stationary strategy and the transition rates pδ are independent of δ.

Recall that condition (p.1) is pδ = δμ, condition (p.1) implies condition (p.3), and con-
dition (p.3) implies condition (p.2). Therefore, each asymptotic property that holds in any
family (Γδ)δ>0 that obeys (g.2) and (p.k) holds also in any family (Γδ)δ>0 that obeys (g.1)
and (p.k′), where k′ = 3 if k = 2 and k′ = 1 if k = 3.

Recall the following definitions of convergence in data and strong convergence.

Definition 1 (Convergence in data) We say that Γδ converges in data (as δ → 0) if the
family (Γδ)δ>0 satisfies conditions (g.2) and (p.2).

Definition 2 (Strong convergence) We say that Γδ converges strongly (as δ → 0) if the
family (Γδ)δ>0 satisfies conditions (g.2) and (p.3).

Next, we wish to define the “convergence” of the family (Γδ)δ>0 as a convergence (as
δ → 0+) of the stochastic process of states and payoffs that is defined by the initial state
and a strategy σ . Obviously, in defining the convergence of the stochastic process of states
and payoffs one has to take into account the stage duration δ. The state zn in the play of
the discrete-time stochastic game Γδ is interpreted as the state at time nδ. Similarly, the sum∑n−1

j=0 gδ(zj , aj ) of stage payoffs in stages 0 ≤ j < n is interpreted as the cumulative payoff
in the time interval [0, nδ].
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Definition 3 (Convergence in stationary dynamics) We say that Γδ converges in stationary
dynamics if for all pure stationary strategies σ , states z′, z ∈ S, times t ≥ 0, and positive
integers nδ such that nδδ →δ→0+ t , we have

P z
δ,σ

(
znδ

= z′) →δ→0+ Fσ
z,z′(t)

and

Ez
δ,σ

nδ∑

j=0

gδ(zj , aj ) →δ→0+ Gt(z, σ ),

where (σ, z′, z, t) 
→ Fσ
z,z′(t) ∈ R and (t, z, σ ) 
→ Gt(z, σ ) ∈ R

N are functions that are de-
fined for all pure stationary strategies σ , states z′, z ∈ S, and times t ≥ 0.

3.1 Stationary Convergence

Proposition 1 The following conditions are equivalent:

(A) (Γδ)δ>0 converges in stationary dynamics.
(B) (Γδ)δ>0 converges in data.

Proof (A) =⇒ (B). Assume condition (A) holds. Obviously,
∑

z′∈S P z
δ,σ (znδ

= z′) = 1.
Therefore,

∑
z′∈S F σ

z,z′(t) = 1. Applying condition (A) to nδ = 0 and z′ = z, we have
Fσ

z,z(0) = 1. Applying condition (A) to t = 0 and all nonnegative integers nδ with
δnδ →δ→0+ 0, we deduce that for every ε > 0 there are tε > 0 and δε > 0, such that for
every 0 < δ < δε and n with nδ ≤ tε , we have P z

δ,σ (zn = z) > 1 − ε for all states z ∈ S and
pure stationary strategy profiles σ .

Fix z ∈ S and a ∈ A(z), set Kδ = Kδ(z) = ∑
z′ �=z pδ(z

′, z, a), and let σ be a pure station-
ary strategy with σ(z) = a, and n = nδ = [t1/3/δ] (where [∗] denotes the largest integer that
is less than or equal to ∗). Then, for δ < δ1/3, 1/3 > P z

δ,σ (zn �= z) ≥ ∑n

m=1 P z
δ,σ (∀j < m zj =

z and z �= zm = zn) ≥ ∑n

m=1(1−Kδ)
m−1Kδ2/3 = (1− (1−Kδ)

n)2/3, which implies the in-
equality (1 − Kδ)

n ≥ 1/2. Therefore, lim supδ→0+ Kδ/δ < ∞. Therefore, there is a positive
constant K such that for all δ > 0, z ∈ S, and a ∈ A(z), we have

∑
z′ �=z pδ(z

′, z, a) < Kδ.
Next, we prove that if for a pair of distinct states z′ �= z and an action profile a ∈ A(z)

we have lim infδ→0+ pδ(z
′, z, a)/δ < c, then, for t > 0 sufficiently small and a station-

ary strategy σ with σ(z) = a, we have Fσ
z,z′(t) < ct . Indeed, the set {zn = z′, z0 = z} is

the union of the disjoint sets Ym,z′′ = {∀0 ≤ j < m,zj = z0, zm = z′′ and zn = z′}, where
m ranges over the positive integers 1 ≤ m ≤ n and z′′ ranges over all states z′′ �= z.
Let ε > 0 and set n = nδ = [tε/δ]. Note that P z

δ,σ (Ym,z′′) ≤ pδ(z
′, z, a) for z′′ = z′ and

∑n−1
m=1

∑
z �=z′′ �=z′ P z

δ,σ (Ym,z′′) ≤ εKδn for δ sufficiently small. Therefore, if δ > 0 is suffi-
ciently small so that, in addition, pδ(z

′, z, a)/δ < c and for all z′′ �= z and a ∈ A(z) we have
pδ(z

′′, z, a) ≤ Kδ, then P z
δ,σ (zn = z′) ≤ ∑n

m=1 P z
δ,σ (Ym,z′)+εKδn ≤ (c+Kε)δn. Therefore,

for t > 0 sufficiently small, we have Fσ
z,z′(t) < ct .

Finally, we prove that if for a pair of distinct states z′ �= z and an action profile a ∈ A(z)

we have lim supδ→0+ pδ(z
′, z, a)/δ > c, then, for t > 0 sufficiently small and a stationary

strategy σ with σ(z) = a, we have Fσ
z,z′(t) > ct . Indeed, the set {zn = z′, z0 = z} contains

the disjoint sets Ym,z′ = {∀0 ≤ j < m, zj = z0, zm = z′ = zn}, where m ranges over the
positive integers 1 < m ≤ n. Let ε > 0 and set n = nδ = [tε/δ]. Note that P z

δ,σ (Ym,z′) ≥
(1 − ε)2pδ(z

′, z, a) for δ sufficiently small. Therefore, if δ > 0 is sufficiently small so that,
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in addition, pδ(z
′, z, a)/δ > c, then P z

δ,σ (zn = z′) ≥ ∑n

m=1 P z
δ,σ (Ym,z′) ≥ n(1 − ε)2δc. There-

fore, for t > 0 sufficiently small, we have Fσ
z,z′(t) > ct .

We conclude that the lim supδ→0+ pδ(z
′, z, a)/δ and the lim infδ→0+ pδ(z

′, z, a)/δ coin-
cide.

We will now prove that the second part of (B) holds. Fix a player i ∈ N and assume
that lim supδ→0+ ‖gi

δ‖/δ < ∞, where ‖gi
δ‖ := maxz,a |gi

δ(z, a)|. For t > 0 let γt (z, σ ) =
1
t
Gt (z, σ ). Then, for δ > 0 sufficiently small, gi

δ(z, σ (z))/δ − 2ε‖gi
δ‖/δ ≤ γ i

tε
(z, σ ) + ε.

Therefore,

lim sup
δ→0+

gi
δ

(
z, σ (z)

)
/δ ≤ γ i

tε
(z, σ ) + ε + 2ε lim sup

δ→0+

∥
∥gi

δ

∥
∥/δ,

and, therefore,

lim sup
δ→0+

gi
δ

(
z, σ (z)

)
/δ ≤ lim inf

ε→0+
γ i

tε
(z, σ ).

Similarly, for δ > 0 sufficiently small, γ i
tε
(z, σ ) − ε ≤ gi

δ(z, σ (z))/δ + 2ε‖gi
δ‖/δ, and

therefore lim supε→0+ γ z
tε
(z, σ ) ≤ lim infδ→0+ gi

δ(z, σ (z))/δ. Given a ∈ A(z) and apply-
ing these inequalities to a stationary strategy σ with σ(z) = a, we conclude that the
lim infδ→0+ gi

δ(z, a)/δ and the lim supε→0+ gi
δ(z, a)/δ coincide.

It remains to prove that condition (A) implies that lim supδ→0+ ‖gi
δ‖/δ < ∞. For every

1 > δ > 0, let zδ ∈ S and aδ ∈ A(z) be such that |gi
δ(zδ, aδ)| = ‖gi

δ‖. Let ε > 0, and let σ = σδ

be a stationary strategy with σ(zδ) = aδ . Set n = nδ = [tε/δ] and z0 = zδ . If gi
δ(zδ, aδ) ≥ 0,

then, for sufficiently small δ > 0, we have Gi
tε
(zδ, σ ) + tε/3 ≥ Ezδ

σ

∑n−1
j=0 gi

δ(zj , aj ) ≥ (1 −
2ε)ngi

δ(zδ, aδ). Therefore, if ε < 1/3, we have gi
δ(zδ, aδ)/δ ≤ 3|γ i

tε
(z, σ )|+1 for δ > 0 suffi-

ciently small. If gi(zδ, aδ) < 0, then for sufficiently small δ > 0, we have Gi
tε
(zδ, σ )− tε/3 ≤

Ezδ
σ

∑n−1
j=0 gi

δ(zj , aj ) ≤ (1 − 2ε)ngi
δ(zδ, aδ). Therefore, if ε < 1/3, we have gi

δ(zδ, aδ)/δ ≥
−3|γ i

tε
(z, σ )| − 1. This proves that lim supδ→0+ ‖gi

δ‖/δ ≤ 3|γ i
tε
(z, σ )| + 1 < ∞.

(B) =⇒ (A). Let σ be a stationary strategy and let Q be the S × S matrix whose (z, z′)-
th entry is Qz,z′ = μ(z′, z, σ (z)). Note that for δ > 0 sufficiently small, I + δQ is a tran-
sition matrix, where I stands for the identity matrix, and ‖I + δQ‖ := maxz∈S

∑
z′∈S |(I +

δQ)z,z′ | = 1. In addition, eδQ (which equals by definition the convergent sum
∑∞

j=0
δj Qj

j ! )

is an S × S matrix, and (eδQ)n = enδQ. Let Pδ be the S × S transition matrix whose
(z, z′)-th entry is (Pδ)z,z′ = Iz,z′ + pδ(z

′, z, σ (z)). Therefore, if n is a positive integer, then
P z

δ,σ (zn = z′) = (P n
δ )z,z′ . By the assumption on pδ and the definitions of Q and eδQ, we have

‖eδQ − Pδ‖ ≤ o(δ) as δ → 0+.
For any two S × S matrices (or elements of a norm algebra) A and B we have An −

Bn = ∑n

k=1 An−k(A − B)Bk−1, implying that ‖An − Bn‖ ≤ ‖A − B‖∑n−1
j=0 ‖A‖j‖B‖n−j .

Therefore, ‖P n
δ − enδQ‖ ≤ ‖Pδ − eδQ‖∑n−1

j=0 ‖eδQ‖j ≤ o(δ)n as δ → 0+.
Therefore, ‖P n

δ − etQ‖ ≤ ‖P n
δ − enδQ‖ + ‖etQ − enδQ‖ → 0 as δ → 0+ and nδ → t . We

conclude that P z
δ,σ (zn = z′) → Fσ

z,z′(t) = (etQ)z,z′ ∈ R as δ → 0+.
By assumption (B), we have gδ(z, a) = δg(z, a)+o(δ). Therefore, if δ → 0+ and nδδ →

t > 0, then |Ez
δ,σ

∑nδ−1
j=0 gi

δ(zj , aj ) − Ez
δ,σ

∑nδ−1
j=0 δgi(zj , aj )| → 0. If δ → 0+ and nδδ →

t > 0, then, as shown earlier, P z
δ,σ (zn = z′) → Fσ

z,z′(t), and, therefore, Ez
δ,σ

∑nδ−1
j=0 δgi(zj , aj )

→ Gt(z, σ ) = ∫ t

0

∑
z′∈S F σ

z,z′(s)g(z′, σ (z′)) ds. Therefore, Ez
δ,σ

∑nδ−1
j=0 gi

δ(zj , aj ) → Gt(z, σ )

as δ → 0+ and nδδ → t > 0. �

Remark 2 The above proof of condition (B) implying condition (A) proves that for every
stationary strategy σ , every time t ≥ 0, all states z, z′ ∈ S, and all integers 0 ≤ nδ with
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nδδ →δ→0+ t , P z
σ (znδ

= z′) →δ→0+ Fσ
z,z′(t) = e

tQ

z,z′ where Q is the S × S matrix whose
(z, z′)-th entry is Qz,z′ = μ(z′, z, σ (z)).

Note that every continuous-time stochastic game Γ = 〈N,S,A,μ,g〉 is a “data limit”
of the family of discrete-time stochastic games Γδ = 〈N,S,A,pδ, gδ〉, where gδ(z, a) =
δg(z, a) and pδ(z

′, z, a) = δμ(z′, z, a) for all pairs of distinct states z′ �= z and every action
profile a ∈ A(z).

3.2 Markov Convergence

The next proposition gives a sufficient condition for a family of Markov strategies σδ in
Γδ to have a continuous-time limiting dynamics and payoffs as δ → 0+. In the formulas
that follow, we view σδ(z, j) (j ∈ N) as a measure on A(z); i.e., σδ(z, j) ∈ 
(A(z)), and
σδ(j) := (σδ(z, j))z∈S is an element of ×z∈S
(A(z)). Therefore, for any fixed z ∈ S, any
linear combination of σδ(z, j) is a measure on A(z). Similarly, if σ : S × R+ → 
(A)

is measurable with σ(z, t) ∈ 
(A(z)), then, for any function f ∈ L1(R+), the integral∫ ∞
0 f (t)σ (z, t) dt is well defined.

We say that the Markov strategies σδ in Γδ converge w∗ if for every continuous function
f : R+ → R with bounded support, the limit of

∑∞
j=0 f (jδ)δσδ(z, j) as δ → 0+ exists. In

that case, there is a measurable function σ : S × R+ → 
(A) (with σ(z, t) ∈ 
(A(z))) such
that for every f ∈ L1(R+) the limit of

∫ ∞
0 f (t)σδ(z, [t/δ]) dt as δ → 0+ exists and equals∫ ∞

0 f (t)σ (z, t) dt , and we say that the discrete-time Markov strategies σδ converge w∗ to
(the continuous-time Markov correlated strategy) σ : S × R+ ∈ 
(A).

Whenever the conditional probability P
z0
δ,σ (E1 | E2) is independent of the initial state z0,

we suppress the superscript of the initial state z0.

Proposition 2 If the (correlated) Markov strategies σδ in Γδ converge w∗ to σ : S × R+ →

(A) and the family of discrete-time stochastic games (Γδ)δ>0 converges in data, then, for
every 0 ≤ s < t , there are S × S transition matrices Fσ (s, t) such that

Pσδ

(
zn = z′ | zk = z

) → Fσ
z,z′(s, t) as δ → 0+, kδ → s, and nδ → t,

and

Ez
σδ

∑

0≤m<n

gδ(zm, am) →
∫ t

0

∑

z′∈S

F σ
z,z′(0, t)g

(
z′, σ

(
z′, t

))
dt as δ → 0 + and nδ → t.

Proof As the family of discrete-time stochastic games (Γδ)δ>0 converges in data, there is
a positive constant K > 0 such that for every (z, a) ∈ A we have |pδ(z, z, a)| > 1 − Kδ.
Therefore, if 0 ≤ k < n, |Pδ,σδ

(zn = z′ | zk = z) − Iz,z′ | < 1 − (1 − Kδ)n−k → 0 as nδ − kδ

→ 0+. Therefore, it suffices to prove that for every s < t there are sequences kδ < nδ such
that kδδ → s and nδδ → t such that

Pδ,σδ

(
znδ

= z′ | zkδ
= z

) → Fσ
z,z′(s, t) as δ → 0 + .

We will prove it for nδ = [t/δ] and kδ = [s/δ].
Assume that the Markov strategies σδ in Γδ converge w∗ to σ : S × R+ → 
(A). Let

M be the space of all S × S matrices Q, let M0 be the subset of all its matrices Q with∑
z′∈S Qz,z′ = 0 for every z ∈ S and Qz,z′ ≥ 0 for all z �= z′, and let M1 be the subset of
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M of all transition matrices. The space M is a (noncommutative) Banach algebra with the
norm ‖Q‖ = maxz∈S

∑
z′∈S |Qz,z′ |, and M1 is closed under multiplication. For an ordered

list F1, . . . ,Fj ∈ M , we denote by
∏j

i=1 Fi the matrix (ordered) product F1F2 . . . Fj .
Let Q : [0,∞) → M be defined by Qz,z′(u) = μ(z′, z, σ (z,u)), and let Qδ : [0,∞) →

M be defined by Qδ
z,z′(u) = pδ(z

′, z, σδ(z, [u/δ]))/δ. As (Γδ)δ>0 converges in data,

Qδ
z,z′(u) = μ(z′, z, σδ(z, [u/δ])) + o(1) as δ → 0+. Therefore,

∫ t

s
Qδ

z,z′(u) du = μ(z′, z,
∫ t

s
σδ(z, [u/δ])) du + o(1) as δ → 0+, where for a measure α on A(z) we define

μ(z′, z,α) := ∑
a∈A(z) α(a)μ(z′, z, a). Therefore, as the Markov strategies σδ converge w∗

to σ , for every s < t , we have

∫ t

s

Qδ(u) du −→
δ→0+

∫ t

s

Q(u)du.

Let Gδ
j be the transition matrix (Gδ

j )z,z′ = pδ(z
′, z, σδ(z, j)) + Iz,z′ , and given 0 ≤ s ≤ t

we define Gδ(s, t) to be the transition matrix
∏[t/δ]−1

j=[s/δ] G
δ
j , where a product over an empty set

of indices is defined as the identity. It suffices to prove that Gδ(s, t) converges as δ → 0+.
Let C = 2 maxz,a |μ(z, z, a)| < C ′. It follows that for every t ≥ 0 we have ‖Q(t)‖ ≤ C,

and for sufficiently small δ > 0 we have ‖Qδ(t)‖ < C ′. Let Lδ(s, t) = [t/δ] − [s/δ], and
note that δLδ(s, t) ≤ t − s + δ.

As M is a Banach algebra, for every finite sequence Q1, . . . ,Qm of elements in M , we
have

∥
∥
∥
∥
∥

m∏

j=1

(I + Qj) − I −
m∑

j=1

Qj

∥
∥
∥
∥
∥

≤ e
∑m

j=1 ‖Qj ‖ − 1 −
m∑

j=1

‖Qj‖. (1)

Inequality (1) follows from the inequality ex ≥ 1+x, the triangle inequality, and the Banach
algebra inequality ‖QQ′‖ ≤ ‖Q‖‖Q′‖. Indeed, if θj = ‖Qj‖, then ‖∏m

j=1(I + Qj) − I −
∑m

j=1 Qj‖ ≤ ∏
j∈J (1 + θj ) − 1 − ∑m

j=1 θj ≤ e
∑m

j=1 θj − 1 − ∑m

j=1 θj .

As Gδ
j = I + ∫ jδ+δ

jδ
Qδ(u)du,

∫ jδ+δ

jδ
‖Qδ(u)‖du ≤ δC ′, and ex − 1 − x is monotonic

increasing on x ≥ 0, for all 0 ≤ s < t , we have

∥
∥
∥
∥Gδ(s, t) − I −

∫ t

s

Qδ(u) du

∥
∥
∥
∥ ≤

∥
∥
∥
∥Gδ(s, t) − I −

∫ δ[t/δ]

δ[s/δ]
Qδ(u)du

∥
∥
∥
∥ + 2δC ′

≤ eC′δLδ(s,t) − 1 − Lδ(s, t)C
′δ + 2δC ′

≤ e(t−s+δ)C′ − 1 − (t − s + δ)C ′ + 2δC ′

< (t − s)2C ′2

for (t − s)C ′ ≤ 1 and δ > 0 sufficiently small.
For every sequence s = t0 < t1 < · · · < tk = t , set Aj = Gδ(tj−1, tj ), Bδ

j = I +
∫ tj

tj−1
Qδ(u)du, and Bj = I + ∫ tj

tj−1
Q(u)du, j = 1, . . . , k. Note that Gδ(t0, t) = ∏k

j=1 Aj

and
∏k

j=1 Aj − ∏k

j=1 Bj = ∑k

i=1

∏i−1
j=1 Aj(Ai − Bi)

∏k

j=i+1 Bj . For 1 ≤ j < k, ‖Aj‖ = 1,
and for sufficiently small maxk

i=1(ti − ti−1), ‖Bi‖ = 1 for every 1 ≤ i ≤ k. Therefore,
‖∏k

j=1 Aj − ∏k

j=1 Bj‖ ≤ ∑k

j=1 ‖Aj − Bj‖ ≤ ∑k

j=1 ‖Aj − Bδ
j ‖ + ∑k

j=1 ‖Bδ
j − Bj‖. There-

fore, for a sufficiently large k, by setting tj = s + j (t − s)/k and F(tj−1, tj ) = I +
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∫ tj
tj−1

Q(u)du, there is a (sufficiently small) δ(k) > 0 such that for 0 < δ < δ(k), we have

∥
∥
∥
∥
∥
Gδ(s, t) −

k∏

j=1

F(tj−1, tj )

∥
∥
∥
∥
∥

≤ 2(t − s)2C ′2/k.

Therefore, sup0<δ,δ′<δ(k) ‖Gδ(s, t) − Gδ′
(s, t)‖ ≤ 4(t − s)2C ′2/k, implying that

limk→∞ sup0<δ,δ′<δ(k) ‖Gδ(s, t) − Gδ′
(s, t)‖ = 0. Therefore, Gδ(s, t) converges to a limit

as δ → 0+. �

Remark 3 The result applies in particular to profiles σδ = (σ i
δ )i∈N of (uncorrelated) Markov

strategies in Γδ that converge w∗ to (a continuous-time correlated Markov strategy) σ :
S × R+ → 
(A). In this case the w∗ limit σ need not represent a profile of continuous-time
Markov strategies.

For example, if σ 1
δ and σ 2

δ play (T ,L) at even stages and (B,R) at odd stages, then
the Markov strategy profiles σδ = (σ 1

δ , σ 2
δ ) converge w∗ to (the continuous-time stationary

correlated strategy) σ with σ(∗)(T ,L) = 1/2 = σ(∗)(B,R). Therefore, asymptotic results
that involve referral to Markov strategies need special attention. They are not obtained by
simply “taking limits.” However, if σ : S × R+ → 
(A) is a continuous-time correlated
Markov strategy, there are profiles of pure (and thus uncorrelated) Markov strategies σδ =
(σ i

δ )i∈N such that σδ converge w∗ to σ .

Remark 4 Proposition 2 holds also in the model of variable stage duration games. The con-
ditions δ → 0+, kδ → s, and nδ → t , are replaced with d(δ) → 0+, dk → s, and dn → t ,
respectively, and the term gδ(zm, am) is replaced with gm(zm, am).

The proof of Remark 4 is obtained by the following (additional) notational modifi-
cations in the proof of Proposition 2. The inequality pδ(z, z, a) > 1 − Kδ is replaced
with pm(z, z, a) > 1 − Kδm for every m ≥ 0, the term (1 − Kδ)n−k is replaced with∏

k≤m<n(1 − Kδm), and a term of the form [t/δ] is replaced with the largest integer m

such that dm ≤ t . The definition (in the proof of Proposition 2) of the S × S matrix Qδ
z,z′(u)

is modified to Qδ
z,z′(u) = p[u/δ](z′, z, σδ(z, [u/δ]))/δ[u/δ]. The inequality 0 < δ < δ(k) is in-

terpreted as 0 < d(δ) < δ(k).

4 Two-Person Zero-Sum Stochastic Games with Short-Stage Duration

4.1 The Discounted Case

Fix the sets of player N = {1,2}, states S, and actions A, and let Γδ = 〈N,S,A,gδ,pδ〉, or
Γδ = 〈gδ,pδ〉 for short, be a stochastic game whose stage payoff function gδ and transitions
pδ depend on the parameter δ that represents the single-stage duration. Recall that Γδ,ρ

denotes the (unnormalized) discounted game Γδ with discount factor 1 − ρδ, Vδ,ρ denotes
its value, and Vρ ∈ R

S is the asymptotic ρ-discounted value of (Γδ)δ>0 if Vδ,ρ →δ→0+ Vρ .
Given a family (Γδ)δ>0 that has an asymptotic ρ-discounted value Vρ , we say that the

stationary strategy σ , respectively τ , is asymptotic ρ-discounted optimal if for every ε > 0,
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there is δ0 > 0, such that for every 0 < δ < δ0, strategy σ ∗ of player 1 (in Γδ), strategy τ ∗ of
player 2 (in Γδ), and state z,

ε + Ez
δ,σ,τ∗

∞∑

m=0

(1 − ρδ)mgδ(zm, xm) ≥ Vρ(z) ≥ −ε + Ez
δ,σ∗,τ

∞∑

m=0

(1 − ρδ)mgδ(zm, xm).

Given a converging family (Γδ)δ>0, we denote by g and μ the limits, as δ → 0+, of gδ/δ

and pδ/δ, respectively.
We denote by Xi(z), respectively X(z), all probability distributions over Ai(z), respec-

tively over A(z) (= A1(z) × A2(z)). For z ∈ S and xi ∈ Xi(z), we denote by x1 ⊗ x2

the product distribution x ∈ X(z) that is given by x(a) = x1(a1)x2(a2) for a = (a1, a2) ∈
A1(z) × A2(z). For any function h : a 
→ h(a), that is defined over A(z), e.g., A(z) 	 a 
→
g(z, a) or A(z) 	 a 
→ μ(z′, z, a), we denote also by h its linear extension to X(z), i.e.,
h(x) = ∑

a∈A(z) x(a)h(a).

Theorem 1 Every converging family (Γδ)δ>0 has an asymptotic ρ-discounted value, which
equals the unique solution V ∈ R

S of the system of S equations, z ∈ S,

ρv(z) = max
x1∈X1(z)

min
x2∈X2(z)

(

g
(
z, x1 ⊗ x2

) +
∑

z′∈S

μ
(
z′, z, x1 ⊗ x2

)
v
(
z′)

)

, (2)

and each player has an asymptotic ρ-discounted optimal stationary strategy.

Proof By the theory of discrete-time stochastic games, Vδ,ρ exists and is the unique solution
of the system of equations

v(z) = max
x1∈X1(z)

min
x2∈X2(z)

(

gδ

(
z, x1 ⊗ x2

) +
∑

z′∈S

(1 − ρδ)Pδ

(
z′ | z, x1 ⊗ x2

)
v
(
z′)

)

. (3)

Since Pδ(z
′ | z, a) = pδ(z

′, z, a) for z′ �= z, and Pδ(z
′ | z, a) = 1 + pδ(z

′, z, a) for z′ = z, we
can deduce, by subtracting (1 − ρδ)v(z) from both sides of the z equation that Vδ,ρ exists
and is the unique solution of the system of equations

ρδv(z) = max
x1∈X1(z)

min
x2∈X2(z)

(

gδ

(
z, x1 ⊗ x2

) +
∑

z′∈S

(1 − ρδ)pδ

(
z′, z, x1 ⊗ x2

)
v
(
z′)

)

. (4)

For gδ = δg and pδ = δ
1−ρδ

μ, v solves (4) if and only if it solves (2). For δ > 0 sufficiently

small, pδ = δ
1−ρδ

μ indeed represents transition probabilities. Therefore, the system (2) of
equations has a unique solution.

Let V be the unique solution of (2). Let σ be a stationary strategy of player 1 with σ(z)

maximizing (over all x1 ∈ X1(z))

min
x2∈X2(z)

g
(
z, x1 ⊗ x2

) +
∑

z′∈S

μ
(
z′, z, x1 ⊗ x2

)
V

(
z′). (5)

Therefore, for every z ∈ S and x2 ∈ X2(z), we have

g
(
z, σ (z) ⊗ x2

) +
∑

z′∈S

μ
(
z′, z, σ (z) ⊗ x2

)
V

(
z′) ≥ ρV (z). (6)
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Fix ε > 0. We claim that there is δ0 > 0, such that for every 0 < δ < δ0, strategy τ of
player 2, and state z,

Ez
δ,σ,τ

∞∑

m=0

(1 − ρδ)mgδ(zm, am) ≥ V (z) − ε. (7)

Fix an initial history hm = (z0, a0, . . . , zm), and let x2
m = τ(hm) and xm = σ(zm) ⊗ x2

m. Let
Ym := Eσ,τ (gδ(zm, am) + (1 − ρδ)V (zm+1) | hm).

Ym = gδ(zm, xm) + (1 − ρδ)
∑

z′∈S

Pδ

(
z′ | zm, xm

)
V

(
z′)

≥ δg(zm, xm) +
∑

z′∈S

δμ
(
z′, zm, xm

)
V

(
z′) − ρδV (zm) + V (zm) − o(δ)

≥ V (zm) − o(δ).

Therefore, for every m ≥ 0, Ez
δ,σ,τ (1 − ρδ)mgδ(zm, am) ≥ (1 − ρδ)mEz

δ,σ,τ V (zm) − (1 −
ρδ)m+1Ez

δ,σ,τ V (zm+1) − o(δ)(1 − ρδ)m. Summing over m = 0,1, . . . , we deduce that

Ez
δ,σ,τ

∞∑

m=0

(1 − ρδ)mgδ(zm, am) ≥ V (z) − o(δ)

∞∑

m=0

(1 − ρδ)m →δ→0+ V (z).

By duality, if τ is a stationary strategy of player 2 with τ(z) minimizing (over all x2 ∈
X2(z))

max
x1∈X1(z)

g
(
z, x1 ⊗ x2

) +
∑

z′∈S

μ
(
z′, z, x1 ⊗ x2

)
V

(
z′), (8)

then for every strategy σ of player 1 we have

Ez
δ,σ,τ

∞∑

m=0

(1 − ρδ)mgδ(zm, am) ≤ V (z) + o(δ)

∞∑

m=0

(1 − ρδ)m →δ→0+ V (z).
�

Denote by Vρ(g,μ) the asymptotic ρ-discounted value of the family (Γδ = 〈gδ,μδ〉)δ>0

that converges (as δ goes to zero) to 〈g,μ〉, and by Vδ,ρ(g,p) the value of the discounted
discrete-time stochastic game 〈g,p〉 with a discount factor 1 − ρδ.

Remark 5 The above proof of Theorem 1 shows that

Vρ(g,μ) = Vδ,ρ

(

δg,
δ

1 − ρδ
μ

)

whenever δ ≤ 1

‖μ‖ + ρ
, (9)

where ‖μ‖ = maxz,a |μ(z, z, a)|.

Remark 6 The proof shows in addition that a stationary strategy σ of player 1, respectively
τ of player 2, is asymptotic ρ-discounted optimal if and only if, for every state z ∈ S, σ(z)

maximizes (5), respectively, τ(z) minimizes (8).

Remark 7 It is worth recalling that a stationary strategy is a (behavioral) strategy whose
mixed action at every stage is independent of the stage, past states, and past actions of the
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players. Therefore, the result holds also in a model where some of the players do not observe
past actions, and even in a model where some of the players are unable to recall the current
stage and past states.

Remark 8 The proof that (2) has a solution was based on the corresponding result from the
theory of discounted discrete-time stochastic games. In what follows, we prove it directly.

For a vector v ∈ R
S we denote by ‖v‖ its maximum norm ‖v‖ := maxz∈S |v(z)|. For

every z ∈ S, a ∈ A(z), v ∈ R
S , and x ∈ X(z), Gz[v](a) is defined by

Gz[v](a) = 1

‖μ‖ + ρ

(

g(z, a) +
∑

z′∈S

μ
(
z′, z, a

)
v
(
z′) + ‖μ‖v(z)

)

,

and (thus) Gz[v](x) is defined by

Gz[v](x) =
∑

a∈A(z)

x(a)Gz[v](a)

= 1

‖μ‖ + ρ

(

g(z, x) +
∑

z′∈S

μ
(
z′, z, x

)
v
(
z′) + ‖μ‖v(z)

)

.

Define the operator Q from R
S to R

S by

Qv(z) = max
x∈X1(z)

min
x2∈X2(z)

Gz[v](x1 ⊗ x2
)
.

By the minmax theorem, we have

Qv(z) = min
x2∈X2(z)

max
x∈X1(z)

Gz[v](x1 ⊗ x2
)

and, therefore, v is a solution of Qv = v if and only if it is a solution of (2). Therefore, it
suffices to prove that Q has a fixed point. Note that Gz[v + c1S](x) = Gz[v](x) + c‖μ‖

‖μ‖+ρ

and, therefore,

Q(v + c1S)(z) = Qv + c‖μ‖
‖μ‖ + ρ

.

In addition, Q is monotonic; i.e., u ≥ v implies that Qu ≥ Qv and, therefore, for v,u ∈ R
S

we have

‖Qv − Qu‖ ≤ ‖μ‖
‖μ‖ + ρ

‖v − u‖.

Therefore, Q is a strict contraction and, therefore, Q has a unique fixed point. �

Remark 9 The following (alternative) proof of Theorem 1 is based on results from the the-
ory of continuous-time stochastic games in conjunction with stationary convergence of the
family of games Γδ .

We apply notations and inequalities from [8]. First, one recalls that a pair of stationary
strategies, σ of player 1 and τ of player 2, where σ(z) maximizes (5), and τ(z) minimizes
(8), is a pair of optimal strategies in the continuous-time ρ-discounted game Γ = 〈g,μ〉, and
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V is its value. In particular, for every stationary strategy τ ∗ of player 2 and every stationary
strategy σ ∗ of player 1, we have

Ez
σ,τ∗

∫ ∞

0
e−ρtg

(
zt , σ (zt ) ⊗ τ ∗(zt )

)
dt ≥ V (z) ≥ Ez

σ∗,τ

∫ ∞

0
e−ρtg

(
zt , σ

∗(zt ) ⊗ τ(zt )
)
dt.

Next, stationary convergence implies that for stationary strategies σ ′ of player 1 and τ ′ of
player 2 we have

Ez
δ,σ ′,τ ′

∞∑

m=0

(1 − ρδ)mgδ(zm, am) →δ→0+ Ez
σ ′,τ ′

∫ ∞

0
e−ρtg

(
zt , σ

′(zt ) ⊗ τ ′(zt )
)
dt.

Therefore, given ε > 0, for δ > 0 sufficiently small, for every pure stationary strategy τ ∗ of
player 2 and pure stationary strategy σ ∗ of player 1, we have

ε + Ez
δ,σ,τ∗

∞∑

m=0

(1 − ρδ)mgδ(zm, am) ≥ V (z) ≥ −ε + Ez
δ,σ∗,τ

∞∑

m=0

(1 − ρδ)mgδ(zm, am).

In a discrete-time discounted game (with finitely many states and actions), there is always a
pure stationary strategy that is a best reply to a given stationary strategy. Therefore, V is an
asymptotic ρ-discounted value and σ and τ are asymptotic ρ-discounted optimal strategies
of the converging family (Γδ)δ>0.

The Algebraic Approach Fix the finite state space S and the finite action sets Ai(z)

(i = 1,2 and z ∈ S), and recall that A = {(z, a) : z ∈ S,a ∈ A(z)}. The set of all
(g,μ, v,ρ, x1, x2), where g ∈ R

A , μ ∈ R
S×A (with μ(z′, z, a) ≥ 0 for S 	 z′ �= z ∈ S and

a ∈ A(z), and
∑

z′∈S μ(z′, z, a) = 0 for (z, a) ∈ A), v ∈ R
S , 0 < ρ < 1, xi ∈ Xi(z), that

satisfies the following finite5 lists of inequalities:

ρv(z) ≤ min
y2∈X2(z)

(

g
(
z, x1 ⊗ y2

) +
∑

z′∈S

μ
(
z′, z, x1 ⊗ y2

)
v
(
z′)

)

, (10)

ρv(z) ≥ max
y1∈X1(z)

(

g
(
z, y1 ⊗ x2

) +
∑

z′∈S

μ
(
z′, z, y1 ⊗ x2

)
v
(
z′)

)

, (11)

is semialgebraic. Therefore, for each fixed (g,μ), the graph of the correspondence assigning
to each ρ the asymptotic ρ-discounted optimal stationary strategies of each player and the
asymptotic ρ-discounted value function Vρ is semialgebraic. Therefore (see, e.g., [1, 6]),
there is a semialgebraic map ρ 
→ (Vρ, σ

ρ, τ ρ), where Vρ is the ρ-discounted asymptotic
value and σρ and τρ are stationary asymptotic ρ-discounted optimal strategies. In particular,
the map has a convergent expansion in fractional powers of ρ in a right neighborhood of 0
(and a convergent expansion in fractional powers of ρ in any one-sided neighborhood of a
point 0 < ρ0 < 1). As Vρ is the ρδ-discounted value of the discrete-time stochastic game
with payoff function δg and transitions pδ = δ

1−ρδ
μ it is bounded by ‖g‖/ρ. Therefore,

ρ 
→ vρ := ρVρ is a bounded semialgebraic function. In particular, there is (1) a positive

5The finiteness follows from the fact that the minimum and the maximum of a linear function over a simplex
is attained in one of the finitely many extreme points of the simplex.
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integer M , (2) real coefficients ck(z), and (3) a positive discount rate ρ̄ > 0, such that for
0 < ρ ≤ ρ̄ the series

∑∞
k=0 ck(z)ρ

k/M converges and

vρ(z) =
∞∑

k=0

ck(z)ρ
k/M.

If the game is one of perfect information, then each player has for each 1 > ρ > 0 a pure
stationary strategy that is an asymptotic ρ-discounted optimal strategy. Therefore (following
the classical argument from discrete-time stochastic games), the value function ρ 
→ vρ(z)

is a rational function in ρ in a right neighborhood of 0 (and in any one-sided neighborhood
of a point 1 > ρ0 > 0). It follows that there are ρ̄ > 0 and real coefficients ck(z), and pure
stationary strategies σ i , i = 1,2, such that for ρ ≤ ρ̄ the series

∑∞
k=0 ck(z)ρ

k converges,

vρ(z) =
∞∑

k=0

ck(z)ρ
k,

and σ i is asymptotic ρ-discounted optimal in the family (Γδ)δ>0.

Covariance Properties Fix the sets of states S and actions A. Let Vρ(g,μ) be the unique
solution of the system (2) of S equations. Recall that it equals the asymptotic ρ-discounted
value of any family 〈gδ,pδ〉 that converges in data to 〈g,μ〉. (It is also the value of the
continuous-time stochastic game 〈N,S,A,g,μ〉, e.g., [8].) Consider the function Vρ(g,μ)

as a function of ρ, g, and μ. Obviously, the ρ-discounted asymptotic value Vρ(g,μ) is
monotonic in g and covariant with respect to multiplication of the payoff function g by a
positive scalar. Namely, if g′ ≥ g and α is a nonnegative real number, Vρ(g

′,μ) ≥ Vρ(g,μ)

and Vρ(αg,μ) = αVρ(g,μ). For α > 0, a vector V satisfies Eq. (2) if and only if it satis-
fies the same equation when ρ is replaced by αρ, g is replaced by αg, and μ is replaced
by αμ. Therefore, Vαρ(αg,αμ) = Vρ(g,μ). (In the continuous-time game interpretation,
this equality is interpreted as, and can be derived by, a simple rescaling of time: t 
→ αt .)

Now we turn to the expression of the ρ-discounted asymptotic value as a value of a
discrete-time discounted stochastic game.

If ‖μ‖ ≤ 1, we assign to (the continuous-time game) Γ = 〈N,S,A,g,μ〉 the discrete-
time game Γ̄ = 〈N,S,A,g,p = μ〉. By Remark 5, the value V̄ρ(g,μ) of the discrete-time
ρ-discounted (with discount factor 1 − ρ) stochastic game Γ̄ = 〈{1,2}, S,A,g,p = μ〉
equals Vρ(g, (1 − ρ)μ) whenever 0 < ρ ≤ 1 − ‖μ‖.

Summarizing,

Vρ(g,μ) ≥ Vρ

(
g′,μ

)
whenever g ≥ g′, (12)

Vρ(αg,βμ) = α

β
Vρ/β(g,μ) whenever α ≥ 0 and β > 0, (13)

Vρ(g,μ) = V̄ρ

(

g,
1

1 − ρ
μ

)

whenever 0 < ρ ≤ 1 − ‖μ‖; (14)

equivalently,

V̄ρ(g,μ) = Vρ

(
g, (1 − ρ)μ

)
whenever 0 < ρ < 1 and ‖μ‖ ≤ 1. (15)

Note that for a constant payoff function g = c, we have ρVρ(c,μ) = c. The normalization
vρ := ρVρ of the function Vρ , is a function of (g,μ): vρ(g,μ) = ρVρ(g,μ). Given two
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transition rates μ and μ′,

d
(
μ,μ′) := max

{
μ(z′, z, a)

μ′(z′, z, a)
,
μ′(z′, z, a)

μ(z′, z, a)

∣
∣
∣
∣ a ∈ A(z), z, z′ ∈ S

}

− 1,

where by convention x/0 = ∞ for x > 0, and 0/0 = 1.

Lemma 1 For every pair of payoff functions g and g′ and every pair of transition rates μ

and μ′ the following inequality holds:
∥
∥vρ

(
g′,μ′) − vρ(g,μ)

∥
∥

∞ ≤ 4|S|d(
μ,μ′)min

{‖g‖,∥∥g′∥∥} + ∥
∥g − g′∥∥. (16)

Proof The proof applies [10, Theorem 6] in conjunction with the covariance properties (13)
and (14). Fix ρ,g, g′,μ,μ′. Let β > 0, and note that d(μ,μ′) = d(μ/β,μ′/β). As μ =
βμ/β , equality (13) implies that vρ(g,μ) = ρ

β
V ρ

β
(g,μ/β) = v ρ

β
(g,μ/β), and similarly,

vρ(g
′,μ′) = v ρ

β
(g′,μ′/β). We choose β > 0 sufficiently large, e.g., β > ρ + max{‖μ‖,‖μ′‖}

1−ρ
, so

that ρ/β < 1 − ‖μ‖
(1−ρ)β

and ρ/β < 1 − ‖μ′‖
(1−ρ)β

. This will enable us to apply equality (14) in

the third equality below. Therefore,
∥
∥vρ

(
g′,μ′) − vρ(g,μ)

∥
∥∞ = ∥

∥vρ/β

(
g′,μ′/β

) − vρ/β(g,μ/β)
∥
∥∞

=
∥
∥
∥
∥

ρ

β
Vρ/β

(
g′,μ′/β

) − ρ

β
Vρ/β(g,μ/β)

∥
∥
∥
∥

∞

=
∥
∥
∥
∥

ρ

β
V̄ρ/β

(

g′,
μ′

(1 − ρ)β

)

− ρ

β
V̄ρ/β

(

g,
μ

(1 − ρ)β

)∥
∥
∥
∥∞

≤ 4|S|d(
μ,μ′)min

{‖g‖,∥∥g′∥∥} + ∥
∥g − g′∥∥,

where the first and second equalities follow from (13), the third equality follows from (14),
and the last inequality follows from [10, Theorem 6]. �

Recall that the family of discrete-time stochastic games Γδ = 〈N,S,A,gδ,pδ〉 converges
strongly to Γ = 〈N,S,A,g,μ〉 if for all (z′, z, a) ∈ S × A, gδ(z, a) = δg(z, a) + o(δ) and
pδ(z

′, z, a) = δμ(z′, z, a)(1 + o(1)) as δ → 0+.

Theorem 2 If Γδ = 〈gδ,pδ〉 converges strongly to Γ = 〈g,μ〉 then ρVδ,ρ →δ→0+ ρVρ(μ,g)

uniformly in 0 < ρ < 1.

Proof By Remark 5, Vδ,ρ = Vρ(gδ/δ, (1 − ρδ)pδ/δ). Therefore, vδ,ρ = ρVδ,ρ = vρ(g
′
δ,

μδ,ρ) := ρVρ(g
′
δ,μδ,ρ), where g′

δ = gδ/δ and μδ,ρ(z
′, z, a) = (1 − ρδ)pδ/δ. Therefore, as

‖g′ − g‖ → 0 as δ → 0+ and d(μ,μδ,ρ) →δ→0+ 0 uniformly in ρ, inequality (16) implies
that ρVδ,ρ = vρ(g

′
δ,μδ,ρ) →δ→0+ vρ(g,μ) uniformly in ρ. �

4.2 The Asymptotic Nonstationary Discounted Value

We start with a few simple and useful properties of nonstationary discounting measures.
First, if w is a nonstationary discounting measure on [0,∞] then w has no atoms in
(0,∞), w is absolutely continuous on (0,∞), and dw

dt
(t) is nonincreasing in 0 < t < ∞.

Given a nonstationary discounting measure w on [0,∞] and a finite sequence t̃ = (t0 =
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0 < t1 < · · · < t� < ∞), we define the nonstationary discounting measure w̃t̃ , or w̃ for
short, on [0,∞] by w̃([tj , tj+1)) = w([tj , tj+1)), dw̃

dt
(t) being a constant (thus, dw̃

dt
(t) =

w([tj , tj+1))/(tj+1 − tj )) on each interval [tj , tj+1) (0 ≤ j < �), and w̃ coincides with w

on subsets of [t�,∞]. Set d(t̃) := max0≤j<�(tj+1 − tj ).

Lemma 2 Let w be a nonstationary measure on [0,∞] and t̃ = (t0 = 0 < t1 < · · · < t� <

∞) a finite sequence. Then

∫ t�

t1

∣
∣
∣
∣
dw

dt
(t) − dw̃

dt
(t)

∣
∣
∣
∣dt ≤ 2

∫ t1+d(t̃)

t1

dw

dt
(t) dt, (17)

and if the nonstationary discounting measures wδ on [0,∞] converge to the measure w on
[0,∞] then

∫ t�

t1

∣
∣
∣
∣
dwδ

dt
(t) − dw

dt
(t)

∣
∣
∣
∣dt →δ→0+ 0. (18)

Proof As dw
dt

(t) is nonincreasing in t ,
∫ tj+1

tj
| dw

dt
(t) − dw̃

dt
(t)|dt ≤ 2

∫ tj+1
tj

dw
dt

(t) −
dw
dt

(t + d(t̃)) dt . Therefore,
∫ t�

t1
| dw

dt
(t) − dw̃

dt
(t)|dt = ∑

1≤j<�

∫ tj+1
tj

| dw
dt

(t) − dw̃
dt

(t)|dt ≤
2
∑

1≤j<�

∫ tj+1
tj

dw
dt

(t) − dw
dt

(t + d(t̃)) dt ≤ 2
∫ t1+d(t̃)

t1

dw
dt

(t) dt , which proves (17).
In order to prove (18), it suffices to prove that for every ε > 0 there is δ0 > 0 such that

for 0 < δ < δ0,
∫ t�

t1
| dwδ

dt
(t) − dw

dt
(t)|dt < 4ε. Fix ε > 0.

For every d > 0 and a nonstationary discounting measure ν on [0,∞], we define the
nonstationary discounting measures νd on [0,∞] by νd([a, b]) = 1

d

∫ d

0 ν([a + t, b + t]) dt .

Note that dwd

dt
(t) and

dwd
δ

dt
(t) are continuous at each t < ∞ and

dwd
δ

dt
(t) →δ→0+ dwd

dt
(t).

Therefore,
∫ t�

t1
| dwd

δ

dt
(t) − dwd

dt
(t)|dt →δ→0+ 0. As dw

dt
(t) is nonincreasing in t ,

∫ t�
t1

| dw
dt

(t) −
dwd

dt
(t)|dt = ∫ t�

t1

dw
dt

(t)− dwd

dt
(t) dt ≤ ∫ t1+d

t1

dw
dt

(t) dt − ∫ t�+d

t�

dw
dt

(t) dt ≤ w([t1, t1 +d]). Sim-

ilarly,
∫ t�

t1
| dwδ

dt
(t) − dwd

δ

dt
(t)|dt ≤ wδ([t1, t1 + d]). Let d > 0 be sufficiently small so that

w([t1, t1 + d]) < ε, and δ0 > 0 be sufficiently small so that for all 0 < δ < δ0,
∫ t�

t1
| dwd

δ

dt
(t) −

dwd

dt
(t)|dt < ε. Therefore, as | dwδ

dt
(t) − dw

dt
(t)| ≤ | dwδ

dt
(t) − dwd

δ

dt
(t)| + | dwd

δ

dt
(t) − dwd

dt
(t)| +

| dwd

dt
(t) − dw

dt
(t)|,

∫ t�

t1

∣
∣
∣
∣
dwδ

dt
(t) − dw

dt
(t)

∣
∣
∣
∣dt < 4ε. �

Theorem 3 Let w be a nonstationary discounting measure on [0,∞), t ≥ 0, and ν : A → R.
Then a family (Γδ)δ>0 that converges in data has an asymptotic (w, t, ν) value, and if wδ ,
δ > 0, are nonstationary discounting measures on N that converge to w, and mδ ≥ 0 and
νδ : A → R are such that (mδ, νδ) converges to (t, ν) (as δ → 0+), then for every ε > 0
there are ε-optimal Markov strategies in Γ

mδ,νδ
δ,wδ

that converge to a continuous-time Markov
strategy.

Before turning to the proof of the theorem, we introduce a useful auxiliary lemma.
Fix a payoff function g : A → R and a transition rate function μ : S × A → R with

μ(z′, z, a) ≥ 0 if z′ �= z and
∑

z′∈S μ(z′, z, a) = 0. Let ‖μ‖ := max(z,a)∈A |μ(z, z, a)|. For
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every z ∈ S, α,β > 0, V ∈ R
S , and x ∈ 
(A(z)), F(z, x,α,β,V ) is defined by

F(z, x,α,β,V ) = αg(z, x) + V (z) +
∑

z′∈S

βμ
(
z′, z, x

)
V

(
z′),

and T (α,β,V ) ∈ R
S is defined by

T (α,β,V )(z) = max
x1∈X1(z)

min
x2∈X2(z)

F
(
z, x1 ⊗ x2, α,β,V

)
.

Let V1 ∈ R
S , α,β > 0, and define V0 ∈ R

S by V0 = T (α,β,V1). Given a sequence
γ = (0 = γ0 < · · · < γm = 1), define Uγj

, 0 ≤ j ≤ m (recursively in j ) by U1 = Uγm = V1,
and for 0 ≤ j < m and z ∈ S, Uγj

= T ((γj+1 − γj )α, (γj+1 − γj )β,Uγj+1). If d(γ ) :=
max0≤j<m γj+1 − γj is sufficiently small so that d(γ )β‖μ‖ ≤ 1, Γ (γ ) denotes the m-
stage game with set of plays S × Am, the payoff of a play z0, a0, . . . , zm is V1(zm) +∑

0≤j<m(γj+1 − γj )αg(zj , aj ), and past play is observed by the players, and the “states
transitions” are such that the conditional probability of zj+1 = z, given z0, a0, . . . , aj , is
Izj ,z + (γj+1 − γj )βμ(z, zj , aj ).

Lemma 3 Assume that β‖μ‖ ≤ 1/2. Then (1) the game Γ (γ ) is well defined and its value
equals U0, (2) the stationary strategy σ of player 1 (respectively, τ of player 2) that for
every state z ∈ S, σ(z) maximizes minx2∈X2(z) F (z, σ (z) ⊗ x2, α,β,V1), (respectively, τ(z)

minimizes maxx1∈X1(z) F (z, x1 ⊗ τ(z),α,β,V1)) is 4β‖μ‖(α‖g‖ + 4β‖μ‖‖V1‖)-optimal in
Γ (γ ), and (3) ‖U0 − V0‖ ≤ 4β‖μ‖(α‖g‖ + 4β‖μ‖‖V1‖).

Proof For every (zj , aj ) ∈ A, the condition d(γ )β‖μ‖ ≤ 1 implies that Izj ,z + (γj+1 −
γj )βμ(z, zj , aj ) ≥ 0, and in addition

∑
z∈S(Izj ,z +(γj+1 −γj )βμ(z, zj , aj )) = 1. Therefore,

Γ (γ ) is well defined. The recursive formula for the value of the m-stage game Γ (γ ) shows
that the value of Γ (γ ) equals U0.

For every strategy profile σ in Γ (γ ) and state z, P z
σ (z0 = z1 = · · · = zm) ≥ ∏

0≤j<m(1 −
(γj+1 − γj )β‖μ‖) ≥ 1 −β‖μ‖. Therefore, for every Markov strategy profile σ in Γ (γ ) and
state z,

Ez
σ

∑

0≤j<m

(γj+1 − γj )αg(zj , aj ) ≥ αg
(
z, σ̄ (z)

) − 2β‖μ‖α‖g‖,

where σ̄ (z) = ∑
0≤j<m(γj+1 − γj )σ (z, j).

Let σ 1 be a stationary strategy of player 1 in Γ (γ ) such that for every state z ∈ S, σ 1(z)

maximizes minx2∈X2(z) F (z, σ (z) ⊗ x2, α,β,V1). Then for every Markov strategy σ 2 of
player 2 in Γ (γ ), inequality (1) implies that

∑
z′∈S |P z

σ (zm = z′) − Iz,z′ − βμ(z′, z, σ̄ (z))| ≤
e2β‖μ‖ − 1 − 2β‖μ‖ ≤ 4β2‖μ‖2, where σ is the strategy profile (σ 1, σ 2) and the last in-
equality uses the assumption 2β‖μ‖ ≤ 1. Therefore,

Ez
σ

(

V1(zm) +
∑

0≤j<m

(γj+1 − γj )αg(zj , aj )

)

≥ V0(z) − 2β‖μ‖(α‖g‖ + 4β‖μ‖‖V1‖
)
.

Let τ 2 be a stationary strategy of player 2 in Γ (γ ) such that for every state z ∈ S, τ 2(z)

minimizes maxx1∈X1(z) F (z, σ (z)⊗x2, α,β,V1). Then, by duality, for every Markov strategy
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τ 1 of player 1 in Γ (γ ),

Ez
τ

(

V1(zm) +
∑

0≤j<m

(γj+1 − γj )αg(zj , aj )

)

≤ V0(z) + 2β‖μ‖(α‖g‖ + 4β‖μ‖‖V1‖
)
,

where τ = (τ 1, τ 2).
Therefore, ‖U0 −V0‖ ≤ 4β‖μ‖(α‖g‖+4β‖μ‖‖V1‖) and σ 1 and τ 2 are (4β‖μ‖(α‖g‖+

4β‖μ‖‖V1‖))-optimal. �

Proof of Theorem 3 The first stage of the proof is obtained by associating an extensive form
�-stage game Γ (t̃) with a finite sequence t̃ = (t0 = 0 < t1 < · · · < tk = t < tk+1 < · · · < t�)

of times (and the triple (w, t, ν)) as follows.
The game Γ (t̃) is an �-stage “stochastic game” with (1) the same sets of states, actions,

and players as in Γδ , (2) stage-dependent payoffs (that also incorporate an extra payment in
stage k), and (3) stage-dependent transitions. Let 
j := tj+1 − tj and let t̃ be such that d(t̃)

is sufficiently small so that d(t̃)‖μ‖ < 1/2. A play of Γ (t̃) is a sequence (z̃0, ã0, . . . , z̃�)

with ãj ∈ A(z̃j ) and the payoff of the play (z̃0, ã0, . . . , z̃�) is ν(z̃k, ãk) + ∑�−1
j=0 wjg(z̃j , ãj ),

where wj := w([tj , tj+1)).
Past play is observed by the players. Therefore, a strategy of a player chooses his action

at stage j = 0, . . . , � − 1 as a function of (z̃0, ã0, . . . , z̃j ). The conditional probability, given
z̃0, ã0, . . . , z̃j , ãj , of z̃j+1 = z is 
jμ(z, z̃j , ãj ) + Iz̃j ,z. It is helpful to view the states transi-
tions in Γ (t̃) as those of an “exact” stochastic game whose j th stage duration, 0 ≤ j < �, is

j . The game Γ (t̃) has a value Ṽ and the players have Markovian optimal strategies.

The value Ṽ equals Ṽ0, where Ṽj ∈ R
S are defined recursively for 0 ≤ j ≤ �. For every

z ∈ S, Ṽ�(z) = 0, and for 0 ≤ j < � we define Ṽj (z) by

Ṽj (z) = max
x1∈X1(z)

min
x2∈X2(z)

(
1j=kν(z, x) + F(z, x,wj ,
j , Ṽj+1)

)
,

where x = x1 ⊗ x2.
Note that for every j < �, ‖Ṽj‖ ≤ 1j=k‖ν‖ + wj‖g‖ + ‖Ṽj+1‖, where ‖ν‖ =

max(z,a)∈A |ν(z, a)|. Therefore, by induction on 0 ≤ � − j ≤ �, ‖Ṽj‖ ≤ 1j≤k‖ν‖ +∑
j ′≥j wj ′ ‖g‖ ≤ ‖ν‖ + w([0,∞))‖g‖.
The Markov strategy σ̃ of player 1 in Γ (t̃) with σ̃ (z, j) maximizing (over all x1 ∈ X1(z))

min
x2∈X2(z)

(
1j=kν

(
z, x1 ⊗ x2

) + F
(
z, x1 ⊗ x2,wj ,
j , Ṽj+1

))

is an optimal strategy of player 1 in Γ (t̃). Indeed, for every strategy τ of player 2 in Γ (t̃)

and stage 0 ≤ j < �,

Ez
σ̃ ,τ

(
1j=kν(z̃j , ãj ) + wjg(z̃j , ãj )

) ≥ Ez
σ̃ ,τ

(
Ṽj (z̃j ) − Ṽj+1(z̃j+1)

)
.

Therefore, by summing these inequalities over 0 ≤ j < �, we have

Ez
σ̃ ,τ

(

ν(z̃k, ãk) +
∑

0≤j<�

wjg(z̃j , ãj )

)

≥ Ṽ0(z).

The second stage of the proof is to associate with t̃ , σ̃ , and δ > 0, a sequence m̃δ =
(mδ,0 = 0 < mδ,1 < · · · < mδ,�), a Markov strategy σδ in Γδ , and a nonstationary discounting
measure w̃δ , as follows.
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For mδ,j ≤ m < mδ,j+1, σδ(z,m) = σ̃ (z, j), for m ≥ mδ,�, σδ(z,m) coincides with an
arbitrary stationary strategy, mδ,k = mδ , mδ,j = [tj /δ] for j �= k (thus δmδ,j →δ→0+ tj for all
0 ≤ j < �), w̃δ(m) = wδ(m) for m ≥ mδ,�, and w̃δ(m) = 1

mδ,j+1−mδ,j

∑
mδ,j ≤m<mδ,j+1

wδ(m)

for mδ,j ≤ m < mδ,j+1 and j < �.
Note that w̃δ is a nonstationary discounting measure that converges, as δ → 0+, to w.
Consider the family of games Γ̃

mδ,νδ

δ,w̃δ
with g̃δ = δg and p̃δ = δμ. By Lemma 3, for

every ε > 0, there is a sufficiently small d > 0 such that if t̃ is such that d(t̃) < d

and w([t�,∞)) < d , then for sufficiently small δ > 0, the Markov strategy σδ guarantees
in Γ̃

mδ,νδ

δ,w̃δ
a payoff that is at least Ṽ − ε. Therefore, for sufficiently small δ > 0, the Markov

strategy σδ guarantees in Γ
mδ,νδ

δ,w̃δ
a payoff that is at least Ṽ − 2ε.

Note that for sufficiently small δ > 0, P z
σ (zm = z ∀m ≤ mδ,1) ≥ 1 − d‖μ‖ for every

strategy profile σ and state z. Therefore, if d‖μ‖‖Ṽ1‖ < ε/4, for sufficiently small δ > 0,
for every strategy τ of player 2, we have Ez

σδ,τ
(Ṽ1(zmδ,1) + ∑

m<mδ,1
wδ(m)gδ(zm, am)) ≥

Ṽ0(z) − 2d‖μ‖‖Ṽ1‖ − ε/2 > Ṽ0(z) − ε.
By Lemma 2,

∑
m≥mδ,1

|w̃δ(m)−wδ(m)| → 0 as δ → 0+. If δ > 0 is sufficiently small so

that
∑

m≥mδ,1
|w̃δ(m)−wδ(m)| < ε, then σδ guarantees in Γ

mδ,νδ
δ,wδ

a payoff that is at least Ṽ −
3ε − ε‖g‖. By the construction of σδ , σδ converges to a continuous-time Markov strategy.

Similarly, we associate with the Markov strategy τ̃ (and δ > 0) a Markov strategy τδ that
for δ > 0 sufficiently small guarantees in Γ

mδ,νδ
δ,wδ

a payoff that is at most Ṽ + 3ε + ε‖g‖
while τδ converges to a continuous-time strategy τ . �

4.3 The Asymptotic Limiting-Average Value

Recall that the family (Γδ)δ>0 has an asymptotic limiting-average value v if for every ε > 0
there are δ0 > 0 sufficiently small and strategies σδ and τδ in Γδ , such that for every strategy
pair (σ ∗, τ ∗), every initial state z, and every 0 < δ < δ0, we have

ε + Ez
σδ,τ

∗g
δ
≥ v(z) ≥ −ε + Ez

σ∗,τδ
ḡδ. (19)

Theorem 4 A family (Γδ)δ>0 that converges strongly has an asymptotic limiting-average
value.

Proof Let g = limδ→0+ gδ/δ and μ = limδ→0+ pδ/δ. As the function ρ 
→ vρ(g,μ) is semi-
algebraic and bounded, it converges to a limit v as ρ → 0+. Fix ε > 0. As every discrete-
time stochastic game with finitely many states and actions has a limiting-average value [5],
which is the limit of its ρ-discounted values as ρ goes to 0+, there are strategies σδ of
player 1 and τδ of player 2, such that for every strategy pair (σ ∗, τ ∗) and every initial state
z ∈ S,

ε/2 + Ez
σδ,τ

∗g
δ
≥ lim

ρ→0+
vδ,ρ(z) ≥ −ε/2 + Ez

σ∗,τδ
ḡδ. (20)

As vδ,ρ → vρ(g,μ) uniformly in ρ, there is δ0 > 0 such that for every 0 < δ < δ0 and every
state z ∈ S, |vδ,ρ(z) − vρ(g,μ)(z)| < ε/2. Therefore, for 0 < δ < δ0, | limρ→0+ vδ,ρ(z) −
v(z)| ≤ ε/2, which together with (20) implies (19). �

Remark 10 A family (Γδ)δ>0 that converges in data need not have an asymptotic limiting-
average value.
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For example, consider a game with two states and a single action for each player in each
state. The payoff in state one is 1 and in state 2 it is 0. State 2 is absorbing, i.e., Pδ(1 | 2) = 0,
and the probability of transition from state 1 to state 2, Pδ(2 | 1), equals δ2 if δ is rational,
and it equals 0 if δ is irrational. Then vδ,0 = 0 if δ is rational, and vδ,0 = 1 if δ is irrational.
Therefore, vδ,0 does not converge as δ goes to 0.

4.4 The Asymptotic Mixed Discounting and Limiting-Average Value

For every positive measure wδ on N ∪ {∞}, Γδ,wδ
is the game Γδ where the valuation of a

play (z0, a0, z1, . . .) of Γδ is given by
∑∞

m=0 wδ(m)gδ(zm, am) + wδ(∞) lims→∞ gδ(s), if the
limit exists. Obviously, the limit need not exist.

We say that the two-person zero-sum game Γδ,wδ
has a value Vδ,wδ

, if for every ε > 0 there
are strategies σδ of player 1 and τδ of player 2, such that for every strategy τ of player 2,
strategy σ of player 1, and initial state z, we have

Ez
σδ,τ

(

wδ(∞)g
δ
+

∞∑

m=0

wδ(m)gδ(zm, am)

)

≥ Vδ,wδ
(z) − ε

and

Ez
σ,τδ

(

wδ(∞)ḡδ +
∞∑

m=0

wδ(m)gδ(zm, am)

)

≤ Vδ,wδ
(z) + ε.

Theorem 5 If Γδ converges strongly and the nonstationary discounting measure wδ con-
verges to a positive measure w on [0,∞], and wδ(∞) converges to w(∞), then Vδ,wδ

con-
verges.

Proof The proof is obtained by collating the result of Theorem 3 with the result of Theo-
rem 4. Let 0 < ε < 1. Let 0 < t < ∞ be sufficiently large so that 2w([t,∞))‖g‖ < ε, and
let wt be the restriction of w to the interval [0, t). Let v be the asymptotic limiting-average
value of the family (Γδ)δ>0, and define ν : A → R by ν(z, a) = w(∞)v(z). The family
(Γδ)δ>0 has an asymptotic (wt , t, ν) value V .

Assume that the nonstationary discounting measure wδ converges to w and wδ(∞) con-
verges to w(∞). Let mδ = [t/δ] and let wδ,t be the restriction of wδ to {0,1, . . . ,mδ}.

The value V
mδ,ν

δ,wδ,t
of the game Γ

mδ,ν

δ,wδ,t
converges to V . Recall that as Γδ converges strongly,

the limiting-average value of the game Γδ , which is denoted by vδ,0, converges as δ goes
to zero to v. Let δ0 be sufficiently small so that for 0 < δ < δ0, (1) ‖V mδ,ν

δ,wδ,t
− V ‖ < ε,

(2) ‖vδ,0 − v‖ < ε, (3) ‖wδ(∞) − w(∞)‖ < ε, and (4) ‖g‖∑∞
m=mδ

wδ(m)| < ε.
Let σδ follow an optimal strategy in Γ

mδ,ν

δ,wδ,t
up to stage mδ , and thereafter it “restarts” with

an ε-optimal strategy in the limiting-average game Γδ . It follows that for every 0 < δ < δ0

and strategy τ of player 2,

Ez
σδ,τ

(

wδ(∞)ḡδ +
∞∑

m=0

wδ(m)gδ(zm, am)

)

≥ V (z) − εw(∞) − 3ε.

Similarly, if τδ follows an optimal strategy in Γ
mδ,ν

δ,wδ,t
up to stage mδ , and thereafter it

“restarts” with an ε-optimal strategy in the limiting-average game Γδ , then for every 0 <
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δ < δ0 and strategy σ of player 1,

Ez
σ,τδ

(

wδ(∞)ḡδ +
∞∑

m=0

wδ(m)gδ(zm, am)

)

≤ V (z) + εw(∞) + 3ε.
�

4.5 The Asymptotic Uniform and w-Robust Value

Theorem 6 An exact family of two-person zero-sum games Γδ has an asymptotic uniform
value.

Proof Let v = limδ→0+ vδ,0. It is sufficient to prove that for every ε > 0 there are (1) a du-
ration δ0 > 0, (2) strategies σδ of player 1 and τδ of player 2, and (3) a positive real number
sε , such that for every strategy τ of player 2, strategy σ of player 1, 0 < δ < δ0, and s > sε

we have

Ez
σδ,τ

gδ(s) ≥ v(z) − ε, (21)

and

Ez
σ,τδ

gδ(s) ≤ v(z) + ε. (22)

By duality, it suffices to prove (21).
Let A = max{|g(z, a)| : (z, a) ∈ A}, and gδ = δg.
The first step is to show that for an exact family Γδ the following property holds. There

is an integrable function ψ : [0,1] → R+ and δ0 > 0 sufficiently small such that for 0 < ρ <

ρ ′ ≤ 1 and 0 < δ < δ0, we have

‖vδ,ρ − vδ,ρ′ ‖ ≤
∫ ρ′

ρ

ψ(x)dx. (23)

The second step is to show that if the family Γδ of two-person zero-sum games satisfies
the above-mentioned property, then it has an asymptotic uniform value.

We start with the first step. Fix the payoff function g and the transition rates μ. By the
covariance properties, Vδ,ρ = V̄ρδ(δg, δμ) = Vρδ(δg, (1 − ρδ)δμ) = δ

(1−ρδ)δ
V δρ

(1−δρ)δ
(g,μ) =

1
1−ρδ

V ρ
(1−ρδ)

(g,μ). Therefore,

vδ,ρ = v ρ
(1−ρδ)

(g,μ).

The function ρ 
→ vρ := vρ(g,μ) (is semialgebraic and thus) has a convergent expansion,
vρ(z) = ∑∞

k=0 ck(z)ρ
k/K (where K is a positive integer), in a right neighborhood of 0. There-

fore, there is 1/2 > ρ0 > 0 such that its derivative, v′
ρ(z) := d

dρ
vρ(z), exists in the interval

(0,2ρ0], and its absolute value is bounded by a positive constant C1 times ρ1/K−1. Therefore,
for δ < 1/4, the derivative d

dρ
v ρ

(1−ρδ)
of the function (0, ρ0] 	 ρ 
→ v ρ

(1−ρδ)
:= v ρ

(1−ρδ)
(g,μ)

equals 1
(1−ρδ)2 v′

ρ
(1−ρδ)

; thus, it is bounded (in the interval (0, ρ0]) by a positive constant C2

times ρ1/K−1. (E.g., C2 = 2C1.) The function ρ 
→ vδ,ρ is (2A/ρ0)-Lipschitz in ρ in the
interval (ρ0,1] (‖vδ,ρ − vδ,θ‖ ≤ 2A|ρ − θ |/ρ, e.g., by [5, Lemma 4.2]). The function ψ

that is defined by ψ(x) = 2C1x
1/K−1 for 0 < x ≤ ρ0 and ψ(x) = 2A/ρ0 for 1 ≥ x > ρ0 is

integrable and satisfies (23).
We turn now to the second step. Let Γδ be a converging family, ψ : [0,1] → R+ be an

integrable function, and δ0 > 0, such that for 0 < ρ < ρ ′ ≤ 1 and 0 < δ < δ0, inequality (23)
holds.
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Fix ε > 0 and w.l.o.g. we assume that 0 < ε < A. Fix δ0 > 0 and λ0 > 0 sufficiently small
so that for 0 < δ < δ0 and 0 < ρ < λ0, ‖vδ,ρ − v‖ < ε.

Fix 0 < δ < δ0. We apply the proof of the existence of a value of the discrete-time
stochastic game 〈δg, δμ〉, [5, Sect. 2]. In what follows, we define a strategy σδ of player 1
in Γδ . We will define a sequence (ρk)

∞
m=0 so that ρk is a function of the past history up to

stage k[1/δ], i.e., measurable with respect to the σ -algebra Fk := Hk[1/δ] where [∗] stands
for the largest integer that is ≤ ∗. The (ρk)

∞
k=0 strategy σδ of player 1 is to play a stationary

optimal strategy in Γδ,ρk
at stage k[1/δ] ≤ m < (k + 1)[1/δ]. Let

yk =
∑

k[1/δ]≤m<(k+1)[1/δ]
(1 − δρk)

m−k[1/δ]δg(zm, am),

xk =
∑

k[1/δ]≤m<(k+1)[1/δ]
δg(zm, am), and

z̄k = zk[1/δ].

For every strategy τ of player 2, we have

Eσδ,τ

(
ρkyk + (1 − δρk)

[1/δ]vδ,ρk
(z̄k+1) | Fk

) ≥ vδ,ρk
(z̄k).

Note that for every ε > 0 there is λ0 > 0 and δ0 such that for 0 < ρk < λ0 and 0 < δ < δ0 we
have

∑

k[1/δ]≤m<(k+1)[1/δ]

∣
∣(1 − δρk)

m−k[1/δ] − 1
∣
∣δρk + ∣

∣(1 − δρk)
[1/δ] − (1 − ρk)

∣
∣ ≤ ερk/A.

It follows that for 0 < δ < δ0 and 0 < ρk < λ0 we have

Eσδ,τ

(
vδ,ρk

(z̄k+1) − vδ,ρk
(z̄k) + ρk

(
xk − vδ,ρk

(z̄k+1)
) | Fk

) ≥ −ερk (24)

for every strategy τ of player 2. Now one follows the proof of [5, Sect. 2] by replacing
inequality [5, (2.1)] with inequality (24). The index i in [5, Sect. 2] is replaced by our stage
index k (λi by ρk , vλ by vδ,ρ , and zi by z̄k).

With these substitutions, inequality [5, (2.15)] becomes

∑

k<n

xk ≥
∑

k<n

vδ,ρk
(z̄k+1) + sn − s0 − 2A

∑

k<n

I (sk+1 = M) − 4nε. (25)

Note that the term −ερk in inequality (24) does not appear in [5, (2.1)]. It impacts in-
equality [5, (2.9)] as −ερk needs to be added to its right side. Therefore, we have to replace
[5, (2.9)] with E(Yk+1 − Yk | Fk) ≥ ερk (where E stands for Eσδ,τ ) and, therefore, E#{k :
ρk ≥ η} ≤ A

εη
(rather than ≤ 2A

εη
in [5, (2.12)]). Therefore, E

∑
k<n I (sk+1 = M) ≤ A

ελ(M)
and,

therefore, for n sufficiently large E
∑

k<n I (sk+1 = M) ≤ εn/(2A).
For δ and ρ sufficiently small, ‖vδ,ρ −v‖ ≤ ε, where v = limδ→0 vδ,0. Therefore, inequal-

ity (25) implies that

Eσδ,τ

∑

k<n

xk ≥ nv(z0) − 3εn − s0 − εn − 4nε. (26)

�
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Remark 11 Note that the inequality E
∑

k<n I (sk+1 = M) ≤ A
ελ(M)

(in the above proof) im-
plies that

∑
k<∞ I (sk+1 = M) is finite a.s. Therefore,

Eσδ,τ

(

lim inf
n→∞

1

n

∑

m<n

g(zm, am)

)

= Eσδ,τ

(

lim inf
n→∞

1

n

∑

k<n

xk

)

≥ v(z0) − 7ε.

This shows that the above-constructed strategy σδ of player 1 is approximate optimal in both
the uniform game and the limiting-average game. Therefore, an exact family of two-person
zero-sum games Γδ has an asymptotic 1∞-robust value.

Theorem 7 For every nonstationary discounting measure w on [0,∞], an exact family of
two-person zero-sum games Γδ has an asymptotic w-robust value.

Proof If w(∞) = 0, then an asymptotic w value is a w-robust value. Therefore, it suffices to
prove the result for w with w(∞) > 0. For every β > 0, the family (Γδ)δ>0 has an asymptotic
w-robust value if and only if it has an asymptotic βw-robust value. Therefore, we may
assume that w(∞) = 1.

Let ν be the asymptotic 1∞-robust value of the exact family (Γδ)δ>0. Fix ε > 0 and let τδ

be a family of strategy profiles that are ε-optimal in the 1∞-robust game. Let t = tε < ∞ be
sufficiently large so that w([t,∞)) < ε/‖g‖. The family (Γδ)δ>0 has an asymptotic (wt , t, ν)

value vε , where wt is the restriction of w to the interval [0, t). Let mδ = [t/δ] and let τδ be
a profile of strategies that is optimal in Γ

mδ,ν

δ,wδ,t
, where wδ,t is the nonstationary discounting

measure that satisfies wδ,t (m) = w([mδ, (m + 1)δ)) if m < mδ and wδ,t (m) = 0 otherwise.
The strategy profile σδ follows the strategy profile τδ,t in stages 0 ≤ m < mδ and

in stage mδ starts following the strategy profile τδ (explicitly, σδ(z0, a0, . . . , zmδ+k) =
τδ(zmδ

, . . . , zmδ+k)).
Then for every player i, all strategies τ̄ i

δ (δ > 0) of player i, and all nonstationary dis-
counting measures wδ on N ∪ {∞} that converge (as δ → 0+) to w, we have

2ε + lim inf
δ→0+

Ez

σ 1
δ ,τ̄2

δ

g
δ
(wδ) ≥ vε(z) ≥ −2ε + lim inf

δ→0+
Ez

τ̄1
δ ,σ 2

δ ,
ḡδ(wδ).

A limit point (as ε → 0+) of vε is an asymptotic w-robust value of the family (Γδ)δ>0. �

5 Non-zero-Sum Stochastic Games with Short-Stage Duration: The Discounted
Games

5.1 The Asymptotic Discounted Equilibrium

Fix the sets of players N , states S, and actions A, and let Γδ = 〈N,S,A,gδ,pδ〉 be a stochas-
tic game whose stage payoff function gδ and transition function pδ depend on the parameter
δ > 0 that represents the single-stage duration. Let Γδ,ρ be the (unnormalized) discounted
game Γδ with discount factor 1 − ρδ. We say that pair (V ,σ ), where V ∈ R

N×S is a payoff
vector and σ is a strategy profile, is an asymptotic ρ-discounted ε-equilibrium of (Γδ)δ>0 if
for every δ > 0 sufficiently small, every player i ∈ N , every strategy τ i of player i in Γδ ,
and every state z,

−ε + Ez

δ,σ−i ,τ i

∞∑

m=0

(1 − δρ)mgi
δ(zm, am) ≤ V i(z) ≤ Ez

δ,σ

∞∑

m=0

(1 − δρ)mgi
δ(zm, am) + ε.
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The pair (V ,σ ) is an asymptotic ρ-discounted equilibrium if it is an asymptotic ρ-
discounted ε-equilibrium for every ε > 0. It is called an asymptotic ρ-discounted stationary
ε-equilibrium, respectively an asymptotic ρ-discounted stationary equilibrium, if, in addi-
tion, σ is stationary.

Theorem 8 Every converging family (Γδ)δ>0 has an asymptotic ρ-discounted stationary
equilibrium.

Proof Let σ be a stationary strategy and Vρ ∈ R
N×S such that for every z ∈ S, i ∈ N , and

ai ∈ Ai(z), we have

ρV (z) = g
(
z, σ (z)

) +
∑

z′∈S

μ
(
z′, z, σ (z)

)
V

(
z′),

and

ρV i(z) ≥ gi
(
z, σ (z)−i , ai

) +
∑

z′∈S

μ
(
z′, z, σ (z)−i , ai

)
V

(
z′).

The existence of such a pair (V ,σ ) follows (as in the proof of Theorem 1) from the ex-
istence of stationary equilibria in discounted discrete-time stochastic games; alternatively,
see, e.g., [8].

Let τ i be a strategy of player i. Fix an initial history hm = (z0, a0, . . . , zm), and let ym =
σ(zm), xi

m = τ i(hm), and xm = σ−i (zm) ⊗ xi
m. Let

Ym := Eδ,σ

(
gi

δ(zm, am) + (1 − ρδ)V i
ρ(zm+1) | hm

)

= gi
δ(zm, ym) + (1 − ρδ)

∑

z′∈S

Pδ

(
z′ | zm, ym

)
V i

ρ

(
z′),

and

Um := Eδ,σ−i ,τ i

(
gi

δ(zm, am) + (1 − ρδ)V i
ρ(zm+1) | hm

)

= gi
δ(zm, xm) + (1 − ρδ)

∑

z′∈S

Pδ

(
z′ | zm, xm

)
V i

ρ

(
z′).

It follows that

Ym ≥ δgi(zm, ym) +
∑

z′∈S

δμ
(
z′, z, ym

)
V i

(
z′) − ρδV i(zm) + V i(zm) − o(δ)

≥ V i(zm) − o(δ).

Therefore,

Ez
δ,σ

∞∑

m=0

(1 − ρδ)mgi
δ(zm, am) ≥ V i(z0) − o(δ)

∞∑

m=0

(1 − ρδ)m →δ→0+ V i(z0).

Similarly,

Um ≤ δgi(zm, am) +
∑

z′∈S

δμ
(
z′, z, xm

)
V i

(
z′) − ρδV i(zm) + V i(zm) + o(δ)

≤ V i(zm) + o(δ).
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Therefore,

Ez

δ,σ−i ,τ i

∞∑

m=0

(1 − ρδ)mgi
δ(zm, am) ≤ V i(z) + o(δ)

∞∑

m=0

(1 − ρδ)m →δ→0+ V i(z).

We conclude that for sufficiently small δ > 0 we have

−ε + Ez

δ,σ−i ,τ i

∞∑

m=0

(1 − ρδ)mgi
δ(zm, am) ≤ V i(z) ≤ Ez

δ,σ

∞∑

m=0

(1 − ρδ)mgi
δ(zm, am) + ε.

�

Remark 12 The conclusion of Theorem 8 (as well as its proof) holds also for the model with
individual discount rates �ρ = (ρi)i∈N .

Covariance Properties Fix α,β > 0. A point (x,V ) ∈ ×z∈S,i∈N(Xi(z) × [−‖gi‖/ρ,

‖gi‖/ρ]) is a stationary equilibrium (strategies and payoffs) of the continuous-time ρ-
discounted game Γ = 〈N,S,A,g,μ〉 if and only if (x,V ) is a stationary equilibrium of
the continuous-time αρ-discounted game Γ = 〈N,S,A,αg,αμ〉, and given 0 < ρ < 1
and ‖μ‖ ≤ 1 − ρ, if and only if it is a stationary equilibrium of the discrete-time ρ-
discounted game Γ̄ = 〈N,S,A,g, p̄〉, where p̄ is the transition probability that is given
by p̄(z′, z, a) = 1

1−ρ
μ(z′, z, a) for all z′ �= z.

5.2 The Asymptotic Discounted Minmax

Fix the sets of players N , states S, and actions A, and let Γδ = 〈N,S,A,gδ,pδ〉 be a stochas-
tic game whose stage payoff function gδ and transition function pδ depend on the parameter
δ > 0 that represents the single-stage duration. The (unnormalized) ρ-discounted minmax
of the discrete-time game Γδ is defined as the (uncorrelated) minmax of the discrete-time
stochastic game Γδ with discount factor 1 − δρ. It exists and is denoted by Vδ,ρ . We say that
Vρ ∈ R

N×S is the (unnormalized) asymptotic ρ-discounted minmax of the family (Γδ)δ>0 if
Vδ,ρ → Vρ as δ → 0+.

Using arguments analogous to those used in earlier sections, it follows that (1) Vδ,ρ =
(V i

δ,ρ(z))(i,z)∈N×S is the unique solution of the following system of |N × S| equalities,

δρV i(z) = min
x−i∈X−i (z)

max
xi∈Xi(z)

gi
δ

(
z, x−i ⊗ xi

) + (1 − δρ)
∑

z′∈S

pδ

(
z′, z, x−i ⊗ xi

)
V i

(
z′),

where X−i (z) := ×j �=iX
i(z), (2) a family (Γδ)δ>0 (Γδ = 〈gδ,pδ〉 for short) that converges

to 〈g,μ〉 has an asymptotic ρ-discounted minmax Vρ , and (3) Vρ = (V i
ρ (z))(i,z)∈N×S is the

unique solution of the system of |N × S| equalities,

ρV i(z) = min
x−i∈X−i

max
xi∈Xi(z)

g
(
z, x−i ⊗ xi

) +
∑

z′∈S

μ
(
z′, z, x−i ⊗ xi

)
V i

(
z′).

The normalized ρ-discounted minmax values are vρ = ρVρ and vδ,ρ = ρVδ,ρ . The semi-
algebraic and covariance properties of the value of zero-sum games hold for the minmax
value of non-zero-sum games as well.

In particular, for fixed gδ , pδ , g, and μ, the maps ρ 
→ vρ and ρ 
→ vδ,ρ are bounded
semialgebraic functions, and thus have a limit as ρ → 0+, the maps ρ 
→ Vρ and ρ 
→ Vδ,ρ

are semialgebraic, vδ,ρ(gδ,pδ) = vρ(gδ/δ, (1 − ρδ)pδ/δ), inequality (16) holds, and if Γδ =
〈gδ,pδ〉 converges strongly to Γ = 〈g,μ〉, then vδ,ρ converges, as δ → 0+, uniformly in ρ.
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5.3 The Asymptotic Equilibrium of Nonstationary Discounting Games

The following theorem is a generalization of Theorem 3 to the non-zero-sum case. Its proof
is analogous to the proof of Theorem 3.

Theorem 9 If (1) (Γδ)δ>0 is a family that converges in data, (2) �w is a nonstationary dis-
counting N -vector measure on [0,∞), (3) t ∈ R, and (4) ν : A → R

N , then the family
(Γδ)δ>0 has an asymptotic ( �w, t, ν) equilibrium payoff v. If (1) �wδ is a nonstationary dis-
counting N -vector measure on N that converges to �w, and (2) 0 ≤ mδ ∈ N and νδ : A → R

N

are such that (mδ, νδ) →δ→0+ (t, ν), then for every ε > 0, there are Markov strategy profiles
σδ and δ0 > 0 such that (1) for every 0 < δ < δ0, σδ is an ε-equilibrium of Γ

mδ,νδ

δ, �wδ
with an

equilibrium payoff within ε of v, and (2) σδ converge w∗ to a profile of continuous-time
Markov strategies.

6 Non-zero-Sum Stochastic Games with Short-Stage Duration: The Limiting-Average
and Uniform Games

Fix the sets of players N , states S, and actions A, and let Γδ = 〈N,S,A,pδ, gδ〉 be a stochas-
tic game whose stage payoff function gδ and transition function pδ depend on the parameter
δ > 0 that represents the single-stage duration.

For every strategy profile σ in Γδ , we set

γ̄ i
δ (z, σ ) = Ez

δ,σ ḡi
δ, and γ i

δ
(z, σ ) = Ez

δ,σ gi

δ
.

6.1 The Asymptotic Limiting-Average and Uniform Minmax

We say that the vector v ∈ R
N×S is the asymptotic limiting-average minmax of the family

(Γδ)δ>0 if for every ε > 0 there is δ0 > 0 such that for every player i and 0 < δ < δ0, (1) there
is a strategy profile σ−i

δ,ε of players N \{i} such that for every strategy τ i of player i and every
state z ∈ S,

γ̄ i
δ

(
z, σ−i

δ,ε , τ
i
) ≤ vi(z) + ε,

and (2) for every strategy profile σ−i
δ of players N \ {i} there is a strategy τ i of player i such

that for every state z ∈ S,

γ i

δ

(
z, σ−i

δ , τ i
) ≥ vi(z) − ε.

We say that the vector v ∈ R
N×S is the asymptotic uniform minmax of the family (Γδ)δ>0

if for every ε > 0 there are δ0 > 0 and s0 > 0 such that for every player i and 0 < δ < δ0,
(1) there is a strategy profile σ−i

δ,ε of players N \{i} such that for every strategy τ i of player i,
state z ∈ S, and duration s > s0,

Ez

σ−i
δ,ε ,τ i

gi
δ(s) ≤ vi(z) + ε,

and (2) for every strategy profile σ−i
δ of players N \ {i} there is a strategy τ i of player i such

that for s > s0,

E
σ−i
δ ,τ i g

i
δ(s) ≥ vi(z) − ε.
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We say that the vector v ∈ R
N×S is the asymptotic robust minmax of the family (Γδ)δ>0

if for every ε > 0 there are δ0 > 0 and s0 > 0 such that for every player i and 0 < δ < δ0,
(1) there is a strategy profile σ−i

δ,ε of players N \{i} such that for every strategy τ i of player i,
state z ∈ S, and duration s > s0,

Ez

σ−i
δ,ε ,τ i

gi
δ(s) ≤ vi(z) + ε and γ̄ i

δ

(
z, σ−i

δ,ε , τ
i
) ≤ vi(z) + ε,

and (2) for every strategy profile σ−i
δ of players N \ {i} there is a strategy τ i of player i,

such that for every state z ∈ S and duration s > s0,

Ez

σ−i
δ ,τ i

gi
δ(s) ≥ vi(z) − ε and γ i

δ

(
z, σ−i

δ , τ i
) ≥ vi(z) − ε.

Theorem 10 A family (Γδ)δ>0 that converges strongly to Γ = 〈μ,g〉 has a limiting-average
minmax v : S → R

N , which is the limit of ρVρ as ρ → 0+, where Vρ is the unique solution
of the following system of equalities:

ρV i(z) = min
x−i

max
yi

(

gi
(
z, x−i , yi

) +
∑

z′∈S

μ
(
z′, z, x−i , yi

)
V i(z)

)

, ∀i ∈ N, z ∈ S.

If the family is exact it has an asymptotic robust minmax (and, therefore, an asymptotic
uniform minmax as well).

Proof The proof that a family that converges strongly has an asymptotic limiting-average
minmax is analogous to the proof of Theorem 4. Let ṽδ = limρ→0+ vδ,ρ .

As every discrete-time stochastic game with finitely many states and actions has a
limiting-average minmax [5, 7], which is the limit of its ρ-discounted minmax as ρ goes
to 0+, it suffices to prove that limδ→0+ ṽδ exists.

As mentioned in the last section, if 〈gδ,pδ〉 converges strongly, then vδ,ρ converges to
vρ , as δ → 0, uniformly in ρ. Therefore, for every ε > 0, there is δ1 > 0 such that for
0 < δ, δ′ ≤ δ1 we have ‖vδ,ρ − vδ′,ρ‖ < ε and, therefore, ‖ṽδ − ṽδ′ ‖ ≤ ε.

The proof that an exact family has an asymptotic minmax is analogous to the proof of
Theorem 6. �

6.2 The Asymptotic Limiting-Average Equilibrium

We say that u = (ui(z))i∈N,z∈S ∈ R
N×S is an asymptotic limiting-average ε-equilibrium pay-

off of (Γδ)δ>0 if for every δ > 0 sufficiently small there is a strategy profile σδ , such that for
every player i ∈ N , strategy τ i of player i, and state z,

−ε + γ̄ i
δ

(
z, σ−i

δ , τ i
) ≤ ui(z) ≤ γ i

δ
(z, σδ) + ε.

Note that it is an asymptotic limiting-average equilibrium payoff if it is an asymptotic
limiting-average ε-equilibrium payoff for every ε > 0.

Remark 13 Note that the existence of a limiting-average equilibrium, respectively ε-
equilibrium, payoff in each one of the games Γδ does not imply (and is not implied by) the
existence of an asymptotic limiting-average equilibrium, respectively ε-equilibrium, payoff
of the family (Γδ)δ>0.
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Remark 14 If uε ∈ R
N×S is an asymptotic limiting-average ε-equilibrium payoff of the fam-

ily (Γδ)δ>0 and u ∈ R
N×S , then u is an asymptotic limiting-average ε′-equilibrium pay-

off of the family (Γδ)δ whenever ε′ ≥ ε + ‖u − uε‖. Therefore, a limit point, as δ → 0+,
of asymptotic limiting-average ε-equilibrium payoffs is an asymptotic limiting-average ε′-
equilibrium payoff whenever ε′ > ε, and a limit point, as ε → 0+, of asymptotic limiting-
average ε-equilibrium payoffs is an asymptotic limiting-average equilibrium payoff.

Two related equilibrium concepts are the lim sup and the lim inf equilibrium payoffs. We
say that u = (ui(z))i∈N,z∈S ∈ R

N×S is an asymptotic lim sup ε-equilibrium payoff, respec-
tively an asymptotic lim inf ε-equilibrium payoff, of (Γδ)δ>0 if for every δ > 0 sufficiently
small there is a strategy profile σδ , such that for every player i ∈ N , strategy τ i of player i

in Γδ , and state z,

−ε + γ̄ i
δ

(
z, σ−i

δ , τ i
) ≤ ui(z) ≤ γ̄ i

δ (z, σδ) + ε,

respectively,

−ε + γ i

δ

(
z, σ−i

δ , τ i
) ≤ ui(z) ≤ γ i

δ
(z, σδ) + ε.

The corresponding strategies σδ are 2ε-equilibrium strategies of Γδ with the lim sup, respec-
tively lim inf, payoff function.

We say that u = (ui(z))i∈N,z∈S ∈ R
N×S is an asymptotic lim sup equilibrium payoff,

respectively an asymptotic lim inf equilibrium payoff, if it is an asymptotic lim sup ε-
equilibrium payoff, respectively, an asymptotic lim inf ε-equilibrium payoff, for every ε > 0.

Remark 15 Obviously, an asymptotic limiting-average equilibrium payoff is an asymptotic
lim sup and an asymptotic lim inf equilibrium payoff. However, there are stochastic games
with countably many states that have both an asymptotic lim sup equilibrium payoff and an
asymptotic lim inf equilibrium payoff, such that, moreover, both payoffs coincide, but have
no asymptotic limiting-average equilibrium payoffs.

Remark 16 It is unknown whether every stochastic game with finitely many states and ac-
tions has a lim sup, respectively lim inf, equilibrium payoff. In particular, it is unknown
whether every stochastic game with finitely many states and actions has a limiting-average
equilibrium payoff.

Theorem 11 A family (Γδ = 〈gδ,pδ〉)δ>0 that converges strongly to Γ = 〈g,μ〉 has a
limiting-average equilibrium payoff.

Proof Let (Γδ)δ>0 be a family that converges strongly to Γ = 〈μ,g〉. Then |gi
δ(z, a) −

δgi(z, a)| = o(δ) and, therefore, | 1
nδ

∑
0≤m<n gi

δ(zm, am) − 1
nδ

∑
0≤m<n δgi(zm, am)| ≤

maxz,a |gi
δ(z, a) − δgi(z, a)|/δ = o(1) as δ → 0+. Therefore, it suffices to prove the the-

orem for the special case where gi
δ = δgi . Note that in this special case

1

nδ

∑

0≤m<n

gi
δ(zm, am) = 1

nδ

∑

0≤m<n

δgi(zm, am) = 1

n

∑

0≤m<n

gi(zm, am).

Therefore, ḡi
δ and gi

δ
, as a function of the play z0, a0, . . . , are independent of δ. Therefore,

we write ḡi and gi for short for ḡi
δ and gi

δ
. Without loss of generality, we may assume that

0 ≤ gi ≤ 1.
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By Remark 14, it suffices to prove that for every ε > 0 there is a vector u ∈ R
N×S that is

an asymptotic limiting-average ε-equilibrium payoff.
Fix ε > 0 and let u and σ be, respectively, the uniform (and limiting-average) ε/8-

equilibrium payoff and the uniform (and limiting-average) ε/8-equilibrium strategy of the
continuous-time stochastic game Γ = 〈N,S,A,μ,g〉 that are constructed in [8]. In partic-
ular, for every state z ∈ S, player i ∈ N , and strategy τ i of player i, we have

ui(z) + ε/8 ≥ Ez
σ ḡi ≥ Ez

σ gi ≥ ui(z) − ε/8, (27)

where ḡi = lim sups→∞
1
s

∫ s

0 gi(zt , xt ) dt and gi = lim infs→∞ 1
s

∫ s

0 gi(zt , xt ) dt , and

Ez

σ−i ,τ i ḡ
i ≤ ui(z) + ε/8. (28)

These inequalities follow from (u,σ ) being a limiting-average ε/8-equilibrium payoff and
strategy profile. (An additional property that follows from the special construction of σ in
[8] is that ḡi = gi P z

σ a.e.)
Let v : S → R

N be the limit of ρVρ as ρ → 0+, where Vρ is the asymptotic ρ-discounted
minmax. Recall that Vρ is the unique solution of the following system of equalities:

ρV i(z) = min
x−i

max
yi

(

gi
(
z, x−i , yi

) +
∑

z′∈S

μ
(
z′, z, x−i ⊗ yi

)
V i(z)

)

, ∀i ∈ N, z ∈ S.

As the strategy profile σ (that is constructed in [8]) is a discretimized strategy (namely,
there is a strictly increasing sequence of continuous times t0 = 0 < t1 < t2 < · · · , such that
t� →�→∞ ∞ and the mixed-action profile selected by σ at time t� ≤ t < t�+1 is a function of
the play up to time t� and the state at time t ), it follows that for every ε′ > 0 and for every
player i there is a strategy τ i

ε′ such that vi(z) − ε′ < Ez

σ−i ,τ i
ε′
gi (≤ Ez

σ−i ,τ i
ε′
ḡi ). Therefore, the

inequalities ui(z) + ε/8 ≥ Ez

σ−i ,τ i
ε′
ḡi ≥ vi(z) − ε′ hold for every ε′ > 0. Therefore,

ui(z) ≥ vi(z) − ε/8. (29)

We will prove that u is an asymptotic limiting-average ε-equilibrium payoff of the fam-
ily (Γδ)δ>0. The construction of the corresponding limiting-average ε-equilibrium strategy
profile σδ is analogous to the construction of σ in [8]. The continuous-time pure-action
strategy profiles τ̄ and τ̂ , which are used in [8] in the definition of σ , will be adapted to the
discrete-time pure strategies τ̄δ and τδ , respectively.

The continuous-time pure-action strategy profile τ̄ obeys the following property. There
is a sequence of continuous times T : 0 = t0 < t1 < · · · (with tk →k→∞ ∞) such that for
tk ≤ t < tk+1, τ̄ (h, t) is a function of t , zt , and the finite sequence of states �zk = (zt0 , . . . , ztk ).
Therefore, for tk ≤ t < tk+1, we can write τ̄ (�zk, zt , t) for τ̄ (h, t).

The corresponding discrete-time pure strategy τ̄δ will be such that there is a sequence
of stages T δ : 0 = nδ,0 < · · · < nδ,k < · · · such that (1) δnδ,k →δ→0+ tk , (2) for nδ,k ≤
m < nδ,k+1, τ̄δ(z0, a0, . . . , zm) is a function of m, zm, and the finite sequence of states
�zδ
k = (znδ,0 , . . . , znδ,k

); thus we can write τ̄δ(�zδ
k, zm,m) for τ̄ (z0, a0, . . . , zm), and (3) for

fixed �zk = �zδ
k ∈ Sk+1, the map [nδ,k, nδ,k+1) 	 m 
→ τ̄δ(�zδ

k, zm,m), which (given �zδ
k) is a

Markov strategy on this interval of stages, converges w∗ to the (given �zk) Markov strategy
[tk, tk+1) 	 t 
→ τ̄ (�zk, zt , t).
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This relation between the continuous-time strategy τ̄ and the discrete-time strategy τ̄δ im-
plies, by inductive application of Proposition 2, that for every state z and every positive M ,

γ i
δ,M(z, τ̄δ) := Ez

τ̄δ

1

[M/δ]
∑

0≤m<[M/δ]
gi(zm, am) →δ→0+ γ i

M(z, τ̄ ),

where

γ i
M(z, τ̄ ) := Ez

τ̄

1

M

∫ M

0
gi(zt , xt ) dt,

and [∗] stands for the largest integer that is less than or equal to ∗.

Definition of τ̄δ We map the discrete-time sequence of states z0, z1, . . . to a continuous-
time (step-function) list of states: for any nonnegative real t ≥ 0 we define zδ,t = z[t/δ]. Next,
we define the profile of strategies τ̄δ in Γδ by τ̄δ(z0, am, . . . , zm) = τ̄ ((zδ,t )t≤mδ).

Properties of τ̄δ Recall the definition and properties of the positive integer N0, the suffi-
ciently small ε1 > 0, the disjoint subset of states, S1, S2, and S̄, and the pure-action strategy
profile τ̄ (that were constructed in [8]). One of the properties of τ̄ is that for every z ∈ S1

and zs ∈ Cz := {z′ ∈ S | v(z′) = v(z)} for all s ≤ t , μ(S̄ ∪ (S \ Cz), zt , τ̄t ) = 0. Therefore, by
the definition of τ̄,δ we have

P z
τ̄δ

(zm ∈ Cz \ S̄) = 1 ∀z ∈ S1, m ≥ 0. (30)

The following inequality6 is proved in [8]. For z ∈ S1, for every player i,

γ i
N0

(z, τ̄ ) ≥ vi(z) − ε/7,

and, therefore, for sufficiently small δ > 0,

γ i
δ,N0

(z, τ̄δ) ≥ vi(z) − ε/6. (31)

Definition of τδ We define a stopping time mδ = mδ(z0, a0, z1, . . .) as follows. On z0 ∈
S1, mδ = [N0/δ]; on z0 ∈ S̄, mδ = [1/δ]; on z0 = z ∈ S2, mδ = min({m : m = [j/δ],
j ∈ N, and zm /∈ Cz \ S̄} ∪ {[N0/δ]}). Define mk,δ , k ≥ 0 inductively: m0,δ = 0 and mk+1,δ =
mk,δ + mδ(zmk,δ

, amk,δ
, zmk,δ+1, . . .).

The strategy profile τδ is defined as follows:

τδ(z0, a0, . . . , zm) = τ̄δ(zmk,δ
, zmk,δ

, . . . , zm) if mk,δ ≤ m < mk+1,δ.

Properties of τδ We define the sequence of states z̄δ
k , k ≥ 0, by z̄δ

k = zmk,δ
. Note that this

definition is analogous to that of the sequence of states z̄k , k ≥ 0, in [8]. Let F δ , respec-
tively F , be the transition matrix of the homogeneous Markov chain z̄δ

0, z̄
δ
1, . . . with its P z

τδ

distribution, respectively, z̄0, z̄1, . . . with its P z
τ̂

distribution.
By the strong data convergence of 〈δg,pδ〉 to 〈g,μ〉, pδ(z

′, z, a) > 0 if and only if
μ(z′, z, a) > 0. Therefore, (for δ > 0 sufficiently small) F δ

z,z′ = 0 if and only if Fz,z′ = 0,
and thus the ergodic classes of states of the two homogeneous Markov chains, the one with
transition matrix F δ and the other with transition matrix F , coincide.

6The ε in [8] is ε/8 here, and ε1 there is sufficiently small.
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Let E denote the set of ergodic classes of states, and for E ∈ E we denote by qE
δ and qE

the F δ and F invariant measures that are supported on E, and qz
δ (E) (respectively qz(E))

denotes the probability of the F δ-Markov chain (respectively F -Markov chain) with initial
state z entering the ergodic class E. Recall that every ergodic class E ∈ E is a subset of S1,
and on z0 ∈ S1 we have mδ = [N0/δ]. Therefore,

Ez
τδ

gi = Ez
τδ

ḡi =
∑

E∈E

qz
δ (E)

∑

z∈E

qE
δ (z)γ i

δ,N0
(z, τ̄δ).

Similarly,

Ez
τ̂
gi = Ez

τ̂
ḡi =

∑

E∈E

qz(E)
∑

z∈E

qE(z)γ i
N0

(z, τ̄ ).

In addition, by Proposition 2 and the w∗ convergence of τ̄δ to τ̄ , F δ → F as δ → 0+.
Therefore, qz

δ (E) →δ→0+ qz(E) and qE
δ →δ→0+ qE . Since for all z ∈ S, E ∈ E , and z′ ∈ E,

we have
(
qz

δ (E), qE
δ

(
z′), γ i

δ,N0

(
z′, τ̄δ

)) →δ→0+
(
qz(E), qE

(
z′), γ i

N0

(
z′, τ̄

))
,

we deduce that

Ez
τδ

gi = Ez
τδ

ḡi →δ→0+ Ez
τ̂
ḡi = Ez

τ̂
gi .

Therefore, for sufficiently small δ > 0, we have

ui(z) − ε ≤ Ez
τδ

gi = Ez
τδ

ḡi ≤ ui(z) + ε/6. (32)

Recall the definition of τ , ε1 and τ̃ in [8], where it is proved that for every z ∈ S, every
player i, and every stopping time T , Ez

τv
i(zT ) ≥ vi(z) − ε1/2. Therefore, for every z ∈ S2,∑

z′∈S Fz,z′vi(z′) ≥ vi(z) − ε1/2. For z ∈ S1 ∪ S̄,
∑

z′∈S Fz,z′vi(z′) = vi(z). Therefore,

∑

z′∈S

Fz,z′vi
(
z′) ≥ vi(z) − ε1

2
1z∈S2∪S̄ ,

where 1∗ is the indicator function of ∗. In addition, if we replace the symbols δ and ε in [8]
with the symbol η and ε/8, it can be seen that for ε1 < ηd2 ε

32 ,

Ez
σ

∞∑

k=0

1z̄k /∈S1 ≤ 128

ηd2ε
,

and, therefore, for ε < 1 and ε1 < ηd2 ε2

8
1

128 (< ηd2 ε
32 ),

ε1E
z
σ

∞∑

k=0

1z̄k /∈S1 < ηd2 ε2

8

1

128

128

ηd2ε
= ε/8.

Therefore, for sufficiently small δ,

ε1E
z
τδ

∞∑

k=0

1z̄k /∈S1 < ε/6.

Assume that ε < 1 and ε1 < ηd2 ε2

8
1

128 .

Author's personal copy



276 Dyn Games Appl (2013) 3:236–278

Lemma 4 For sufficiently small δ > 0, for every stopping time T , we have

Ez
τδ

vi
T ≤ Ez

τδ
vi

∞ + ε/6, (33)

where vm = v(zm) and vi∞ = lim supm→∞ vi
m (which equals limm→∞ vi

m P z
τδ

a.e.), and

Ez
τδ

1T <∞vi
T ≤ Ez

τδ
1T <∞vi

∞ + ε/6 ≤ Ez
τδ

1T <∞ḡi + ε/3. (34)

Proof The strategy τ defined in [8] obeys vi(zT ) ≤ Ez
τ (v

i(zT ′) | HT ) + ε1/2 for all fi-
nite stopping times T ≤ T ′. Therefore, for all stopping times T ≤ T ′ ≤ N0, Ez

τ v
i(zT ) ≤

Ez
τ v

i(zT ′) + ε1/2, and Ez
τ̄ v

i(zT ) ≤ Ez
τ̄ v

i(zT ′) + 3ε1/4. For z ∈ S1 we have, v(zm) = v(z) for
all m ≤ mδ , P z

τ̄δ
a.e. Therefore, for sufficiently small δ > 0, for every stopping time T ≤ mδ

(in the discrete-time game), we have

Ez
τδ

vi
T = Ez

τ̄δ
vi

T ≤ Ez
τδ

vi
(
z̄δ

1

) + ε11z/∈S1 .

Therefore, for δ > 0 sufficiently small, for every stopping time T ,

Ez
τδ

vi
T ≤ Ez

τδ
vi

∞ + ε1E
z
τδ

∞∑

k=0

1z̄k /∈S1 ≤ Ez
τδ

vi
∞ + ε/6.

This completes the proof of inequality (33).
Since 1T =∞vT = 1T =∞v∞ P z

τδ
a.e., we deduce that

Ez
τδ

1T <∞vT = Ez
τδ

1T <∞v∞ + ε/6. (35)

By inequality (31), we have vi∞ ≤ ḡi + ε/6, P z
τδ

a.e. Therefore,

Ez
τδ

1T <∞vi
∞ ≤ Ez

τδ
1T <∞ḡi + ε/6,

which together with (35) implies (34). �

The Punishing Strategies Recall that v : S → R
N is the asymptotic limiting-average min-

max of the family (Γδ)δ>0. It follows that for every ε > 0, z ∈ S, i ∈ N , and δ sufficiently
small, there is a strategy profile σ−i

δ,ε of players N \ {i} such that for every strategy τ i of
player i we have

γ̄ i
δ

(
z, σ−i

δ,ε , τ
i
) := Ez

δ,σ−i
δ,ε ,τ i

ḡi ≤ vi(z) + ε/3.

The Limiting-Average ε-Equilibrium Strategy σδ The strategy profile σδ follows the pure
strategy profile τδ as long as the play coincides with a play that is compatible with the
strategy τδ , and reverts to punishing (in the lim sup game Γδ) a deviating player. A formal
definition of σδ follows.

Let kδ be the first stage m with am �= τδ(z0, a0, . . . , zm); kδ = ∞ if am = τδ(z0, a0, . . . , zm)

for every m ≥ 0. Fix an order of the player set N , and on kδ < ∞ let iδ be the minimal player
i with ai

kδ
�= τ i

δ (z0, a0, . . . , zkδ
). For every player i ∈ N ,

σ−i
δ (z0, a0, . . . , zm) =

{
τ−i
δ (z0, a0, . . . , zm) if kδ ≥ m,

σ−i
δ,ε (zkδ+1, akδ+1, . . . , zm) if kδ < m and i = iδ.
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To complete the definition of the strategy profile σδ , there is a need to define σ i
δ (z0, a0, . . . ,

zm) on kδ < m and i = iδ . However, this has no impact on the reasoning that follows. We
therefore define it arbitrarily.

Let τ i be a pure strategy of player i. Note that (σ−i
δ , τ i) is a pure strategy profile. Let

nδ be the stopping time of the first stage m such that τ i(z0, a0, . . . , zm) �= τ i
δ (z0, a0, . . . , zm).

Note that for every state z, with P z

τ−i
δ ,τ i

-probability 1, kδ = nδ , and iδ = i on kδ < ∞. Let

Hnδ
be the σ -algebra generated by all (zm)m≤nδ

and (am)m<nδ
.

γ̄ i
(
z, σ−i

δ , τ i
) = Ez

σ−i
δ ,τ i

ḡi (36)

= Ez

σ−i
δ ,τ i

Ez

σ−i
δ ,τ i

(
ḡi | Hnδ

)
(37)

= Ez

σ−i
δ ,τ i

(1nδ=∞ + 1nδ<∞)Ez

σ−i
δ ,τ i

(
ḡi | Hnδ

)
(38)

= Ez
σδ

1nδ=∞ ḡi + Ez

σ−i
δ ,τ i

1nδ<∞ Ez

σ−i
δ ,τ i

(
ḡi | Hnδ

)
(39)

≤ Ez
σδ

1nδ=∞ ḡi + Ez

σ−i
δ ,τ i

1nδ<∞ vi(znδ+1) + ε/3 (40)

≤ Ez
σδ

1nδ=∞ ḡi + Ez

σ−i
δ ,τ i

1nδ<∞ vi(znδ
) + ε/2 (41)

≤ Ez
σδ

ḡi + 5ε/6 (42)

≤ ui(z) + ε. (43)

Equality (36) follows from the definition of γ̄ i (z, σ−i
δ , τ i). Equality (37) follows from

one of the basic properties of conditional expectation: that the expectation equals the expec-
tation of the conditional expectation. Equality (38) follows from the rewriting of the constant
function 1 as the sum of the two {0,1}-valued functions 1nδ=∞ and 1nδ<∞. Equality (39)
follows from the facts that (1) the expectation is additive, (2) 1nδ=∞ is measurable with re-
spect to σ -algebra Hnδ

and therefore Ez

σ−i
δ ,τ i

1nδ=∞ ḡi = Ez

σ−i
δ ,τ i

1nδ=∞ Ez

σ−i
δ ,τ i

(ḡi | Hnδ
), and

(3) the P z
σδ

-distribution and the P z

σ−i
δ ,τ i

-distribution of 1nδ=∞ḡi coincide. Inequality (40) fol-

lows from the definitions of σ−i
δ and σ−i

δ,ε . Inequality (41) follows from the fact that for
sufficiently small δ > 0, for every strategy σ and stopping time T , Ez

σ 1T <∞vi(zT +1) ≤
Ez

σ 1T <∞vi(zT ) + ε/6. Inequality (42) follows from Lemma 4, which asserts that for ev-
ery stopping time T , Ez

σδ
1T <∞ vi(zT ) ≤ Ez

σδ
1T <∞ ḡi + ε/3. Inequality (43) follows from

inequality (32) which asserts that Ez
σδ

ḡi ≤ ui(z) + ε/6.
By (32), Ez

σδ
gi ≥ ui(z) − ε, which together with the equality γ i(z, σδ) = Ez

σδ
gi implies

that γ i(z, σδ) ≥ ui(z)− ε. We conclude that (u,σδ) is a limiting-average ε-equilibrium pay-
off and strategy and, therefore, u is an asymptotic limiting-average equilibrium payoff. �

Theorem 12 An exact family (Γδ)δ>0 has an asymptotic uniform equilibrium payoff.

Proof First, recall that an exact family has an asymptotic uniform minmax. The uniform
ε-equilibrium strategy σδ follows the pure strategy profile τδ (defined in the proof of the
previous theorem), and reverts to punishing a deviating player (in the uniform game). �

Theorem 13 An exact family (Γδ)δ>0 has an asymptotic �w-robust equilibrium payoff when-
ever �w = (wi)i∈N is a vector of nonstationary discounting measures on [0,∞].
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Proof For β = (βi)i∈N ∈ R
N+ we denote by β ∗ �w the vector (βiwi)i∈N . Note that if βi > 0

for every i ∈ N , then the family (Γδ)δ>0 has an asymptotic �w-robust equilibrium payoff if
and only if it has an asymptotic β ∗ �w-robust equilibrium payoff. Therefore, we may assume
that wi(∞) = 1.

Fix ε > 0 and an asymptotic 1∞-robust equilibrium payoff ν ∈ R
N×S of the exact family

(Γδ)δ>0. Let 0 < t < ∞ be such that wi([t,∞)) < ε/‖g‖ for every i ∈ N , and let mδ = [t/δ]
and νδ = ν. Then (mδ, νδ) converges to (t, ν). Let v ∈ R

N×S be an asymptotic ( �wt, t, ν) equi-
librium payoff of the family (Γδ)δ>0, where �wt is the restriction of �w to the interval [0, t). If
�wδ converges (as δ goes to zero) to �w, then �wt,δ—the restriction of �wδ to {0,1,2, . . . ,mδ}—
converges to �wt .

If σδ is the strategy profile that follows up to stage mδ an ε-equilibrium strategy profile
in Γ

mδ,ν

δ, �wt,δ
with a payoff within ε of v, and thereafter a 1∞-robust ε-equilibrium with a payoff

within ε of ν, then for every player i and all strategies τ i
δ (δ > 0) of player i in Γδ ,

6ε + lim inf
δ→0+

Ez
σδ

gi
δ

(
wi

δ

) ≥ vi(z) ≥ −6ε + lim sup
δ→0+

Ez

σδ,τ
i
δ

gi
δ

(
wi

δ

)
.

Therefore, the exact family (Γδ)δ>0 has an asymptotic �w-robust equilibrium payoff. �
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