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SINGULAR GAMES HAVE ASYMPTOTIC VALUES*

ABRAHAM NEYMAN
University of California, Berkeley

The asymptotic value of a game v with a continuum of players is defined whenever all the
sequénces of Shapley values of finite games that “approximate” v have the same limit. In this
paper we prove that if ¢ is defined by ©(§) = f(u(S)), where p is a nonatomic probability
measure and f is a function of bounded variation on [0, 1] that is continuous at 0 and at 1,
then v has an asymptotic value. This had previously been known only when o is absolutely
continuous. Thus, for example, our result implies that the nonatomic majority voting game,
defined by v(S) =0 or | according as p(S) < 1/2 or p(S) > 1/2, has an asymptotic value.
We also apply our result to show that other games of interest in economics and political
science have asymptotic values, and adduce an example to show that the result cannot be
extended to functions f that are not of bounded variation.

Introduction. In their book Values of Non Atomic Games Aumann and Shapley
extended the concept of value to certain classes of nonatomic games, i.e., infinite
person games in which no individual has significance. One of the approaches, due to
Kannai (1966), is the asymptotic one. Briefly, the asymptotic value is defined on each
game v for which all the sequences of Shapley values, corresponding to sequences of
finite games that ‘approximate’ v, have the same limit. The space of all games
possessing an asymptotic value is denoted ASYMP. '

The asymptotic value has been studied extensively, [2],[1],[6]. The basic theorem [1,
Theorem F], asserts that ASYMP contains pNA4. The space pNA4 is the subspace of BV
spanned by powers of nonatomic measures, or alternatively, the subspace spanned by
absolutely continuous scalar measure games. However, bv' N4, the maximal subspace’
of BV that is spanned by monotonic scalar measure games and on which there is a
value (an axiomatic one), contains many other games of interest beside those of pNA.
The space bv'NA appears to be basic in the study of nonatomic games. Aumann and
Shapley [1, Theorem A] proved the existence of a unique value on bv'NA, and they
raised the qhestion as to whether or not ASYMP contains v’ NA, or even whether the -
simplest single-jump functigns are in ASYMP [1, p.10}. '

The main result of this paper answers the question in the affirmative, namely, that
" bu'NA is contained in ASYMP. This is accomplished in §3. In order to prove this
result, the author developed in [4] a renewal theorem for sampling without replace-
ment, which is the main tool in proving our theorem. This renewal theorem is actually
‘equivalent’ to the existence of an asymptotic value on the simplest single jump
function. The completion of the theorem is based on an integral representation for the
Shapley value of the finite game approximating a scalar measure game, by means of
those corresponding to jump functions (Lemma 3.4), and by known propertles of the
structure of bv' NA.

.The existence of an asymptotlc value on bv' NA enables to prove the existence of the
asymptotic value on many other spaces of interest. This is done in §4.

In §5, we show by means of a counter example that there is no hope to extend our
result for scalar measure games with unbounded variation.
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2. Preliminaries. Most of the definitions and notations are according to [1]. Let - -
(1,C) bé a measurable space isomorphic to ([0, 1], ®) where @ is the o-field of Borel
sets in [0, 1]. A set function is a real valued function v on € such that v(@).= 0. The
members of I are called players, the members of € coalitions, and the set functions
games. A game v is monotonic if for each S, T € €, § C T=v(S) < o(T). If Q is a set
of games, 0 * denotes the subset of monotonic games in Q. A game v is of bounded
variation if it is the différence between two monotonic games. The variation norm of v
is defined by |lv|| = inf(u(I) + w(I)), where the inf ranges over all monotonic set
functions u and w such that' v = u — w. The space of all games of bounded variation is
called BV. The subspace of BV conmsisting of all bounded, finitely additive set
functions is denoted FA, and that of all nonatomic measures (countably additive) is
denoted NA. The subset of NA of all probability measures is denoted NA'.

Let Q be any subspace of BV A mapping of 0 into BV is positive if 1t maps Q
into BV *. '

‘Let @ be the group of automorphisms of (1,€) (i.e., one to one mappmg of I onto
itself that are measurable in both directions). Each 6 € § induces a linear mapping 9*
of BV onto itself, defined by (#*v)(§) = v(8S) for all § € C.

Let O be a symmetric subspace of BV. A value on ¢ isa posrtlve linear mapping ¢
from @ into FA that satisfies:

¢ is symmetrlc i.e., pf* = f*¢ forall @ €4,

¢ is efficient, i.e., pv(l) = v(l) for all v € Q. l

The space of all real valued functions f of bounded variation on [0, 1] that obey-
f( 0)=20 and are continuous at 0 and 1 is denoted bv’. The closed symmetric subspacev
of BV spanned by the set functions of the form fo p where f € bv' and p € NA' is
called bu'NA. pNA is the closed subspace of bv'NA spanned by all powers of NA I
measures.

The Shapley value on finite games will be denoted by y. Let v be a finite game, N
the set of players For each player a and an order & on N, 9% is the set of all players
preceding a in ®. The Shapley value i§ glven by

vo(a) = (1/INI) 2 [0(92 U {a)) = o(92) ]

yo(a) can be regarded as the expectation of the contributions of player a, where each
order } has the same probabrllty, namely 1/ |N 1. We wrll write v(@% a) mstead‘- 'of
o(PT U {a)). '
A partition 11 of the underlymg space (1,C) is a finite family of d1s10mt measurablee
subsets whose union is 1. A partition II, is a refinement of another partition II; if each
member of I, 1s a union of members of I1,. In such a case we denote it by H2 > 11;.
sequence {II,)%., of partitions is called admissible if it satlsfres
L) itis decreasmg, ie, IT,,,, > II, for each m;
(2) it is separating, i.€,; for each s,t € I with's # ¢, there is m such that s and ¢ are
‘ un different members of H S S
For each partition IT and set function v, let v, be the finite game whose players are
{the members of 11, and for AC Ho (A) 18 defmed by ' :

| o) = o U o)

aeEA

A sel function ¢v & FA is said to be the asymplotic value of v, if for every T € C and
every admissible sequence of partmons (IT, oo, with TI, > (T, [ \T'} the followmg

limit and equahty exists

klgn Yo, (T ) = oo(T')
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where 7, = {a:a €11, and a C T'}. The set of all games v € B} having an asymptotic
value is denoted by ASYMP.
The main result of this paper 1s

Mamnw THEOREM. b’ NA C ASYMP.

We will use the following conventions; R stands for the real numbers, and if 4 is a
finite set then | 4| denotes the number of elements in 4.

3. The asymptotic value on bv' NA. In this section we will prove the main result of
this paper, namely, that bv’NA C ASYMP.

In order to prove this result, the author developed the ‘Renewal Theory for
Sa*npling without Replacement’ [4]. We start by introducing a result of that paper. Let
I be a partition and let p(II) = max, . gA(@) where A is in NA'. For every element a of
II,and 0 < x < 1, define P(a, x) by

f(a,x) = (l/lﬂl!)I{ﬁ:K(@?) <x <MPD) +A@)]]

(for A CIT we mean by A(4) the sum > . ,A(a)). Roughly speaking, P(a,x) is the
probability that in a random order of 11, a is the first element (in the order) for which
the A-accumulated sum exceeds x. For 4 C1II let P(4,x)=3 .« AP(a x). The dis-
tance between the probablhty measures P(-,x) and A(-) (on(I1,27)) 1s defined by

1P(x) =AY = 3 P(ax) = Na)l.

Observe that as both P(-x) and A(-) are probability measures, A
IP(x) = A =2 max]P(A,x) — N4

LemMa 3.1. For every € >0 there exist constants 8 >0 and K >0 such that if
p= maxaen)\(a) < 8,and Kp < x<1-— Kp then |]P( ,x) = A > e

Proor. “This is theorem 9.8 of [4].

We proceed by proving that the “jump functions” are in ASYMP. We use the
following terminology and notations. Let A be in N4, and {IT,}¥_, a sequence of
partitions; then {H } %=1 1s said to be }\-shrmkmg if

max A(a) - 0.

acll, ko0
If v is any set function on (J, €), the dual v* of v is defined by v*(§) = v(I) — o(I\S).
Observe that v € ASYMP iff v* € ASYMP (easxly shown by reversing order, see [1
p-140)). : ,

LEMMA32 For every 0 <y <1, lezfy,j; [0, 11> R be defnedby

: {1 if x>y, _ 11fx>y,
L(x)_{o lf x <y, fV(x)—{O ¢fx<y

Then for every A E. NAL ]; o A and fy o A have asymptotic values.

Proor. Let 0<y <1, T €EC and A € NA' be given. Let {IT,}¥_, be an admis-
sible sequence with IT, > {J\T,T}. Then {II,}%., is A-shrinking (Lémma 18.6 of [1]
and Halmos (1950) p. 172, Theorem A). Let n > 0, and let K and 8 be given by Lemma
3.1 such that p(IT) < & and K - p(II) < x < 1— K- p(II) (where p(II) = max, - gA(a@))
implies that [P(-,x) — A(-)|| < 1. As {II,} 7., isA-shrinking, there exists k, such that
for every k> kQ, K-pII,)<y<1-K- p(Hk) and p(I1,) < 6.
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Thus by denoting T, = {a:a € Il,,a C T}, and using the obvious identity
Y(f, °A), (4) = P.(4,y) forevery partition II, and ACY,
we deduce that |
() )‘\)m.(Tk) = NTOI=P(Ty, y) = MTy)l
| <318, (5 0) =A< n/2
and hence

lim y(f, N, (Te) =N(T)

which éompletes the proof that f, o A € ASYMP. Observe that ( fy o A)(I) - ( f, oA
(I\S) =1—=(f, e AI\S) = (f,-, ° AXS), and therefore f,_, o A is the dual of f, o

63)

A.

In view of the remark preceding the lemma and the fact that fiz, ° A€ ASYMP it

follows that fy oA E ASYMP This completes. the proof of the lemma

LEMMA 3.4. Let f € bv' be right continuous and let I be a gzven partztzon Then for

every subset A of 11 and every X in NA'
V(N (4) = [9( * 0, (4) - ().

PROOF. Let a be an element of IT. It is-enough to prove that
.
V(S o N, (a) = [ 4, ° N(a) - ().
For every order ¢ of 11, we define a function x(@;,d): (0, o0) >R by:

1 if * < AP U ,
X(%, a)(») =,{ it M92) <y <A(%q U {a))
' 0 otherwise.

We have | ,

| (Fo N, (T2 U (@) = (2 1),(8) = [ X(.a)(») - ()

?nd therefore . RN

W oN @ =1/ S [ x@a)0) 0

where n = |ITj aﬁd the sum is oveAr all ;)rders of H But, as o
(1/1) Zx(9 () =9 2 (@)

we conclude by changmg the oxder of summatlon and mtegratlon that,

GLECHY! | (l/n!>§3?<<%-,a)<y>] A0)

(

| = VN, () 40

which completes the proof of the lemma.

. PrROOF OF THE MAIN THEOREM. bv'NA' is. the closed lmear symmemc space
spanned by set functions of the form f o » where f € by and v is a probability measure
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in NA. Every f € bv’ can be represented as a sum

o0 -
=gt ,Zl o f,
i=
where g € bv’ is right continuous, y, € (0,1) and {a;} is a sequence of numbers with
>la] < 0. As

the space bv'NA is the closed linear symmetric space spanned by jump functions ]) °A
and set functions of the form f o A, where f € bv’ is right continuous. As ASYMP is a
closed symmetric subspace of BV [1, Proposmons 18.4, 18.5], and as for every
y (@1 f), oA € ASYMP, it is enough to prove that for every nondecreasing f € by’
which is right continuous (every right continuous f € bv” is the difference of two
functions fi» f» € bv" which are nondecreasing and right continuous), fo A € ASYMP.
Let f € bv’ be nondecreasing and right continuous, T €% and {II,}7_, an admis-
sible sequence with I, > {T,I\T}. For every k denote by T, the subset of Hk of all
elements contamed in T, i.e.,

(oo}

2 lal 5,0

i=n

o«

2 af, o M) <

i=n

T,={a:a€ll;,aC ).
By Lemma 3.4, '

V(o N (T = [ 95 V. (T)H0).

and by Lemma 3.2 ‘
¥(b o N)o(Te), 72 MT).-

As |Y(f, o A), (T)] < 1, we could use Lebesgue s dornmated convergence theorem to
conclude that BN ,

WS oNL (T, 2, [ MT)() = JONT)

which completes the proof of the theorem.

4. Other subspaces of ASYMP. We start with several notations. 4 is the closed
algebra generated by ‘all set functxons of the form fo p where f is a continuous
function in bv’, and p is in NA'. If Q, and Q, are subsets of BV then Q, + Q, is the
closed linear symmetri¢ subspace spanned by all games of the form v, - v, where
0, €Q and v, € Q,.

In [3] the partition value is introduced and it is proved that there is a partition value
on each of the spaces A, PpNA*bVY'NA, A*bv'NA, bv'NA*bv’'NA and A*bo'-:
NA*bv'NA. It was proved in [3] that bo'NA*bo'NA ¢ ASYMP and hence also
A*bv' NA*bv'NA ¢ ASYMP. However it turns out that

THEOREM 4.1. A4 C.ASYMP, pNA*bv' NA C ASYMP and A*bv’ NA C ASYMP.:

ProoF. Observe that 4 C A*bv'NA and that pNA C A4 and therefore it is enough
to prove that A*bv’NA € ASYMP. But this follows along the same lines as the proof
in [3] of the existence of a partition value on 4*bv’' NA, subsmutmg the’ fact that
bu'NA C ASYMP for Lemmas 4.9 and 4.10 of 31 -

5 Weakemng of assmnptmn" The ex1stence of an asymptotlc value on bo’NA is.
equivalent to the existence of an asymptthc value on all scalar measure games fo A
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where A is in NA' and f: [0, 1] R is continuous at 0 and 1, and of bounded variation.
It can be easily proved that for f of bounded variation the limits

lim f(x) = f(0+) and hm f(x) faa=)

x—0
x>0 x<l

exist, and that further, f o A has an asymptotic value iff f(O +)—f(0) = f(1 =)~ f(1).

In view of this result, the theory of the asymptotic value. is comprehensxve in the class

" of scalar measure games with bounded variation.

The study of nonatomic games has been concentrated, so far, on.games with

bounded variation. However, the definitions of a value, and that of an asymptotic
value are naturally extended to include all set functions, and existence of a value can
be shown on spaces which include bv'NA and many other scalar measure games of
unbounded variation. However, as will be seen in the following example the bounded
variation is essential for the existence of an asymptotic value. We will construct an

example of a bounded function f defined on [0, 1], which is continuous at 0 and 1,

vanishes outside a countable set of points and f o A does not have an asymptotic value.

THE EXAMPLE. For each N define M = 2” ‘and define D, to be all the triples.

(myn,N) such that
m 1s odd, (3.1)

M/2+2W<n+/A7<m<M/2+3W. (5.2)

(M; M)

AZ{HW | /

%4-'441—\4—

Figure |

The: set D, consists of all the triplés (m,n, N) such that m is odd and (m,n) is in the
dashed area. It can be casﬂy seen that '

Dyl/ M > 1/4 | o (5.3)
Let ‘t'E (0, 1) be an irrational. Define D = UN:, N> and define y: D —> (0, 1) by:
! y(mn,N)y=1m/2" + (1 - )n/2". (5.4)

yisla I — 1 mapping, because N’ < N and tm /2" + (1 = On/2" = tm’ /2% + (1 ~ 1)
n'/ ZN implies that both n and m are even which contradicts the assumption (5.1), and
if N= N'then y(m,n,N)= y(m’,n’,N') implies that m = m’ and n = n’. Define Y, to

be the range of y restricted to Dy and ¥ = {J%.. ;00 Yws then Y C (1/2,3/4) and Y'is
countable. We define f to be the characteristic function of the set Y. We will prove that
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fo A does not have an asymptotic value. If fo A has an asymptotic value then the
asymptotic value must be 0, so in order to prove that f o A does not have an asymptotic
value we will construct an admissible sequence of partitions {II,}%_, with I, >
{[0, 1), [z, 1]} such that

Jim infy(foN),, (4y) >0

where Ay = {a:a €1ly,a C[0,1)}. Let II, be the partition that divides each of the
intervals [0, ) and [#, 1] into 2" equal segments, and A, = {(a:a €Ily,a C[0,7)}. We
shall show first that:

"l’(fc’ )‘)«nN (An) 2 Y(Xy, © }‘),,N (An) | (5.5)
and secondly we shall prove that there exists y > 0 such that for every y S Yy
Y(X(y) ° N, (An) > ¥ 1/ M. (5.6)

 For proving (5.5) observe that tm/2" + (1 — t)n/2" € Y implies because of the
irrationality of ¢ and (5.2) that m > n which implies easily that ¢ (x/,, ° K),,N(A ~N)=>0
for any y € Y, which completes the proof of (5.5). For proving (5.6), observe
that because of the irrationality of 7, the equality tk/M + (1 — 8)I/M = tm/M +
(1= H)n/M implies thatk = mand I =n. Lety € Yy, y = tm /2" + (1 — H)n /2%, then'
we have:

(M)(M)m(m+n—1)12M — m ~ n)!

V(X (y) ° N, (AN) = 2M)!

(An’{)(jg)(M— my(m+n)! QM —m—n—1)!
(2M)!

(M)

2M)!

(m+n—-DIQM—-—m—n—1)!

[m(2M— m— n)—(M— m)(m + n)]

IO = myp

( 2M -2 ) 2M(2M - 1)
m+n—1

and by using the central limit theorem for Bernoulli trials and the properties of m, n we
deduce that

2 M |
at_ .2 .MM
M M 1

‘I/(X()’}A ° A)(AN) > 22(M—l) 2Y M

2 OM2M - 1)
V2(M ~ 1)

-~ which completes the proof of (5.6). Corﬁbining'(S.B), (5.5) and (5.6) we deduce that
lim supy(feoX), (Ay) >0,

which completes the proof that f o A does not have an asymptotic example.
- REMARK. (a) This example exhibits the fact that the bounded varation of f is
essential for the existence of an asymptotic value for f o A. (b) Denote the set of all set
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functions by SF. For any member v of SF we can assign the set function

o(S) = o(I\S)  o(])
) T

8(S) =

The set function © = v — 0 is a ‘symmetric’ set function, i.e., 6(§) = 6(/\S). Hence ¢

has an asymptotic value, which is the measure which vanishes identically. Therefore v
has an asymptotic value iff { has an asymptotic value. Furthermore, the relation ~ in
SF defined by v~y iff G = 0 is an equivalence relationship. It is thus more convenient
to investigate properties of the asymptotic value and state result in SF mod ~.

Conjecture. Let v = fo u, where p € NA' and f:[0, 1] R with f(0) = 0, continu-
ous at 0 and 1. Then v has an asymptotic value iff & has bounded variation. (The if
part is obvious from the above remark and the inclusion bv’NA C ASYMP).
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