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SINGULAR GAMES HAVE ASYrvfPTOTIC VALUES*

ABRAHAM NEYMAN

University of California, Berkeley

The asymptotic value of a game v with a continuum of players is defined whenever all the
sequences of Shapley values of finite games that "approximate" v have the same limit. In this
paper we prove that if v is defined by v(S) = f( p.(S)), where p. is a nonatomic probability

measure and f is a function of bounded variation on [0, I] that is continuous at 0 and at I,
then v has an asymptotic value. This had previously been known only when v is absolutely
continuous. Thus, for example, our result implies that the nonatomic majority voting game,
defined by v(S) = 0 or I according as p.(S) " 1/2 or p.(S) > 1/2, has an asymptotic value.
We also apply our result to show that other games of interest in economics and political
science have asymptotic values, and adduce an example to show that the result cannot be
extended to functions f that are not of bounded variation.

Introduction. In their book Values of Non Atomic Games Aumann and Shapley
extended the concept of value to certain classes of nonatomic games, i.e., infinite
person games in which no individual has significance. One of the approaches, due to
Kannai (1966), is the asymptotic one. Briefly, the asymptotic value is defined on each
game v for which all the sequences of Shapley values, corresponding to sequences of
finite games that 'approximate' v, have the same limit. The space of all games
possessing an asymptotic value is denoted ASYMP.

The asymptotic value has been studied extensively, [2], [1], [6]. The basic theorem [1,
Theorem F], asserts that ASYMP containspNA. The spacepNA is the subspace of BV
spanned by powers of nonatomic measures, or alternatively, the subspace spanned by
absolutely continuous scalar measure games. However, bv' NA, the maximal subspace'
of B V that is spanned by monotonic scalar measure games and on which there is a
value (an axiomatic one), contains many other games of interest beside those of pNA.
The space bv' NA appears to be basic in the study of nonatomic games. Aumann and
Shapley [1, .Theorem A] proved the existence of a unique value on 00' NA, and they
raised the question as to whether or not ASYMP contains bv' NA, or even whether the
simplest single-jump functiQns are in ASYMP [I, p. 10].

.

.

The main result of this paper answers the question in the affirmative, namely, that
00' NA is contained in ASYMP. This is accomplished in §3. In order to prove this
result, the author developed in [4] a renewal theorem for sampling without replace-
ment, which is the main tool in proving our theorem. Tnis renewal theorem is actually
'equivalent' to the existence of an asymptotic value on the simplest single jump
function. The completion of the theorem is based on an integral representation for the
Shapley value of the finite game approximating a scalar measure game, by means of
those corresponding to jump functions (Lemma 3.4), and by known prope~ties of the
structure of 00' NA.

The existence of an asymptotic value on bv' NAenables to prove the existence of 'the
asymptotic value on many other spaces of interest. This is done in §4.

In §5, we show by means of a counter example that there is no hope to extend our
result for scalar measure games with unbounded variation.
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2. Preliminaries. Most of the definitions and notations are according to [1]. Let
(I, e) be a measurable space isomorphic to ([0, 1],<if»where <illis the a-field of Borel
sets in [0,1]. A set function is a real valued function v on e such that v(0) = O.The
members of J are called players, the members of e coalitions, and the set functions
games. A game v is monotonic if for each S, TEe, S c T~ v(S) .;;;;vcr). If Q is a set
of games, Q + .

denotes the subset of monotonic games in Q. A game v is of bounded
variation if it is the difference between two monotonic games. The variation norm of v
is defined by Ilvll = inf(u(l) + w(l», where the inf ranges over all monotonic set
functions u and w such that'v = u - w. The space of all games of bounded variation is
called B V. The subspace of B V consisting of all bounded, finitely additive set
functions is denoted FA, and that of all nonatomic measures (countably additive) is
denoted NA, The subset,of NA of all probability measures is denoted NAI. '

Let Q be any stibspace ?f BV. A mapping of Q into BV is positive if it maps Q +

into BV+~.. "
. ,

<-

Let g be the group of automorphisms of (1, e) (i.e., one to one mapping of { onto
itself that are measurable in both directions). Each 0 E g' induces a linear mapping 0*
of BV onto itself, defined by (O*v)(S) = v(OS) for all SEe.

Let Q be a symmetric subspace of B V. A value on Q is a positive linear mapping cJ>

from Q into FA that satisfies: '

,

cp is symmetric, i.e., cpO*' = O*cp for all () E § ,

cp is efficient, i.e., cpv(1) = v(J) for all v E Q.
'

The space of all real valued functions f of bounded variation on [0, 1] that obey
f(O) ==0 and are continuous at 0 and lis denoted bv'. The closed symmetriC subspace,
ofBV spanned by the set functions of the form f 0 {1. where f E bv' and Jl E NA,) is
called bv' NA. pNA is the closed subspace of bv' NA spanned by all powers of A(A)'
measures..

,

The Shapley value on finite games will be denoted by \fl. Let v be a finite game, N
the set of players. For each player a and an order 01 on N, .qp~is the set of all players
preceding a in ~. The Shapley value is given by .,'

\f;v(a) = (lfINI!)2; [v(qp~U {a}) - v(qp~)],
.q(,

I/;v(a) can be regarded as the expectation of the contributions of player a, where each
,order0t has the same probability, namely 1flNIL We will~rite v(q>;:- U a) insteadbf
v(qp:PcU{a}). "

"
"',"

,"

:

A partition II of the underlying space (1, e) is a finite family bf disjoint me,a~urable'
isubsets whose union is 1. A partition II2 is a refinement of another partition IJ'j' it each
'member of III is ~ union of members of II2' In such a case we denote it by'rt2;>. I1j. A
,sequence {II,,}~

~ 1 of partitions is called adlnis~ible if it satisfies '

i (1) it is d.fcr~asing, i.~~, IIm+; >- IIm for each m;
I (2) it is separating, i.e.; for each s, tEl with:s' =Ft, there is m such that sand tare
in different l11embers of TIm'

.' ',.

For each partition p and set function v, let Vwbe the finite game whose players are
themernbyrs ()f II, aqd forA c rIvw(A) is d.efinedby

,

tJw(A) = v( LJ a).
aEA

A set function qJvE FA is said to be the asymptotic value of v, if fqr every TEe and.
every admissible sequence of partitions {Hk}r~)' with HI >-'{T,l\ T) the following
linlit ahd equality exists

.

Jim \flv11(Td = <f>v( T)
k-t 00 k
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where Tk = {a: a E ilk and aCT}. The set of all games v E BV having an asymptotic
value is denoted by ASYMP.

The main result of this paper is

MAIN THEOREM. bv'NA C ASYMP.

We will use the following conventions; R stands for the real numbers, and if A is a
finite set then IA I denotes the number of elements in A.

3. The asymptotic value on bv' NA. In this section we will prove the main result of
this paper, namely, that bv' NA C ASYMP.

In order to prove this result, the author developed the 'Renewal Theory for
Sampling without Replacement' [4]. We start by introducing a result of that paper. Let
tI be a partition and let pen) = maxaEnA(a) where ;\ is in NA I. For every element a of
II, and () < x <: I, defineP(a,x) by

,

P(a,x) = (1/ITII!)I{t8t:A(~~) < x" A(~~) +A(a)}1

(for A C II we mean by A(A) the sum LaEAA(a)). Roughly speaking, pea, x) is the
probability that in a random order of II, a is the 'first element (in the order) for which
the A-accumulated sum exceeds x. For A C II let P(A, x) = LaEA Pea, x). The dis-
tance between the probability measures PC-, x) and A(-) (on(TI, 2")) is defined by

IIP(' x) -;\(. )11= 2.: IP(a,x) - A(a)l.
aEll

Observe that as both PC- x) and A(') are probability measures,

IIPC-,x) - ;\(')11= 2 maxIP(A,x) - A(A)I.
AEll

LEMMA 3.1. For every E > 0 there exist constants 8 > 0 and K > 0 such that if
p = maxaEITA(a) < 8, and Kp < x < I-lfp then IIP(',x) -'A(-)II > E.

PRqOF. This is theorem 9.8 of [4].
We proceed by proving that the 'jump functions" are in ASYMP. We use the

following termi~ology and ~otations. Let~ be in NA I, and {IIk}~=1 a sequence of

partit~ons; then {IIk} ~= I is said to be A-shrinking if

max;\( a) ~ O.
aEITk k~oo

If V is any set function on (1,8), the dual v~ pf v is defined by v*(S) = v(/) - v(I\S).
Observe that v' E ASYMP iff v* E A~YMP (easily shown 'by reversing order, see [1,
p.140]).'

,.
-." .

LEMMA3.2. For every 0 <y < i, let h"t: [0, I]~R be defined-by:

;/y(x) =
{

I
if

x >
.

Y, t ( x) =
{

Ii! x > y,
0 if x <y" 0 if x < y.

Then for every 1\ E N A I, t 0 A and
1"

0 A h(lve asymptotic values.

PROOF. Let 0 <y < 1, TEe and A E NA 1 be given. Let {IIk}k=1 be an admis-
sible sequence with TII >- {J\T,T}. Then {nk}~=1 is A-shrinking (Lemma 18.6 of [1]
ap.d Halmos (1950) p. 172, Th~orem A). Let'l1 > 0, ~nd let K and 8 be giyen by Lemma
3.1 S\.l9h that p(TI) < 8 and K. p(II) < x < I - K. p(II) (wbere p(II) = maxaEITA(a»)
implies that IIP(', x) - A(')II < 11.As {TIk} ~= 1 is 'A-shrinking, there exists ko such that
for every k > ko' K. p(TIk)< Y < 1 - K . p(IIk) and p(Ih) < ~.



208 ABRAHAM NEYMAN

Thus by denoting Tk = {a: a E Ilk, acT), and using the obvious identity

ifU; 0 A),,(A) = P,,(A, y) for every partition n, and A C Y,

we deduce that

lif(.& 0 A),,* (Tk) - A(Tk)1 = IP( Tk,y) -A( Tk)1

< t II P"k (', y) ~ A(-) II < 11/2 (3.3)

and hence

lim if(/y 0 A)1t (Tk) =A(T)
k~oo k .

which completes the proof that t. 0 A E ASYMP. Observe that (t, 0 A

.

)(/) ~ (4 0 AJ
(/\S) == I - (/y 0 A)(I\S) ==(/1-y 0 A)(S), and therefore fl-y 0 A is the dual of Iy 0 A.

In view of t~e remark preceding the lemma and the fact that f,- y 0 AE ASYMP it
follows that /y 0 A E ASYMP. This completes the proof of the lemma.

LEMMA3.4. Let f E bv' be right continuous and let II be 'a given partition. Then for
eve,y subset A of II and every A in NA 1 , .

.

if(fo A),,(A) ==folif(J; 0 A),,(A)' df(y).

PROOF. Let a be an element of II. It is enough ,to prove that

if(f 0 A),,(a) =1"01if(J; 0 A)(a) . df(y).

For every order 0\, of II, we define a function x(0\"a):[O,oo)~R. by:

x(0\" a)(y) = f I if. A(0'~) <y < A(0'~itU {a}),
. l 0 otherwise.

We have

(f 0
A)" (0'~it U {a}) - (f 0 A)"(cp~)

~fo
1
X(0\" a)(y)' dfey)

and therefore

if(f 0 A)"(a) .= (I/Il!) 2J 11 x(0\" a)(y) .df(y)
~ 0 . ,

where n = IIII and the sum is over all orders of II. But, as

(11 n!) ~ X(0t, a)(y) ==if(J; 0 A),,(a)
~ ,

we conclude by changing the order of su.TllI!1atiqnand integration that,

I
which completes the proof of the lemma.

.

. PROOF OF THE MAIN THEOREM. bv'NA is the, closed linearsym,metric space.
,spanned by set functions of the form fo 11where f E bv' and v is a probability measure

-
if(f 0 A),,( a) ==

j~
l[(11 n! ) ~ ~(0t, ~)(y) r ~f(Y)

'I
"

-10 if('/y 0 A)l1(a) . df(y)

.(
.;..
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in NA. Every f E bv' can be represented as a sum
00

f = g + 2, Ci.j'
t'i

i= 1

where g E bv' is right continuous, Yj E (0, 1) and {ai} is a sequence of numbers with

Llail < 00. As

lIi~n ai(ti a
A)II <

i~n lai'n~oo 0

the space bv' NA is the closed linear symmetric space spanned by jump functions t 0 A
and set functions of the form lOA, where 1 Ebv' is right continuous. As ASYMP is a
closed symmetric subspace of BV [1, Propositions 18.4, 18.5], and as for every

Y E (0, 1)t 0 AE ASYMP, it is enough to prove that for every nondecreasmg f E 00'
which is right continuous (~very right continuous f E bv' is the difference of two
functions Ii' 12 E bv' which are nondecreasing and right continuous), f a A E ASYMP.
Let f E bv' be nondecreasing and right continuous, T E iffi and {IIk} k= 1 an admis-
sible sequence with II) >- {T,l\ T}. For every k denote by Tk the subs~t of ilk of all
elements contained in T, i.e., "

Tk = {a: a E ilk, aCT} .

By Lemma 3.4,

1/;(10 A)11.(Tk) = ll1/;(1; a A)11k(Tddf(y),

and by Lemma 3.2

1/;(1; a A)11k( Tk)
k

~ A( T).
--»00

As 11/;(fy a A)1Tk(Tk)1 < 1, we coul~ use Lebesgue's dominated convergence theorem to
conclude that '"

1/;(f a A)v (Tk) ~ rIA(T)dl(y) = f( 1)A(T)k k-+oo Jo

which completes the proof of the theorem.

4. Other subspa~, of ASYMP. We start with several notations. A is the closed
algebra generated by all set functions of the form fop. where f is a continuous
function in bv', and p. is in NA I, If QI and Q2 are subsets of BV then QI ..Q2 is the
closed line::!,r symmetric subspace spanned by all games of the form VI 'V2 wher~

VI e' Ql and v2E Q2' '

In [3] the partition value is introduced and it is proved that there is a partition value
on each of the spaces A, pNA*bv'NA, A*bv'NA, bv'NA*bv'NA and A'*bv!-
NA*bv'NA, It was proved in [3] that OO'NA*bv'NA ct ASYMP and hence also
A*bv'NA*bv'NA ct ASYMP, However it turns out that

THEOREM4.1. A c.ASYMP,pNA *bv' NA c ASYMP and A" bv'NA c ASYMP..

PROOF. Observe that ACIf *bv' NA and that pNA C A and therefore it is enough
to prove that A" bv' NA c ASYMP. But this follows along the same lines as the proof
in [3J of the exIstence of a partition value on A" bv' NA, substituting the ',fact that
bv'NA C ASYMP for Lemmas 4.9 and 4.10 of [3]. ' "

'.
' '5.,' Weakening of assumption? The existence of,~n asymptotic value on bv' NA is,

equivalent to the existence of, an asymptotic value on all scalar, measure games 10 A
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where X is in NA I and f: [0, I] -~ IR is continuous at 0 and 1, and of bounded variation.
It can be easily proved that for f of bounded variation the limits

lim lex) = f(O + )
X~O
x>o

and Jim lex) = f(1 - )
x~l
x<l

exist, and that further, f 0 A has an asymptotic value iff f(O + ) -f(O) = f(1 - ) - f(1).
In view of this result, the theory of the asymptotic value. is comprehensive in the class.
of scalar measure games with bounded variation.

.

.

The study of nonatomic games has been concentrated, so far, on. games with
bounded variation. However, the definitions of a value, and that of an asymptotic
value are naturally extended to include all set functions, and existence of a value can
be shown on spaces which include bv' NA and many other scalar measure games of
unbounded variation. However, as will be seen in the following example the bounded
variation is essential for the existence of an asymptotic value. We will construct an
example of a bounded function f defined on [0, 1]" which is continuous at 0 and 1,'
vanishes outside a countable set of points and f 0 A does not have an asymptotic value.

THE EXAMPLE.For each N define M = 2N and define DN to be all the triples
(m,n,N) such that

. .

m is odd, (5. l)

(5.2)M/2 + 21M < n +IM < m < M/2 + 31M.

m

r;;;

(M;M)

M + 3{M2

n
M +fM2

Figure I

The, set DN coilsists of all the triples (m,n,N) such that m is odd and (m,n) is in the
das~ed area. It can be easily seen that

.

IDNI/ M -., 1/4.N~oo
(5.3)

Let t E (0, I) be an irrational. Define D ,,;,
U~= IDN, and define y: D -.,(0, I) by:

,
y(m,n,N) = tm/2N + (I - t)n/2N. (5.4)

y is:a I - 1 mapping, because N' < Nand tm/2N + (I - t)n/2N = tm' /2N' + (1- t)
fl' /2N' implies that both fl and m are even which contradicts the assumption (5.1), and
if N= N' thcny(m,n, N) = y(m', n', N') implies that m = 111'and n ==n'. Define YN to
be the range of y restricted to DN and Y = U~-IOOYNj then Y c (1/2,3/4) and Yis
countable. We define f to be the. characteristic function of the set Y. We will prove that

.
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j ° A does not have an asymptotic value. If f ° A has an asymptotic value then the
asymptotic value must be 0, so in order to prove that j ° A does not have an asymptotic
value we win construct an admissible sequence of partitions {IIN} ~=] with III >-
{[O,t), [t, In such that

N
lim infW(joA)7TN(AN) >0
-?oo

where AN = {a: a E IIN' a C [0, t)}. Let TIN be the partition that divides each of the
intervals [D,t) and [t, IJ into 2N equal segments, and AN = {a:a E IIN,a C [O,!)}. VIe
shall show first that:

w(fo A)7TN(AN) ~ W(XYN 0 A)7T)AN) (5.5)

and secondly we shall prove that there exists 'Y> 0 such that for every y E YN

1f;(X(y) 0 A)7TN(AN) ~ 'Y' 1/ M. (5.6)

For proving (5.5) observe that tm/2N + (1 - !)n/2N E Y implies because of the
irrationality of t and (5.2) that m > n which implies easily that WCx(y)0 A)7TN(AN).;;. 0

for any y E Y, which completes the proof of (5.5). For proving (5.6), observe
that because of the irrationality of t, the equality tk/ M + (1 - t)l/ M = tm/ M +
(1 -'--t)n/ M implies that k = m and I = n. Lety E YN, Y = tm/2N + (1 - t)n/2N, then'
we have:

(~)( ~)m(m+ n - I)! (2M - m - n)!
w(X(y) 0 A)7TN(AN) =

(2M)!

(~)(~)(M- m)(m + n)! (2]1'/ - m - n - 1)1

(2M)!

? (~)(~)(m+n-I)I(2M-m-n-I)!
(2M)! .

[m (2 M - m - n) - (M - m)( m + n) ]

-
(~)( ~)

( 2M - 2 )m+n-1

(m - n)M

2M (2M - 1)

and by using the central limit theorem for Bernoulli trials and the properties of m, n we
deduce that

1/;(X(yj 0 A)(AN) ;;.

2M 2M '

a M.{M
1M 1M

22(M-I)

fi
V2(M - 1)

1~ 'Y'
M. 2M(2M - 1)

which completes the proof of (5.6). Combining(5.3), (5.5) and (5.6) we deduce that

hm sup1j;(fo A)7TN(AN)> 0,

which completes the proof that j 0 A does not have an asymptotic example.
,REMARK. (a) This example exhibits the fact that the bounded variation of j is

essential for the existence of an asymptotic value for f 0 A. (b) Denote the set of all set
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functions by SF. For any member v of SF we can assign the set function

"
v(S)-v(l\S) v(l)

v (S) =
2

+ ~ .

The set function v= v ~ v is a 'symmetric' set function, i.e., DeS) = v(I\S). Hence v
has an asymptotic value, which is the measure which vanishes identically. Therefore v
has an asymptotic value iff v has an asymptotic value. Furthermore, the relation -- in
SF defined by v--p. iff u = vis an. equivalence relationship. It is thus more convenient
to investigate properties of the asymptotic value and state result in SF mod --.

Conjecture. Let v =J 0 J..I., where J..I. E NA I and j: [0, 1]-) R with J(O) = 0, continu-
ous at 0 and I. Then v has an asymptotic value iff v has bounded variation. (The .if
part is obvious from the above remark and the inclusion bv'NA C ASYMP).
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