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ABSTRACT Undiscounted nontenninating stochastic games
in which the state and action spaces are finite have a value.

A stochastic game is played in stages. At each stage t, the game
is in one of finitely many states, and each of the two players
observes the current state Zt and chooses one of finitely many
actions. The pair of actions at stage t, together with Zt, deter-
mines the payoff Xt to be made by player II to player I at stage
t and the probability used by the referee to select the next state.
All of the referee's choices are made independently of the past.
A player's strategy is a specification of a probability distribution
over his actions at each stage, conditional on the current state
and the history of the game up to that stage. Any pair of strat-
egies, u of player I and T of player II, induces together with Zo
a probability distribution on the stream (xo, Xl' ... ) of payoffs.

The definition of a value for the stochastic game depends on
how the players evaluate a distribution over streams of payoffs.
Shapley (1) proved that the A-discounted game, the game with
"evaluation"

E {~ A(1 - A)' Xt}
has a value and that both players have optimal stationary strat-
egies. Let v~ denote the value of the A-discounted game with
initial state z, and let u>. denote a stationary optimal strategy of
player I in the A-discounted game. Using Tarski's principle for
real closed fields, Bewley and Kohlberg (2)proved that both v~
and u>. have a convergent expansion in fractional powers of A
and that the limit v~ of v~ as A ~ 0 exists. The question as to
whether or not the undiscounted stochastic games-Le., the
games with "evaluation"

E {Hm inf In},
n-+OO

where In = (1/n)~t<nXt-always have a value was open for many
years. The existence of a value has been proved only in special
cases. Gillette (3) and Liggett and Lippman (4) proved the ex-
istence of the value when the undiscounted stochastic game has
perfect information. Gillette (3) and Hoffman and Karp (5)
proved that irreducible (cyclic) undiscounted stochastic games
have a value. Blackwell and Ferguson (6) found in a particular
example ("The Big Match") a strategy that would prove to be
basic for further generalizations. Kohlberg (7) proved that all
"games with absorbing states" have a value.

Our main result is that undiscounted stochastic games always
have a value. We have the following Theorem.
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MAIN THEOREM. For every stochastic game and for every
E > 0, there exist strategies u. of player I and T. of player II
and a number N > 0 such that, for all strategies T of player II
and u of player I and for every initial state z,

E + Ea •.T {Um inf~} ;:::v;' ;::: -E + Ea.T. {Um sup ~},
n~OO n~oo

and, for every n > N,

E + Ea •.T (xn) ;::: v;' ;::: - E + Ea,T. (xn).

Independently of ourselves, Monash (8)announced a weaker
version of the present result: it is not claimed that the strategy
u. of player I is e-optimal either in the infinite game or in suf-
ficiently long finite games, but only that, for every strategy T

of player II, there exists N such that, for all n ~ N, Ecr. T (In)
2: v~ - E.

The e-optimal strategies
Let 0:5 r < 1, B > 0 be such that, for 0 < A< 1 and for every
(initial) state z, Iv~ - v~1 :5 BA1-1-. The existence of such rand
B follows from the basic result of Bewley and Kohlberg (2). Let
8 > 0, f ~ 1 and f ~ 2B/8, and define L(A) = inf {nln ;:::f
A-'}. Choose {3> 1 such that {3r< 1, and let a = {3r, 'Y = {3
- a. Our strategy will depend on an additional constant M,
sufficiently large to satisfy further requirements that will be
specified later.

We define inductively:

So= s arbitrary ;:::M

The (M, s, 8, r, f)-strategy (uM 5 for short) is to play at stage j
the optimal strategy u>., of the Acdiscounted game when Bi :5

j < Bi+l'
We prove that, for every e > 0, there is a pair M, 8 such that

UM,5 is e-optimal-Le., satisfies the requirements of u. in the
Main Theorem. We actually prove that, for every e> 0, there-
is 80 > 0 such that for every 0 < 8:5 80 there is Mo > 0 such
that for M > Mo UM,5 is e-optimal.
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Sketch of the proof
Using the definition of Sk, we show that for M sufficiently large,

n2: Xi ~ Sn - So + 2: (Bk - Bk-1)(£k - 28)
i<Bn k= 1

n

- L I(Sk = M)2MQM, [1]
k=l

where A is twice the largest absolute value of payoffs appearing
in the game matrices and I is the indicator function. This leads
to the study of the (Sk> £k)k=O process. For that we first show that
there is As > 0 such that, for every 0 < A :S As and for every
stopping time T,

E{WT+L - WT + A 2: (XT+i - WT+L + 8)1 '!iT} ~ 0
i<L

whenever player I uses constantly O'Abetween T and T + L
== T + L(A), where '!iT denotes the O'-algebra of all events up
to the stopping time T. Denoting C§k = '!iBk' we can rewrite this
as

E{SHI - Sk + sf (£H! - £0 IC§J ~ Msk, for M ~ A"Bl/f3. [2]

Making a linear positive change of variables, we are led to the
study of the following class of stochastic processes.

Let (Q, a, (3, 5) be a fixed "4-tuple", where Q is a fixed finite
set of real numbers, 0 :S a < 1, 1 < (3, and 5 > O. For any given
M > 0, we consider the class .stl(M) of all stochastic processes
[0, f!F, (f!Fk)k=O, Sk, £k] where (Sk, £k) are f!Fk-measurable [M,
(0) X Q-valued random variables obeying:

ISk+! - ski :S sf: and E{SH! - Sk + sf(£k+1 - £k)I'!iJ ~ 8sk·
Our formulas 1 and 2 imply that the result will be proved by

the following Proposition.
PROPOSITION. For every E > 0, there is Mo > 0 such that

for every M ~ Mo there is N > 0 such that for any stochastic
process (Sk>£k)k~O in .stl(M):

(i) £k converges a.e., say to £00and E(£oo)> £0 - E;
(H) for any stopping time T, E(£T) ~ £0 - E;

(Hi) lim sup (l/n) ~k~! I(Sk = M) :S E;

(iv) E{(I/n) ~k=! I(Sk = M)} :S E whenever n ~ N.

In order to prove parts (i) and (ii) of the Proposition, we con-
sider the function

rp(S) = A[ 1 - f! (1 - ps;Y) 1
where 'Y= {3 - a, 0 < p = (1 - 13)/A, and Sk are defined in-
ductively by So = S, Sk+! = Sk + s'k. Using the theory of com-
pletely monotonic functions, we derive the convexity of rp for
sufficiently large s. This, together with additional properties of
rp, allows us to derive the following Lemma.

LEMMA. E{£k - £TIf!Fk} :S <P(Sk) :S <p(M) - 0, where T
M-+oo

= inf {j U > k, £k ¥ £) and £T is defined as £k ifT = +00.

,

Together with the finiteness of Q (the range of the £-process)
this Lemma implies that for every given 13 > 0, for sufficiently
large M E{£k - £TI f!Fk} :S 13for any stopping time T ~ k. On
the one hand, this implies part (ii) of the Proposition. On the
other hand, it implies, taking 13 < min Ix - yl, x, y E Q, x ¥
y, that there is 0' > 1 such that, for any stopping time T,

P{3i, i ~ T, £i < £TI f!FT} :S 0' < 1,

and this implies part (i) of the Proposition and the existence of
a constant V for which

E{~ I£k+! - £kl} :S V.
To prove parts (iii) and (iv), we consider the functions tfr(V,N),
which are defined by

rjJ(V,N) = supE {~I(Sk = M)} ,

where the sup is taken over all stochastic processes (Sk, £k)k=O
in .stl(M) with E{L~=o I£k+! - £kl} :S V. The function tfr satisfies
the following properties:

(i) tfrM(V,N) is concave in V and tfrM(V, Nk) :S ktfrM(V/k, N);
(ii) tfrM(V, N) ~ tfrM (0, N) as V ~ 0;

and

(iii) tfrM(O,N) :S N 13/2 for M, N sufficiently large.

These properties allow us to derive parts (iii) and (iv) of the
Proposition.
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