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Abstract Fix a zero-sum repeated game I" with incomplete information on both
sides. It is known that the value of the infinitely repeated game I'o, need not exist
(Aumann and Maschler 1995). It is proved that any number between the minmax and
the maxmin of ' is the value of a long finitely repeated game I';, where players’
information about the uncertain number of repetitions » is asymmetric.

Keywords Repeated games - Incomplete information - Uncertain duration

1 Introduction

Two-player repeated games with incomplete information (henceforth, RGII), intro-
duced by Aumann and Maschler (1995),' model long-term interactions in which play-
ers have asymmetric information about the actual one-shot game that is repeatedly
played. Modeling the long-term interactions was focused initially on the infinitely
repeated game ', and the finitely repeated game I',,. Studying the repeated game I,
assumes that the number of repetitions » is known to both players, and moreover that
n is common knowledge. These assumptions are difficult to justify in many applica-
tions of long-term interactions. Neyman and Sorin (2010) studies two-player repeated
games where the players have symmetric information about the uncertain number

1" This book is based on reports by Robert J. Aumann and Michael Maschler which appeared in the
sixties in Report of the U.S. Arms Control and Disarmament Agency. See “Game theoretic aspects
of gradual disarmament” (1966, ST-80, Chapter V, pp. V1-V55), “Repeated games with incomplete
information: a survey of recent results” (1967, ST-116, Chapter I, pp. 287-403), and “Repeated games
with incomplete information: the zero-sum extensive case” (1968, ST-143, Chapter III, pp. 37-116).
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196 A. Neyman

of repetitions. The present paper studies the model of the zero-sum RGII where the
players have asymmetric information about the number of repetitions.

In the zero-sum infinitely repeated game ", Player 1 (henceforth, P1) can guaran-
tee v if for every ¢ > 0 he has a strategy o such that for any sufficiently large number
of repetitions n, for each strategy t of Player 2 (henceforth, P2) the expected average
per-stage payoff is at least v — ¢. Similarly, P2 can guarantee v in 'y if for every
& > 0 he has a strategy t such that for any sufficiently large number of repetitions n,
for each strategy o of P1 the expected average per-stage payoff is at most v + €. The
game I" has a uniform value if the maximal payoff that P1 can guarantee, v, equals
the minimal payoff that P2 can guarantee, v.

The definition of the uniform value implies that whenever the uniform value exists,
e.g., RGII on one side (henceforth, RGII-OS) (Aumann and Maschler 1995) or stochas-
tic games (Mertens and Neyman 1981), the limit of the values of the finitely repeated
games (where payoffs are the average per-stage payoffs) converge to the uniform value
as the number (or the expected number in the model with uncertain duration) of rep-
etitions goes to infinity. This limiting result is independent of the information players
have on the number of repetitions.

The uniform value need not exist in RGII on both sides (henceforth, RGII-BS)
(Aumann and Maschler 1995, Sect. 4.3). In this case, v < v. Nonetheless, v,,
the value of the n-stage RGII-BS (with state-independent signaling) converges to
a limit as n — oo (Mertens and Zamir 1971; Mertens 1971), and more generally, vy,
the value of the finitely RGII-BS (with state-independent signaling) with a random
number of repetitions € and where the players have symmetric information about 6,
converges to a limit as the expectation of the number 6 of repetitions goes to infin-
ity (Neyman and Sorin 2010). The present paper characterizes the limit points (as
E(9) — 00) of vg where players’ information about the number of repetitions 6 is
asymmetric.

This characterization answers two natural questions: (i) what happens in repeated
games with asymmetric information about the number of repetitions and (ii) how can
one relate all the points in between v and v to long games?

In RGII, one of finitely many one-shot games is repeatedly played and each player
has only partial information about the one-shot game that is being repeated. The
RGII (denoted I') is described as follows. There is a finite set of normal form games
G™, m € M, with finite action sets I for P1 and J for P2. The state m € M is cho-
sen at random according to a publicly known probability p, and each player receives
partial information about m. The partial information of the players is defined by two
functions, ¢ : M — C andd : M — D; Pl observes ¢ = c¢(m) and P2 observes
d = d(m). In addition, after each stage the players obtain some further information
about the previous choice of moves.? This is represented by a map Q from I x J to
probabilities on A x B. Atstage ¢, given the state m and the moves (i;, j;), a pair (a;, b;)

2 This is called state-independent signaling. In more general state-dependent signaling, the players obtain
further information about the previous choice of moves and the state.
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The value of two-person zero-sum repeated games 197

is chosen at random according to the distribution Q(i;, j;).> A play of the game is thus

a sequence m, i1, ji,ai, b1, ..., 1, ji, as, by, ..., while the information to P1 before
his play at stage ¢ is c(m), i1, ai, ..., i;—1, a;—1, and the information to P2 before his
play at stage r is d(m), i1, by, ..., ji—1, by—1. The repeated game is thus represented

by the tuple I' = (M, p, MY M?%1,J,G, 0, A, B), where M is the partition of M
defined by the values of ¢ and M? is the partition of M defined by the values of d.

The payoff at stage ¢ of the repeated game, g; := G’” , depends on the chosen
state m and the action pair (i;, j;) at stage ¢. A pair of strateg1es o of P1 and t of P2
in the repeated game I" defines a probability distribution P, ; on the space of plays,
and thus a probability distribution on the stream of payoffs gi, g2, . ... The value of
the n-stage zero-sum game, v,, where P1 maximizes the (expectation of the) aver-
age g, ‘= (g1 + ... + gn)/n of the payoffs in the first n stages, exists and equals
max, min; E; ; g, (where the max is over all strategies o of P1 and the min is over
all strategies t of P2, and E, ; stands for the expectation w.r.t. the probability Py ;),
which by the minmax theorem is equal to min; maxs Es ¢ gn-

Special subclasses of RGII are defined by the signaling structure and the initial
information about the state. The classical case of standard signaling corresponds to
A =1J, B=1,andto Q(i, j) being the Dirac measure on (j, i), or equivalently, to
A =B =1 x Jandto Q(, j) being the Dirac measure on ((Z, j), (i, j)). RGII-OS
corresponds to the case where c¢(m) = m and d(m) is a constant, or equivalently, only
P1 receives a signal about m. Deterministic signaling corresponds to Q (i, j) (respec-
tively, Q(m, i, j) in the state-dependent signaling) being a Dirac measure; in this case
we can think of the signal to a player as a deterministic function of (i, j) (respectively,
(m. i, j))-

The independent case corresponds to an initial probability p such that the proba-
bility defined on C x D by p(c,d) = p({m : ¢(m) = c and d(m) = d}) is a product
probability. In this case we may assume without loss of generality that M = C x D
and that the initial probability distribution is a product probability p ® g where p is
a probability on C and ¢ is a probability distribution on D. Aumann and Maschler
(1995, Sect. 4.2) shows that each game with incomplete information in the dependent
case is equivalent to a game with incomplete information in the independent case.
Therefore, it is sufficient for our main result to handle the independent case, where
the statement and the proof of the main result are simplified.

In this paper we study the asymptotic behavior of the value of zero-sum repeated
games with an uncertain number of repetitions 6. 0 is an integer-valued random variable
on a probability space (€2, B, ) with finite expectation and each player observes par-
tial information about 6. The normalized value is denoted vg. We prove that any value
between the max min (the maximal payoff that P1 can guarantee) and the min max
(the minimal payoff that P2 can guarantee) of ', can be obtained as the value vy
for an asymmetric uncertainty about the number of repetitions 6 with arbitrarily large
expected duration E(6). As any limit point of vg as E(9) — oo is in the interval

3In state-dependent signaling, Q is a map from / x J x M to probabilities on A x B, and at stage ¢,
given the state m and the moves (i, jr), the pair (ar, by) is chosen at random according to the distribution

Q(m, iz, jr).
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198 A. Neyman

[maxmin "o, minmax "], the result characterizes the set of limit points of vg as
E) — oo.

2 The game model

The model of a RGII-BS of uncertain duration is described by two independent com-
ponents: the classical RGII-BS I" and an uncertain duration structure ®. We define
each component separately, and then the RGII-BS of uncertain duration. Thereafter,
we recall the (vexcav and cavvex) formulas (as a function of the stage game) of the
maxmin and the minmax of I", and close the section with the statement of the main
result.

RGII-BS is defined in the standard signaling and the independent case by the tuple
(C,D, p,q,1,J,G), where C, D, I, J are finite sets, p and g are probability dis-
tributions on C and D respectively, and G is a list of / x J two-person zero-sum
games G“¢, ¢ € C and d € D. The repeated game proceeds in stages. In stage 0,
nature chooses a pair (c, d) with probability p(c)q(d). P1 is informed of ¢ and P2 is
informed of d. At stage ¢t > 1, P1 is first informed of j;—; and then chooses i; € I,
and simultaneously P2 is first informed of i;_; and then chooses j; € J. The payoff
(from P2 to P1) in stage ¢ is g; = G d

The repeated game is denoted F for short, or I'(p, g) to emphasize the depen-
dence on the probability distributions p and ¢ and the fixing of the other parameters
C, D, I, J, G that define the repeated game.

A behavioral strategy of PlinT"isamapo : C x (I x J)* — A([), where (I x J)*
stands for all finite strings of / x J elements, namely, (I x J)* = U;>o(I x J)', and
A(X) stands for all probability distributions on X, and a behavioral strategy of P2 is a
mapt : D x (I x J)* — A(J). A pair of behavioral strategies, o of P1 and 7 of P2,
defines a probability distribution P; ; on the space of plays (c, d, i1, ji,i2, j2,...)
by Po:(c,d) = p(c)q(d), Poq(c.d,ir, ji) = po)g(d)o(o)lir]t(d)[ji], and by
induction on ¢

PO',‘L’(Cv d, hlv i[v .]l) = P(T,T(Cvdv ht)U(C7 ht)[ll] T(da ht)[.]l]

for hy = (i1, j1s .- sir—1s ji—1) € (I x J)7L.

The uncertainty of the number of repetitions 8 is modeled as follows. The num-
ber of repetitions 6 is an integer-valued random variable 6 defined on a probability
space (€2, B3, #) and with finite expectation. Before the start of the repeated game the
players receive partial information about the value of 6; P1 observes s!(w) € ! and
P2 observes s2(w) € S%, where S! and S? are finite sets. The interpretation is that
at stage 0, nature chooses w € €2 according to the probability p, and independently
of the choices of nature in the repeated game I', the number of repetitions is 6 (w),
and P1 and P2 are informed of s!(w) and s2(w) respectively. The joint distribution
of ©, s', s?) is assumed to be independent4 of the state (c,d). We call the tuple

((Q B, ), 0, s, s2) an uncertain duration structure.

4 The more general model, where the duration depends on the state, is obviously of interest. However,
restrictive assumptions on the uncertain duration make our main result—Theorem 1—stronger.
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The value of two-person zero-sum repeated games 199

The repeated game of uncertain duration I'y is the repeated game I', where the
choice of P1’s (respectively, P2’s) action at stage ¢, i; (respectively, j;), may depend
in addition on s ! (w) (respectively, s2(w)). Therefore a strategy o of P1 in I'y is in fact
a list of strategies o (s € S')in I, and a strategy 7 of P2 in I'g is in fact a list of
strategies 7° (s € S%)in T,

The un-normalized payoff in Iy is Z?:l g (= X ,o1810@ < 0) where
I stands for the indicator function) and the normalized one is % Zle gr-
The value of 'y (with the normalized payoff) exists, is denoted vg, and equals
max, min; Eg; 1, Mﬁ Zle g: (where the max is over all strategies o of P1 in Iy,
the min is over all strategies T of P1 in I', and E, ¢, stands for the expectation with
respect to the probability Py ; , induced on the joint probability of the number of
repetitions 6 and the play by o, 7, u). We are interested in the asymptotic behavior of
vg as the expected duration E () goes to 0o.

Given p € A(C) and g € A(D) we denote by G”-7 the I x J stage-payoff matrix
chd p(c)q(d)GC’d and by u(p, q¢) its minmax value. For x € A(l), y € A(J),
and an / x J matrix G we denote by xGy the sum >, Zj x(i)G;,jy(j). This is the
classical notation for matrix multiplication, where x is the / row vector and y is the J
column vector.

Given a compact convex set Y and a bounded function # : ¥ — R we denote by
cavyu the smallest concave function from Y to R that is > u and by vex,u the largest
convex function from Y to R thatis < u. If u : A(C) x A(D) — R we denote by
cavpu the smallest function on A(C) x A(D) that is concave in p and is not smaller
than u at each point (p, g). Similarly, vex, u is the largest function on A(C) x A(D)
that is convex in ¢ and is not larger than u at each point (p, g). Note that cav, and
vex, are operators on bounded functions on A(C) x A(D), and thus can be iterated.
The value of the function vex,cav,u, respectively cav,vex,u, at the point (p, q) is
denoted vexgcav,u (p, q), respectively cav,vexyu (p, q).

P2 can guarantee v in I'so(p, q) if for every ¢ > 0 there is a strategy t of P2 and
a positive integer N such that for every n > N and every strategy o of P1 we have

1 n
E — <
0,7 n;gt_v‘f'g

Similarly, P1 can guarantee v in I'so(p, q) if for every ¢ > 0 there is a strategy o of
P1 and a positive integer N such that for every n > N and every strategy T of P2 we
have

1 n
Es: — >v—¢
a,rn;gt_

It follows that if P2, respectively P1, can guarantee v in ' (p, ¢), then forevery ¢ > 0
there is N such that for every uncertain duration with £(0) > N we have vg < v +¢,
respectively vg > v — ¢. If each player can guarantee v in I'no(p, q), then v is called
the uniform value, or for short a value, of I'so(p, q), and is denoted voo (p, q).

@ Springer



200 A. Neyman

Aumann and Maschler (1995), respectively Stearns Aumann and Maschler (1995,
Theorem4.11), proved that P1 can guarantee, respectively cannot guarantee more than,
cavpvexqu (p, q) and that P2 can guarantee, respectively cannot guarantee more than,
vexgcav, u(p, q), and therefore I'oo (p, ¢) has a uniform value iff

cavpvexqgu (p, q) = vexgcavpu (p, q)
There are games for which
cavpvexgu (p, q) > vexgcavpu (p, q);

see Aumann and Maschler (1995).

Our main result asserts that for every ¢ > 0 and cav,vex,u (p,q) —& > v >
vexgcavpu (p, q) + ¢ there is an uncertain duration structure © such that vy = v and
E(0) > 1/e. Together with the above-mentioned result that for every ¢ > 0 there is N
such that cav,vex,u (p, q) + & > vy > vex,cav,u (p, q) — € whenever E(0) > N,
we have a complete characterization of the limit points of vg as E(8) goes to oo.

3 Preliminary results
3.1 The posteriors and conditional payoffs
In this section we review a few classical tools used in the analysis of RGIIL. The

space of plays of a RGII-BS with standard signaling is the space of sequences
(c,d, iy, j1,1i2, j2,...) with the minimal o -algebra for which all functions (c, d, i1,

J1, 02, j2,...) — (c,d,iv, j1,12, j2, .-, 1z, i), t > 0, are measurable. H; denotes
the minimal o-algebra (in fact, an algebra) for which the function (c, d, i1, ji, i2,
J2,...) = hy = (1, j1,12, j2, .., 1t—1, ji—1) 1s measurable.

In the following notations and observations we assume the independent case. Let
T be a behavioral strategy of P2 in I'. We define the functions ¢;, ¢ > 1, from plays
to A(D) (called posteriors) by induction on ¢ as follows. g; = ¢, and

(e (d. b))
d) = 1
) = S @ Ui )

Note that ¢; is H;-measurable.

Lemma 1 For every strategy o of P1 and every c, h; such that Py ¢ (c, h;) > 0, the
conditional probability

Po(d | ¢, hy) = q:(hy)ld] 2

and thus (= Py (d | h;) and) is independent of the strategy o of P1.

The next lemma is a classical tool in the study of games with incomplete informa-
tion. It is presented here for completeness. Note that if P is the joint distribution

@ Springer



The value of two-person zero-sum repeated games 201

of d.j) € D x J, then 3, P()N Y, IPW@ | j) = P)] = X, ;P ))~
PPl =2 ,P) Zj |[P(j | d) — P(j)|. Therefore, if we set

Y () =1(d, he), yi(he) = D qi(d)T(d, hy) and [y =y
d

= > 13 =y ()l
J

and apply the above equalities to the conditional distribution of (d, ji) given H, —the
algebra spanned by (c, h;) — we have

Lemma 2

Eor(lgis1 — il | H)) = Eor(lgien — gl | Ho) = D ai@llyf = vl

d
3.2 The variation of martingales of probabilities
Lemma3 Letg;, t = 1,..., K + 1 be a martingale with values in A(D) where D
is a finite set. Then
K
E> g1 — il < VK min(y/21og| D], /|D| — 1) 3)
=1

where ||qi+1 — q:ll = ZdeD |g:+1(d) — q:(d)| and |D| stands for the number of
elements of D.

Proof The bound VK /ID] =1 is classical (see, e.g., Aumann and Maschler 1995
and Mertens et al. 1994), and the bound /2K log | D| is proved in Neyman (2009). O

3.3 A strategy of the informed player in RGII-OS

We present here a result of Aumann and Maschler (1995) that is used in the proof of
our main result.

Lemma 4 (Aumann and Maschler 1995) There is a strategy o in I'(p) such that for
every t and every strategy T we have

E; . (GZl,,, IHz) > cavpu (p)
The following implication of this result is used in our analysis of RGII-BS of
uncertain duration. Fix a sequence n; < ny < --- < ng and a vector of independent

random variables ¢ = c1, ..., Ck,each ¢ distributed according to py (e.g., as in our
application py = p), whose realization is private information of P1, e.g., generated

@ Springer



202 A. Neyman

by a secret lottery performed by P1. Then, for every strategy T of P2 in I'(p, ¢) and
every sequence gy € A(D) where g is measurable w.r.t. H,, ,+1 (e.g., as in our
application, the posteriors of d before the play at stage ny_ + 1), there is a strategy
o of P1 such that for every ny_; <t < nj; we have

k. Gk -
Eg G > cavpu (pk, gr)

3.4 Mixing uncertain durations

The next lemma is a trivial (but useful) observation on the value of the repeated games
with an uncertain duration structure that is a mixture of (two) uncertain duration struc-
tures.

Lemma 5 For every two uncertain duration structures ®1 and ®, and 0 < g < 1
there is an uncertain duration structure ® such that E(0) > min(E (0y), E(6»)) and

vgp = Bug, + (1 — B)vg,

Proof Let ©1 = ((R1, Bi, k1), 01,51, 57) and ©2 = (R, B, w2), 02, 51, 53) be
two uncertain duration structures. W.l.o.g. we can assume that 21 and €2, are disjoint
and that S§ = s'(Q)) and S} = 5'(Q») are disjoint. For every 0 < & < 1, we define
the uncertain duration structure «®; + (1 — a)®> as the uncertain duration structure
®=(R,B,Wwn),0, st sz), where 2 is the disjoint union of €21 and €25, the restriction
of s/ (j = 1,2), respectively 0, to @2; (i = 1,2)1is si], respectively 6;, B consists of
all unions B; U B where B; € B;, and (B U By) = au(By) + (1 — a)uz(B)).
Then

E©0) = aEu (01) + (1 — @) Ey,y (62) = min(Ey, (01), Ey, (62))

and
aE@1)ve, + (1 — a)E(07)ve
vy = 30 > = Bug, + (1 — Bus,
and note that as « ranges over [0,1] so does 8 = B(®). O

4 The main result

Theorem 1 Forevery repeated game with incomplete information on both sides, every
e > 0, and every vexycavpu (p,q) — & > v > cavpvexqu (p,q) + €, there is an
uncertain duration structure ® with E(0) > 1/¢ and such that

Vg =0
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The value of two-person zero-sum repeated games 203

Proof 1Tt suffices to prove that
Ve >0 30 with E(0) > 1/e and vy > vexycavpu (p,q) — & 4

Explicitly, for every ¢ > 0 there is an uncertain duration structure ® =
(R, B, M),H,sl,sz) such that E(¢) > 1/¢ and vg > vexycavpu (p,q) — &.
Indeed, (4) implies by duality’ that

Ve >0 30 with E(9) > 1/e and wvg < cav,vex,u (p,q) +¢ )

The conclusion of the theorem follows from Lemma 5 together with (4) and (5).

We now turn to the proof of (4). Without loss of generality assume that
max g j |G§;]‘?| < 1.Fixe > 0.

Let K be sufficiently large so that B := min(y/21og D], /|D| — 1) < 8«/?/3.Fix
asequenceng =0 <ny <ny <--- <ng withng_1 < eny/2.Setly = nyp —ny_1.
Let u(@ = ny) = +, k=1,..., K.Plisinformed of the value of 9; P2 is

Nk Zkzl l/nk

not informed of the value of 6. Note that

1 B E,(9)
ZE=1 1/ng K

We prove that for every strategy 7 in g (p, q) (p € A(C) and g € A(D)) there is
a strategy 0 = o (t) such that

Vk < K, npu =ng) =

(6)

go(o, T) > vexycav,u(p, q) — 3e

Let 7 be a strategy of P2 in I'g. As P2 has no information about the realized value of
0, tisastrategy in I'. Let ¢, be the posterior of d before the play at stage ¢. Let g :=
Gn,_,+1 (the posterior of d before the play at stage ni—1+1). Note that g is a function of
the strategy t and the sequence of actions flk =Ny 1 =1 Jts sy Jgy)-

We now define a strategy o of player 1. Let 7 = c1,¢2, ..., Ck be asequence of
C-valued random variables such that conditional on the value of 6 they are indepen-
dent, ¢, has distribution p, and for k such that & = n; we have ¢; = c.

The strategy o will collate a sequence of strategies o, k = 1, ..., K, by following
o in stages ny—1 < t < ng. The strategy o} will depend on fzk = hp,_,+1 by being
a function of g;. By Lemma 4, we can select oy to be a strategy of P1 in the repeated
game 9k ( p) such that for every strategy 7 of P2 in [k ( p), and every 1| <t < ¥,
we have

Eq.z (g | He) = cavp u (p, gx) (7

In stage nx—1 + ¢t < ny of the repeated game I'(p, ¢q), the behavioral strategy o of P1
plays the mixed action

5 Namely, by reversing the roles of P1 and P2 so that P2 is the maximizer and P1 the minimizer with stage
payoff —g.

@ Springer



204 A. Neyman

Ok (Chs img_ 415 gy 15+ - s gy t—1s gy +1—1)

We define the auxiliary stage payoffs g; as follows. For nx_1 < t < n; we set

1od
& =Gy,
Recall that 2ny_; < eng, and note that on 6 = ny we have g/ = g; = Gft”djt for
nig_1 <t < ng. Therefore,
Dl <0)=> gt <0)—eb
t t
and thus
Eorp » 81t <0)> Egryu > gi1(t <0)—cE(®©) ®)
t t
The definition of o implies that the conditional distribution of g’f, g%‘, ..., glven 6,
is independent of 6.
The definition of o implies that for every ny_; < t < n; we have
Eoe (GE011,) = cavpu (p, ) )

For every 1 <t we set

ytd =1(d,h;) and y, = Zq,(d)y;i
d

Recall that ytd = 1(d, h;) and that y, = Zd q:(d) ytd is measurable w.r.t. H;. The
play of the strategy o depends on the realization of 7. Its playinstagesng_; <t < ny
depends only on the value of ¢, (which need not be equal to the actual value of ¢) and
therefore (by abuse of notation) we denote

Xt = o ek, hy)
and for every nx_1 <t < ny we denote by p; the posterior given h; of c.

The definitions of o, p;, ¢:, ytd , and y; (all as a function of the given strategy ©
of P2), together with property (7), imply that for every nx_1 < t < ny we have

Eor (g 1 Hi) = D pi(©) D ai(d)x{ G (yt +yf - yz)
c d
> > pi©) D (@@ + q:(d) — G(@) xf Gy =D qr@lyf — vl
c d d

= > pi(©) D qk@x Gy = lgr — Gll = Eoe(lgi1 — qell | Ho)
c d
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> > p@xf Gy, — llgr — dll = Eo,e (g1 — qrll 1 M)

c

= cavpu (p. i) — llgr — Gl = Eox (g1 — gell | He)

where the second inequality uses Lemma 2 and the last inequality uses inequality (9).
Therefore, as E, :gr = q and vex,cav,u is convex in ¢ and < cav,u,

Ecr,r(gt*) > vexgcavy u(p,q) — Eor llgt+1 — q:ll — Eo.z llgr — ék”
By the triangle inequality (or equivalently, the convexity of the norm) we have

Eor llgr — Gkl = Eox 1gi+1 — gill and llgiv1 — gell < llgr+1 — gkl + llgr — Gl
and therefore, by setting ny = Eq ¢ ||gk+1 — gk ||, we have

> Eox(g)) = tivexgeav, u(p. q) — 3l

ng—1<t=ng

and therefore

Z Es 1 (8}) = nivexgcav, u(p, q) — eny — 3nny

1<t<ny
Recall (6) and that the distribution of g; is independent of 6. Therefore

; 3E()
Eorp 28710t <0) 2 E@)vexgeavpu (p.q) —eE©) = —— > e (10)

t k

ByLemma3, > nx < B+/K,where B = min(y/21Tog [D], /D] — 1). Therefore,
as K is sufficiently large so that 3B VK < ¢K, we have

1
Eo,r,u% th*l(t <0) > vexycav,u (p,q) — 2¢
!

which together with (8) completes the proof of (4). O

The next result is a simple corollary of Theorem 1 and the definition of the maxmin
and minmax.

Corollary 1 For every repeated game with incomplete information on both sides,
the set of values vg, where the uncertainty structure (2, B, u), 0, st s2) ranges
over all uncertainty structures with EO > N, converges, as N goes to 0o, to
[cavpvexyu (p, q), vexycavpu (p, q)].
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5 Remarks

There are obviously alternative and/or more general models of asymmetric uncertain
duration. For example, the signal sets S' and S? need not be finite, the signals can
be probabilistic, and incremental information can be transmitted to the players in the
course of the game and as a function of players’ actions. However, each such class of
models will include our class of uncertain durations. As our main result asserts that for
any v in a given range there is an uncertain duration with a given property, it follows
that the more restricted is the class of models of asymmetric uncertain duration, the
stronger is the conclusion of Theorem 1. We conclude that Theorem 1 holds for any
reasonable class of models of asymmetric uncertain duration.

The other (easy part) of the result, that for every ¢ > 0 there is N sufficiently large
such that v9 > v — ¢ (and vg < v + &) whenever E6 > N, follows from the fact
that P1 can guarantee v and P2 can guarantee v in ['w. Therefore, this conclusion
holds for all possible models of an asymmetric duration uncertainty (where the num-
ber of repetitions is independent® of the state). In short, the conclusion of Theorem 1
is independent of the particular choice of modeling asymmetric duration uncertainty.

We turn now to questions motivated by the results of the present paper. A natural
question that arises is whether we can characterize the asymptotic conditions on the
distribution of @ (with finite expectation) so that independently of players’ signals
about § we will have vg — lim v,,.

A simple sufficient condition is that E(6) — ocoand E(|0 —E(0)|+1)/E(6) — 0.
Indeed, if n(0) is the integer part of E(0) then | >, g1 (t < 6) — Z,Sn(g) gl <10 —
n(@)| < |60 — E(@)| + 1. Therefore, if |G| := 2max, 4 ; |Gf,’;i|, an optimal strategy

IGIE6—E@)|+1)
E@©)

of P1in I';;(p) guarantees in I'g a payoff of at least v, ) — — limv,

E(0—-E@)|+D)
S=—%@ 0.

Another natural question that arises is the asymptotic characterization of the dis-
tributions p of the number 6 of repetitions that when P1 is informed of 6 and P2 is
not, then the value vy is close to the minmax (vex,cav,u (p, q)) of the repeated game
I'(p, g). A close look at the proof of the main result reveals a sufficient condition.
Given a distribution w of the uncertain number of repetitions § and 0 < 8 < 1 we
define 6(B) to be

a

inf{f : E,(01(0 < B)) = BE.(0)

Note that 6 () is monotonic nondecreasing in 8 and that the distribution u constructed
in our proof obeys 6(k/K) = ni. We have the following result: for every ¢ > 0 there
is § > 0 such that for an uncertainty structure where P1 is informed of the value of 6
and P2 is not, if E(0) > 1/§ and forevery B < 1 — & we have (8 + &) > 6(B)/9,
then

vy > vexgcavp (p,q) — €

6 The more general model, where the number of repetitions may be correlated to the state, is obviously of
interest.
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It is also of interest to find out the limit behavior of vy for specific classes of
asymmetric uncertain durations. Two suggestive examples are when 6 is uniformly
distributed on {1, 2, . .., n} and when 6 has the distribution P(0 = n) = (1 —1)A"" L,
and P1 is informed and P2 is not informed of the value of 6. Denote the normalized
values by v+ and v,+. What are the limits, if they exist, of v, as n — 0o and of v,
as A — 1=?

Itis also of interest to study the payoff outcomes of repeated games with incomplete
information and uncertain duration where the number of repetitions is known to both
players, but not commonly known. A study of such non-zero-sum repeated games with
complete information is presented in Neyman (1999).
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