
MA THE?vIA TICS OF OPERA nONS RESE<\RCH
Vol. 13. No.4. November 1988
Primed in US.A.
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The asymptotic value of a game v with a continuum set of players, I, is defined whenever all
the sequences of the Shapley values of finite games that" approximate" v have the same limit
A weighted majority game is a game of the form fop. where p. is a positive measure and
lex) = 1 if x;:;, q and lex) = 0 otherwise, and q is a real number, 0 < q < p.(1). In this
paper we prove that all weighted majority games have asymptotic values. This result is then
used further to show that if v is of the form v = fop., where p. is a probability measure and f

is a function of bounded variation on [0,1] that is continuous at 0 and at 1, then v has an
asymptotic value. This had previously been known only when f is absolutely continuous, or
when p. has at most finitely many atoms or when p. is purely atomic. Thus, the essential
novelty is that even when p. has countably many atoms and a nonatomic part, fop. has an
asymptotic value. We also show that fop. does not necessarily have an asymptotic value when
p. is a signed measure.

"

1. Introduction. The Shapley value is one of the basic solution concepts of
cooperative game theory. It measures the payoff that each player can expect to obtain,
"on the average," by playing the game. The Shapley value for games with finitely many
players was introduced by Shapley (1953), as an operator that associates to each game
a corresponding vector of payoffs to the players; this operator is uniquely determined
by a number of plausible axioms.

Starting in the late fiftie~" one of the main lines of study of the behavior of the value
has been in the context of "large games" - where there are "many players", some of
which are almost insignificant.l This models situations that frequently occur in
economic and political institutions. A class of such games, called "oceanic" games, has
been studied by Millor and Shapley (1961), Shapiro and Shapley (1960), Shapley
(1961) and Hart (1973). These are weighted majority games in which a sizeable fraction
of the total vote is controlled by a few large (" major") players, and the rest is
distributed among a large number of small (" minor") voters. Shapiro and' Shapley
(1960), Milnor and Shapley (1961), and Shapley (1961) presented asymptotic results for
the values of the major players, when the minor ones become smaller and smaller. A
more difficult task turned out to be finding the limit of the values of the minor players.
Even in the case where there are no major players at all (thus, each player controls a
negligible fraction of the total vote), this was an open problem for many years. This
first case was solved by Neyman (1981). It was then extended to the case of finitely
many major players in a later paper Neyman (1979).
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A parallel direction of investigation was the extension of the value to weighted
majority games with countably many players. Such a game is given as an ordered pair
(q, W), where q is a real number and W is a measure on the nonnegative integers N
such that 0 < q < WeN). The set of players is N; a coalition S c N is winning if and
only if W(S) ~ q. If the voting measure W has finite support then the weighted
majority game (q, W) becomes a finite game, and the value If;i of player i is just the
probability of i being a pivot in a random order of the players. In the general case
(when the voting measure does not have finite support), the value If;i of player i is
defined similarly, as the probability of i being a pivot in a random order2 of the
countable set of players N. It turns out (Shapiro and Shapley 1971, Theorem 16, or
Artstein 1971) that If;i is the limit of the values If;~ of i in the truncated games (q, Wk),
where Wk(j) = W(j) if j <; k and Wk(j) = 0 otherwise. However, whether the
resulting If; is efficient (i.e., L~llf;i = 1) for all such games was an open problem for
may years; it was recently answered in the affirmative by Berbee (1981).

The analysis of the behavior of the value in the n-person games as n becomes large
finds a natural and more general setting in the framework of values of games with a
continuum of players. Such games are functions u from Cf to the reals, with u(0) = 0,
where (1, Cf) is a measurable space isomorphic to ([0,1], f!iJ) (where f!8 is the a-field of
Borel sets on [0,1]. Here, I is interpreted as the set of players, and Cf as the family of

"

possible coalitions. The value for such games is a generalization of the Shapley value
for finite games due to Aumann and Shapley (1974). Of special interest are values that
are obtained as limits of values of finite approximants. The asymptotic value is the
"strongest" possible such value in the sense that, if it exists for a particular game u,
then any limiting value3 will exist for that game and will equal the asymptotic one.
Briefly, the asymptotic value is defined on each game u for which all the sequences of
Shapley values, corresponding to sequences of finite games that" approximate" u, have
the same limit. Any result asserting that a given game has an asymptotic value is
essentially a result about the limit behavior of the values of (finite) games with many
players.

The asymptotic value has been studied extensively (Aumann and Shapley 1974,
Dubey 1980, Fogelman and Quinzii 1980, Hart, 1977, Kannai 1966, Neyman 1979,
1981, 1982). Let f.Lbe a probability measure on the measurable space of players (1, ~)
and let 1 be a monotonic function on [0,1] with 1(0) = O. It has long been known
(Kannai 1966 and Aumann and Shapley 1974) that when f.L is nonatorrllc and 1 is
absolutely continuous, 10 f.Lhas an asymptotic value. Fogelman and Quinzii (1980)
showed that whenever 1 is absolutely continuous andJ.L has at most finitely many
atoms, 10 f.Lhas an asymptotic value. Neyman (1979, 1981) showed that 10 f.Lhas an
asymptotic value whenever 1 is continuous at 0 and 1 and f.Lhas at most finitely many
atoms. Berbee's result (1981) implies that 10 f.Lhas an asymptotic value whenever f is
a jump function and f.Lis purely atomic. The present paper asserts that 10 J.L has an
asymptotic value Jor every probability measure f.Land all monotonic functions 1 that
are continuo~sa:{ 0 and 1.

The set of all games having an asymptotic value is a linear space and thus the result
implie~ that 1 could be any function in bu' where bu' denotes all functions from [0, 1]
to the reals with 1(0) = 0 that are continuous at 0 and 1 and are,of bounded variation.
Moreover, the space, ASYMP, of all games that are of bounded variation (equivalently,
that are the difference of two monotonic games) and' have an asymptotic value is a
closed (in the bounded variation norm) subspace of BV - the space of all games having

~

- 2An order of a finite set is usually identified with a permutation; tills is not so in the countable case,
3Like the ,lL-value[2], [10], [15] and the partition value [19]. '
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bQunded variation. Thus, if M stands for all measures on (1, ~), and bv'Mis the
closed subspace of B V generated by games of the form I 0

!1- where I E bv' and fJ.is a
probability measure in M, then our main result is

THEOREM A. bv'M cASYMP.

In §2, the formal definitions and statement of results are given. §3 contains formulas
for the value for finite games and the formal statement of two previously known results
that are essential for our proof. §4 contains the proof of Theorem A. In §5, we show by
means of counterexamples that there is no hope to extend our result to signed
measures as well, and indicate other possible extensions.

2. Statement of results. We begin by recalling that a coalitional game, or game
for short, is a real valued function v on, thea-field ,~:'of a measurable space (1, ~),
with v(0) = O. It is monotonic if S, T E ~" aIid.T c,$ imply that DeS) ~ veT); it is
of bounded variation if it is the differencebetween:twomonotonic games. The game v
is finite if ~ is finite. The Shapley valuc;!for annite game v is the measure on ~ given
by .'. '.

( \f; v )( a) = -\ E[ v ( 9'a9f U a) - v ( 9'a9f) ]
n. 9f

where the sum runs over all or~ers ~ of the players (atoms of ~) and 9': is the union
of all atoms preceding a (an atom of ~) in the order ~. Given T E rt', aT-admissible
sequence is an increasing sequence (Ill, Il2, . . . ,) of finite fields such that T E III and
UiITi generates ~. Given a finite subfield IT of ~, the restriction of v to IT, Un, is a
finite game (on (/, IT)). A game <pvis said to be the asymptotic value of v, if for every
T E ~ and every T-admissible sequence (ITi)~l' the following limit and equality
exists:

Jim \f;v II (T) = <p v (T).
k-+ 00

k

The set of all games v (on (/, rt')) of bounded variation and having an asymptotic
value is denoted by ASYMP.

The essential part of the main result (of the present paper) is that whenever IE bu',
where bu' is the space of all functions I of bounded variation from [0,1] to the reals
with 1(0) = 0 and I continuous at 0 and 1, and !1-is a probability measure on (/, ~),
then 10 fJ.is in ASYMP. There are properties of the set ASYMP that enable to deduce
a stronger result. The space of all games of bounded variation is denoted BV The
variation norm of v is defined by IIvll = inf(u(1) + w(1)), where the inf ranges over all
monotonic functions u and w such that u = u - w. The set of all measures on (/, rt')
is denoted by M. The closed (in the bounded variations norm) linear subspace of BV
that is generated by games of the form f 0 !1-, f E bv' and p- is a probability measure in
M is denoted bv'M. Our main result is

.

THEOREM A. bv'M c ASYMP.

There are various subspaces of bv'M which were known to be included in ASYMP.'
Let pNA be the closed subspace of BV that is generated by powers of nonatomic
measures and pFL stands for the closed space generated by powers of positive'
measurC3 with at most finitely many atoms. Let NA denote all nonatomic measures,
FL all measures with at most finitely many atoms and Ma all purely atomic measures.
Each of the spaces, bv'NA, bv'FL and bu'Ma is defined as the closed subspace of BV
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that is generated by games of the form f 0 f-Lwhere f EObu' and f-Lis a probability
measure in NA, FL, or j\;Ia respectively.

Kannai (1966) and Aumann and Shapley (1974) show that pNA c ASYlvIP.
Fogelman and Quinzii (1980) show that pFL c ASY1WP. Neyman (1981) and (1979)
show that bulNA c ASYMP and bu'FL c ASYlvIP respectively. Berbee (1981) to-
gether with Shapiro and Shapley (1971, Theorem 14) and the proof of [17, Lemma 8
and Theorem A] imply that bu'Ma c ASY1WP. It was further announced in [16] that
Berbee's result implies the existence of a partition value on bv'lvI. However, whether
bvllvI is contained in ASYMP was an open problem.

..

3. Preliminaries. This section recalls formulas for the Shapley value of finite
games, two theorems that are basic for our present proof, and few well-known
properties of the value.

Let (A, u) be a finite game, i.e., A is finite set and u: 2A ~ R with u(0) = O. The
Shapley value of the game u to player a EOA is given by

(3.1) .J;v(a) = (l/IAI!)I:u(.9'a9?u {a}) - u(.9'a9?)
9?

where IAI stands for the number of elements in A, the summation ranges over all
orders !J?of the player set A and .9':: denotes the set of all players that precede a in
the order !J? An alternative formula for .J; v (a) could be given by means of a family

Xa' a EOA, of i.i.d random variables that are uniformly distributed on (0;1), The values
of Xa' a EOA, induce with probability one an order !J?on A; a precedes b if and only
if Xb > Xa' As Xa' a EOA, are i.i.d and nonatomic, all orders are equally likely. Thus,

(3.2)

.J; u ( a) = E (v ({b EOA: Xb < Xa}) - U({b EOA: Xb < Xa}))

= 11E ( v ({b EOA: Xb < t} U {a}) - u({ b EOA: Xb < t} \ {a })) dt.
0

When the game v is a weighted majority game, it is described by a pair (q, W) where
q is a real number and W is a measure on A with 0< q < LaEAW(a). For SeA,
v(S) = 1 if LaESW(a) ~ q and v(S) = 0 otherwise. In that case formula (3.2) could,
be rewritten as

(3.3) (.J;v)(a) = E
(
I( q < I: W(b)I(Xb < XJ < q + w(a)) )

bEA

~

fEr I( q - W(a) '" £ W(b)I(Xb '" t) < q)) dt,

b"pa

For a subset B of A the Shapley value .J;v(B) is given by .J;v(B) = LaES.J;v(a) and if
u~is a weighted majority game then formula (3.3) yields

(3.4) (.J;v)(B) = E
(
I:I(q < I: W(a)I(Xa < Xb) < q + Web)) )

.
bEE aEA

The proof of the main result of the paper will make use of two' previously known
results in value theory, which for completeness will be now stated. The first one is the
main theorem of [18]. '

I
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THEOREM 3.5. For every E > 0 there exists K = K( E) such thiltifu = (q, (W(a»a EA)
is a weighted majority game with

KmaXaEAW(a) < q < L W(b) - KmaxaEAW(a),
bEA

then

a~A
!1jJv(a) - W(a)\b~A

W(b) 1< L

The second is the main theorem of [4].

THEOREM3.6. Let (aJf=1 be a countable sequence with ai;> 0 and Lai = 1.
Assume that (XJ~1 is a sequence ofi.i.d random variables that are uniformly distributed
on [0,1]. Then for every 0 < q < 1, Lf=IE(i) = 1 where

E(i) ~ E( I( q - ai <; f;;ajI(Xj < Xi) <
q)

~ fE(I(q-a", j~,aAXj<t) <q))dt.

The dual of a finite game (A, v) is,a game (A, v*) where v*(S) =: v(A) - v(A \ S).
It is well known that 1jJv = 1jJu*. Also if v is an arbitrary game, i.e., v: '(j ~ R with
v(0) = 0 then the dual of v, v*, is given by v*(S) = v(I) - u(I\ S) for every
S E '(j. The game v has an asymptotic value if and only if its dual has, and then the
asymptotic values coincide. If f: [0, 1] ~ R, f(O) = 0 and fl is a probability measure
then it is easily verified that (f 0 fl)* = f* 0 fl where f*(x) = f(l) - f(l - x).

4. The asymptotic value on bv'M. In this section we will prove the main result of
this paper, namely, that bv'M c ASYMP.

For 0 < q < 1 we denote by fq the real valued function on [0,1] that is given by
fi x) = 1 if x ;> q and fi x) = 0 if x < q.

THEOREM1. For any probability measure fl on (1, '(j) and for any 0 < q < 1,
fq 0 fl E ASYMP. '

PROOF. We have to show the existence of a finitely additive set function CP(fq0 fl)

such that for any increasing sequence (IIn)~=1 of finite sub fields of '1? such that Uilli
generates '(j, and T E ill we have

(2) lim 1jJ(fq 0 fl ) TI (T) = cp(fq 0 fl) ( T ) ,
n->oo "

where 1jJ denotes the Shapley value for finite games.
We will start by introducing a formula for '~(fq 0 fl). Let fl = flA + flNA be the

decomposition of fl into a purely atomic measure flA and a nonatomic one flNA- Let
(yJ~1 be the atoms of the measure fl, with 1 ~ i <j < 00 ~ Yi* yj' Set ai = fl({yd)
= flA({Yi})' a = 1 - If=lai' Let (XJf=1 be a sequence of i.i.d random variables that
are uniformly distributed on (0,1). For i E Nand 0 < t < 1, let EO, t) be defined by

(3) E(i, f) ~

EH
q , a, <;

j~;
aJ( J0 <; f) + fa < q ) )
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and let E Ci) be defined by

(4) E(i) = 11E(i, t) dr.
0

Then 1>Cfqo}l) is given by: for T E (fj

(5) 1>(fq 0 }l )(T) =

L E(i)
{i:y;ET}

(i F.T)
E(i) + (1 - i~,E(;) )~NA(T)/a

if a = 0,

if a > O.
;j

LEMMA6. Let CIIn)~=1 be an increasing sequence of finite subfields of (fj for which

UJIi generates (fj. For any i E N let an(i) be the atom of IIn that contains Yi' Then, for
each fixed i E N,

(7) lim tJ; (fq a }l) n (a n(i») = E (i).
n-oo n

PROOF. 1£ }lNA = 0 and }l has only finitely many atoms, tJ;(fq a }l)nn(an(i» = E(i)
for sufficiently large n, e.g. by (3.3). Therefore we assume that either a > 0 or that }l
has infinitely many atoms. As (TIn)~=1 is increasing it follows that for any i E N,
(an(i»~=l is decreasing, and as UnTIn generates (fj it follows that n~=lan(i) = Yi and
therefore for any i EN, limn-->oo}l(an(i» = ai' 1£ there are countably many atoms,
then for every t in (0, 1)

(8) E
( I( q - aj ~

j~:A Xj <; f) + fa)
)

~ 0,

and if a > 0, (8) holds for all but fu;ritely many values of t. Therefore, E(i, t) =
E(I(q - ai < Lj+:a/(Xj < t) + ta < q», for all but finitely many values ~of t. As
I(q - ai + 1] < Lj+ia/(Xj < t) + ta < q - 1]) increases as 1] --? 0 + to I(q - ai <

Lj+ia/(Xj < t) + ta < q), we deduce from Lebesgue monotone convergence theo-
rem that for all but finitely many values of t,

E(i, t) = lim E
(

I
(

q - ai + 1] < L ajI(Xj < t) + ta < q - 1]
))11-0+ j+i

and therefor~/for all but finitely many values of t, for every � > 0 there exists 1] > 0
such that %' ,.;

)

'E( I( q - a,+ ~ < j~,aJ(10 "" t) + ta < q - ~)) > E(i, t) - E.

There is kEN S.t. k ~ i and L}'=k+1aj < 1]/4, and there is no such that for n ~ no,
1 -< m <} -< k ~ an(m) =1= an(j) and 1 -<} -< k ~ p.(an(j» - aj < 1]/4k. Let An be
all atoms of TIn and let X;, a E An' be i.i.d random variables that are uniformly
distributed on (0,1) and we assume without loss of generality that for each fixed
n>no, X;n(i)=Xi for each l<i-<k. Let An,k=An\{an(l),...,an(k)}. Then~-
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recalling that /l NA is the nonatomic part of /l,

k

O~ L /l(a)I(X;~t)- La/(Xj~t)~7J/4 and
aEA"\A,,,k )=1

a*a"(i) )*i

o~ L /l (a) I (X~' ~ t) - L /lNA(a)I(X;~t)<7J/4 and
aEA",k aEA",k

a ~ L /lNA(a)I(X; ~ t) - L /lNA(a)I(X; ~ t) < 7J/4.
aEA" aEA",k

Therefore

-7J/4 < L /l(a)I(X~' ~ t) -

r
t uJ{Xj <; t) + L uNA(a)J(X;<; t)

J
aEA" ;-1 aEA"

a*a"(i) i*i

~ 7J/2.

Thus

I
(

q-ai~ L /l(a)I(X~I~t)<q
)aEA"

a4a"(i)

;;>
I(

q - a, + ../4 '"
j~l

a/(Xj '" t)

i-r-I

+ L /lNA(a)I(X~' ~ t) < q - 7J/2

)

.
aEA"

As LaEA /lNA(a)I(X; ~ t) converges in distribution to ta we deduce that for suffi-
ciently la;ge n,

E

(

I
(

q - aj + ~/ 4" t ai( Xj " t) + r.
M NA (a) I( X; " t) < q - ~/2

)i-I aEA"
i*i

:;, E

H
q - a,+ ~ "

&~

ajI( Xj
"

t) + ta < q -
~)

)

- <.
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As f-L( GnU) ~ (Xi'

I
(

q - f-L(an(i)) < L f-L(a)I(X; < t) < q
)aEAn

a*an(i)

~I
(

q-(Xi< L }J.(a)I(X;<t) <q
]

.
aEAn

a*an(i) ~

Altogether, we conclude that

n~:E
(
I( q - ~(a"(i)) <;

a~.
~(a)I(X; <; t) < q

)
)a*an(i)

~ lim E

(

I
(

q - (Xi < L f-L(a)I(X; ~ t) < q
))n-> 00 aEAn

. a*an(i)

;>
"m:

E

+
- a, + ~/4 .;

&~

ajI( Xj'; t))
)

+ L JLNA(a)I((X; ~ t) < q - 17/2) > E(i, t) - 2�.
aEAn

As

"'(!qO~)TI.(a"(i) ~ ~1.E( I( q - ~(a"(j»"
q:~ti)~(a)I(X:"

t) <
q))

dt

we obtain by applying Fatou's Lemma that limn-+ooo/(fq ° }J.)nn(anu)) ~ EO) - 2t:. A
similar argulllent,shows that -

#' )i

lim 0/ ( fq °
}J.) rrJ an ( i)! ~ E (i) + 2 �.

n->oo

As this holds for any � > 0 the lemma is proved. -
The next lemma uses the previous one together with a result of Berbee to prove

Theorem 1 in the case that JLis purely atomic.

LEMMA9. If f-LNA= 0, then (2) holds with CP(fqoJL)(T) = L(i:YiET}EO).

The Lemma is an almost direct corollary ,of [4] and [21, Theorem 14]; for complete-
ness a proof is included here. .



(10) lim tJ; ( fq
° Jl) nil

(T);? L E(i)
n->oo {i: YiET}

and similarly that

lim tJ;(fqoJl)nll(TC);? L E(i).
11->00 {i:y;ET}
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PROOF. Let (II/T)~=l be an increasing sequence of subfields of ~ with T E III and
UIlII,! generating ~. Given � > 0 there is k S.t. L{l';;j';;k:Y;ET}E(i);? L{i:YiET}E(i)
- �. There is no S.t. for n ;? no, 1 ~ i < j ~ k => alTO) =1=an(j). As tJ;(fq ° Jl)n,,(') is
finitely additive and monotonic, the inclusion Uj'::l Y;ETan(i) e T implies that
tJ;(fq ° Jlhl,,(T) ;? tJ;(fq ° Jl)n"CUt~l Y;ETan(i» and as for n ;? no, 1 ~ i < j ~ k, an(i)
=1=a'1(j) we deduce from the finite additivity of tJ;(fq ° Jl)(') that for n ;? no

tJ;(fq ° Jl) TIJ T) ;? L tJ; (fq ° Jl) TI (a n(i))
{i.;;k:YiET} : II

and therefore by Lemma 6, that

lim tJ; (fq ° Jl) nJ T) ;? L E ( i )
n->oo {i.;;;k: y;ET}

which by the selection of k is ;? (L{i:Y;ET}E(i» - �. As this holds for all � > 0, we
conclude that for any T E III

By the efficiency of tJ;, tJ;(fqoJl)TIII(T) = 1 - tJ;(fqoJl)n,,(P') and therefore

lim tJ;(fqoJl)nJT) = 1- Urn tJ;(fqoJl)nJTC) ~ 1- L E(i).
, 11->00 n->oo {i:y;ETC}

By Berbee's result L~lE(i) = 1 and therefore 1 - L{i:
YI ETC}E(i) = L{i: Yi ET}E(i),

which implies that limn-+ootJ;(fqoJl)n,,(T) ~ L{i:YIET}E(i) which together with (10)
implies that

lim tJ;( fq ° Jl)n (T) = L E ( i)
11->00

" {i:yET}

which completes the proof of Lemma 9. .
Recall that (IIn)~=1 is an increasing sequence of subfields such that UjIIj generates

(6?,and that An denotes the set of atoms of the subfield II". For each n E N, let X;,
a E An be i.i.d random variables that are uniformly distributed on (0,1), and let
Sn(t) =' {a E An: X; ~ t}, 0 ~ t ~ 1. Note ,that SIler) is a stochastic process on [0,1]
with values in the power set of An' such that SIleO),= 0 and Sn(l) = An' Note that the
restriction of any measure v on ~ to IIn is a measure on (I, iln) and thus induces a
measure Vn on (An,2A,,). No confusion should result if we denote this induced
measure als~ by v, i.e., for any Be An' DeB) = Lb EBv(b). Using these notations we
observe that u(Sn(t» is a real valued (nondecreasing if v ;? 0) stochastic process on
[0,1] with u(Sn(O» = 0 and u(Sn(l» = u(I).

.

We will derive now some general inequalities for the process u(Sn(t». The present
paper will apply these inequalities only when u is nonnegative. As there is almost no
extra cost to drive the inequalities for a signed measure u, we have chosen to state and
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prove the inequalities for signed measures. If v is a signed measure, we denote by Iv I
the measure which is the sum of the positive v + and negative u - parts of the mea-
sure v.

LEMMA11. For any measure v on (1, ~) with v =F0, and any 0 ~ t < t ~ 1 and any
c> 0,

Prob(lv(SnU») - v(Sn(t») - U- t)v(1)1 > clvl(I»)

(t - t)max{lv(a)l: a E An}
<

c2(lvl(1»)
. ~

PROOF. It is a direct application of Chebyschev's inequality to the random variable
v(SnO» - v(Sn(t» = LaEA v(a)I(t < X; ~ t) which is a S1.lm of the independent
random variables v(a)I(t -< X; ~ i), a E An' E(v(a)i(t < X; ~ i»~ = 0 - t)v(a)
and thus

E(v(SnU») - v(Sn(t»)) = L U- t)v(a) = U - t)v(1),
aEAn

while Var(v(a)l(t < X; ~ i» = 0 - t)(l - 0 - t)](v(a»2 and therefore using the
independence of the summands,

Vare v (Sn (t») - v (Sn (t»)) = (t - t) (1 - (t - t» L (v ( a »)2

aEAn

~ 0 - t) L max{ Iv(b) I: bEAn} Iv(a) I
aEAn

~ U - t)( L Iv(a)l)max{jv(b)l: bEAn}
aEAn

. .

~ U- t)max{lv(a)l: a E An} 'IvIU).

Therefore, by Chebyshev's inequality,

Prob(lv(SnO») - v(Sn(t») - U - t)v(I)1 > c(lvl(I»))

(t - t)max{lv(a)l: a E An}(lvl(I)) 0 - t)max{lv(a)l: a E An}
< =

c2(lvl(I»)2 'c2(lvl(I))

COROLLARY12. For any £ > 0 and 0 < q < 1 there exists 13> 0 such that for any
probability measure J.Lon (1, ~) and any finite subfield TIn of ~, .'

Prob(J.L(Sn(l - 13») < q; 1)+ Prob(J.L(Sn (/3))..?> qj2). < £/2.

PROOF. Apply the previous lemma to v = J.L, r- t =/3 and c = (q/2/\
(1 - q)/2] - 13 and deduce that each of summands is ~ /3/C2 which converges to
zero as 13 ~ o. ..' .
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COROLLARY13. For anyprobability measure ILon (1, ~} and ( > 0 andany/31 >, 0,
there exist 0 < /3 < /31 and nl such that for all n ~. nl, .

Prob(ILNA(J) ~ ILNA(S,,(1 - /3») < /3ILNA{I)/2)

< 4max{ILNA(a): a E A,,}//3(ILNA(J»).

PROOF. Apply Lemma 11 to the measure v = ILNA' 1 - {3= t < i = 1, c =
/3/2 to bound the left-hand side by max{ILNA(a): a E A,,}{3/(ILNA(1){32/4) =
4max{ILNA(a): a E A,,}/[{3(ILNA(1»].

LEMMA14. Let v be a positive measure on (1, ~). Then

Prob ( max {lv(S,,(t») - tv(I)I > ((v(J») ) :::;; 8max{v(a): a EA,,}/((3v(I)).
0<;;1<;;1

.
PROOF. There exists 0 = to :::;;tl :::;;t2:::;; ... :::;;tk = 1 with k - 1 < 2/( such that

ti - ti-l :::;;£/2. By Lemma 11, for every 1:::;; i :::;;k

(
(

) 4 max {v ( a ): a E A,,}
Prob Iv(S,,(tJ) - tiv(J)1 > 2v(I) <

(2V(J) .

Therefore

Prob(31 :::;;i < k s.t.lv(s,,(tJL- ti,V(J)j > w(I)/2)

( )
4max{v(a):a EA,,) 8rnax{v(a): a EA,,}

< k - 1 (2V(J) < (3V(J)

As V(SII(t» is nondecreasing, if ti-l:::;; t :::;;ti and Iv(S,,(t» - tv(1)1 > w(1)
then either V(S,,(ti» > tiv(I) + ((/2)v(I) or' V(S,,(ti-l» < ti-lV(I) -
((/2) v(1). Therefore,

Prob( sup Iv(S,,(t») - tv(J)1 > w(I))
0<;; 1<;; 1

:::;; Prob(31 :::;;i < k, Iv(S,,(tJ) - tiv(J)1 > (�/2)v(J»)

8 max { v ( a ): a E A" }
:::;; 3�v(J)

We turn now to the essential preparation fbr the proof that fq 0 IL E ASYMP
wherever 0 < q < 1 and ILis a probability measure on (1, ~) with ILNA(1) > O.Recall
that we denoted the sequence of atoms of the probability measure ILby (Y;)~1 (with
i =1=j =:>Yi =1=Yj)' We assume without loss of generality that ak ==IL({Yd) is monotonic
nonincreasing, i.e., ak-l ~ ak ~ O. In what follows 0 <. q < 1, the probability measure
IL and the increasing sequence of partitions (IIi)f=1 that generates ~ are held fixed.

Let (qk)k=1 be a sequence such that qk <q, qk-+ q ask -+oo,ak/(q ~ qk) -+ k->(x,o
and k( q - qk) -+ k->exp.To show ithat such a sequence exists one has to verify that
kak -+ k -->000 which follows fromLak < 00 and the mono tonicity of the aks. For
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instance, take qk = q - Jcxk/k if there are infinitely many values of k with CXk> 0,
and qk = q - l/k2 otherwise.For 0 < x < 1 we define the random variable tn(x) =
inf{ t: p.(Sn(t)) ;> x}, and the a-field ~(x) is the a-field generated by the random
variables X;I(X; < tn(x)). For any subset B of An and a measure v on (1, ~) we
denote by p(v, B) = max{lv(a)j: a E B}. Recall that An,k = {a E Anj\1'1 < i < k,

Yi r:E a}.

Note that for each /3 > 0, each one of the following random variables is measurable
with respect to ~(qk)'

11 = 1(p.(Sn(tn(qk))) - qk < p(p., An,k) /\ (q - qk)),
~

12 = 1(p.-(An,k \Sn(tn(qk))) > (/3/2)p.(An,k))

13 = l(tn(qk) < 1 - /3) = 1(p.(Sn(1 - [3)) ;> qk)'

For every U c An we denote by Fn(U) the random variable

Fn(U) = L l(q < p.(Sn(X;)) < q + p.(a)).
aEU

As Prob(X; = XI:) = 0 for a * b, we may as well assume that for a * b, X; =1= Xf).
Therefore, at most one of the summands defining Fn is nonzero and thus Fn is a
{a, 1}-valued random variable.

LEMMA 15. For any /3 > 0, if e = 8( q - qk)/[[3p.( An, k)] and if 14, Is are the
random variables,

14 = 1(/L(An,k n Sn(tn(qk) + e)\Sn(tn(qk))) > q - qk)'

Is = 1(\1'1 < i < k, X;n(i) $. (tn(qk)' tn(qk) + e)),

then, on 12 = 1,

(16) E(I41~(qk)) ~ 1 - p(/L, An,k)/(q -qk)'

and on 13 = 1,

(17) fi(lsl~(qk)) ;> 1 - 8k(q - qk)/(/32/L(An,k))'

and on 12 = 13 = 1,

E(14' Isl~(qk))

(18)
;> (1 - p(/L, An,k)/(q - qk))(l - 8k(q - qk)//32/L(An,k))'

PROOF. We apply Lemma 11, conditionally to ~(qk)' to the measure /L on

A",k = {a E An,k: X; > tn(qk)}' Noting that A",k is measurable w.r.t. ~(qk) and

I
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that the random variables Yo" = (X; - t,,(qk»/(l - t,,(qk»' a EOA" k' are condition-
ally to ff,,(qk) i.i.d, uniformly distributed on (0,1) and that '

14 = I ( ~ I (Y~' ~ 0/ (1 - t" ( qk) ) ) p.( a) > q - qk )
aEA",k

which is

~ I( ~ I(Ya" ~ O)p.(a) > q - qk)
aEA",k

=I( ~ I(Y~'~0)p.(a»Ofjp.(A"'k)/8).
aEAIl,k

On 12 = 1, fjp.(A", k) < 2p.(An, k) and therefore on 12 = 1,

I 4 ~ I
(

. ~ I (Y;I ~ ()) p. ( a) > () p. (A", k )/4) .
aEA",k .

By Lemma 11,

E( {E~"/(Y""" OJ~(aJ > {~(A"'k) )1%;(qkJ)

()p(p.,A",k)
~ 1 -

(30/4)2p. (A", k)

which on /2 = 1 is

16 p(p., A",k)
~ 1 - 9()

(fj/2)p.(A",k)

-l-~P(p.,A",k) -1-
32.fj'p.(A",k)'P(p.,A",k)

- 90fj p.(An,k) - 9fj. 8(q - qk)p.(A",k)

~ 1-
p(p.,An,k).

. (q-qk)
...:~.

Altogether, we deduce that on 12 = 1, E(I41ff,,(qk» ~ 1 - p(p., An k)/(q - qk) which
proves (16). Let A" = {a EOAn: X; > In(q'k)} and note that A" is measurable W.r.t.
ff,,( qk)' To prov~ (17), note that the random variables Yan= (X; - l,,( qk»/
(1 - In(qk))' a EOAn \An k, are conditionally to ff,,(qk)' i.i.d. uniformly distributed on
(0,1) and that on 13 ~ I, the random variable Is = I(\:;faEOAn \ An

k' Ya"~
()/(1 - lll(qk») is ~ I(\:;faE

A" \A",k' Y;' ~ ()/f3). Therefore, on 13 = 1,
,

E(Islff,,(qk)) ~ 1(0 ~ fj)(l - O/fj)IAn\An.kl

~ 1 - kB/f3 = 1- 8k(q - Qk)/(f32/L(A",k)),
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which completes the proof of (17). As 12 and 13 are {a, 1}-valued random variables
that are measurable W.r.t. ~(qk)' (18) is an immediate corollary of (16) and (17). Note
that 14 and 15 are independent conditionally to ~(qk)'

LEMMA20. For any f3 > 0 and any probability measure JL,

E( F"CA",k)W;(qk»)
;;, I, ,I,' 13(1'-- PC;,_A;~k) - 8k(q - qk)/(,B~PCA"'k)))

PROOF. As Ii, i = 1,2,3 are {a, 1}-valued random variables that are measurable
W.r.t. ~(qk)' it is enough to prove that on 11 = 12 = 13 = 1,

"

E(Fn(An,k)I~(qk)) ~ 1 - p(p., An,k)/(q - qk) - 8k(q - qk)/(f32JL(An,k))'

On 11 = 1, Fn(An k) ~ 14 . Is and therefore on II = 12 = 13 = 1, E(Fn(An k)I~(qk»
~ E(14 . Isl~(q~» which by Lemma 15 is ~ 1 - p(JL, An k)/(q - qk) -
8k(q - qk)/(f32p.(An,k»' '

LEMMA 21. Let Fnk(An k) = LaEA I(qk < p.(Sn(X;» :::;;qk + p.(a». Then for, n,k
every E > 0, there exists k1 such that for all k ~ k1

limsup.q(IFnk(An,k) - Fn(An,k) I) :::;;2E and
n--+oo

limsup.IE(Fnk(An,k)) - E(Fn(An,k)) I:::;; E.
n--+oo

PROOF. Let E > O. Choose 13 > 0 such that Prob(13 = 1) ~ 1 - E/3 for all n and
k. The existence of such f3 > 0 follows from Corollary 12. Note that 13 . 12 ~ 13 .

1(p.(An, k \ Sn(1 - 13» > ({312)p.(An, k»' and that the right-hand side of the inequal-
ity is a product of two {a, 1}-valued random variables. By Lemma 11,
E(1(JL(An, k \ Sn(l - {3» > (f3/2)p.(An, k») ~ 1 - 4p(p., An, k)/(f3JL(An, k» and
therefore E(13 . 12) ~ 1 - E/3 - 4p(p., An, k)/(f3p.(An, k»' As

limsuPn--+oop(p., An,k)/p.(An,k) :::;;aJa

we deduce that if k is such that ak < Ef3a/12 then for sufficiently large n,

(22) E(I3 . 12) ~ 1 - 2E/3.

As Jim suPn--+ooP(p., An,k) = ak+l :::;;ak = o(q - qk) as k ~ 00, we deduce that for
sufficiently l~rge k, lim suPn --+oop(p., An, k)/( q - qk) < E/6. Also k( q - qk) ~ 0 as
k ~ 00 and"1imn oop.(An, k) ~ a and therefore, for sufficiently larg~ k,

limsup8k(q - qk)/[f32p.(An,k)] < E/6.
n--+oo

The two last strict inequalities imply that for sufficiently large k,

(23)

liminf(l - [p(p., An,k)/(q - qk)] - 8k(q - qk)/[f32p.(An,k)]) > 1 - E/3.
n--+oo
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By Lemma 20, (22) and (23), using the fact that II and 12 . 13 are {O,1}-valued
random variables, we deduce that for sufficiently large k,

lim sup E ((II - F" (A", k) )
+ )

11-> 00

= limsupE(Il(Il - F"(A,,,k)))
11->00

(24)

= limsupE(E((Il - F,,(A".k))Ill~(qk)))
11->00

= limsupE(II. [E(Ill%,,(qk)) - E(F"(A,,,k)I%,,(qJ)]) ~ L

"->00 .

Recall that lim sup"
--->oop(/-L, A", k) ~ ak = o( q - qk) as k --) 00, and observe that

when p(/-L, A", k) < q - qk' II ? F"k(A", k). Therefore we conclude that for sufficiently
large k,

"

(25) lim sup E ((F"k (A", k) - F" ( A
", k) ) +) ~ L

,,-> 00

In all the above computations that were leading to (25), there was no essential use
(aside for notational convenience) to the fact that q was held fixed and qk was varying.
Therefore in a similar way we obtain that for sufficiently large k,

(26) limsupE((F,,(A",k) - F,;(A",k))+) ~ L
,,-+ 00

The two inequalities, (25) and (26), complete the proof of Lemma 21. For any T in ill,
we denote by T",k = {a E A",k: acT}.

LEMMA27. For any E > 0, there is k1, S.t. for every k ? k1,

liminf[E(F"(T,,,k)) - E(I1)/-L(T",k)//-L(A11,k)] > -L
11-+ 00 I

PROOF. By the renewal theory for sampling without replacement ([18] or Theorem
3.5), there is K = K( f) ? 1 such that for every finite weighted majority game v =
[r,(wJiE{I,...,m}], if K(f)max~lwi < r < Lj=lWi - K(f)max7'~lwi' then LillJ1v(i)-
W;/Lj'=1w) < f/2, which in particular implies that for any subset Q of the set of
players {l,..., m},

III

(28) IJ1v(Q) ? w(Q)/ L Wi - f/4.
(

. }=1

Let k2 be such that for k ? k2,

(29) (K(f)+I)ak<q-cqk and K(E)ak<l-q.

Choose fJ > 0 such that Prob(I3 = 1) > 1 - f/16 for all nand k. As in the proof of
Lemma 21, there is k3 such that for k ? k3, and for sufficiently large n,

(30) E(I2' 13) ? 1 - f/16 - 4p(/-L, A",k)/[fJ/-L(A",k)] ~ 1 - f/8.
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Choose e = 8(q - qk)/[,B}.L(A",k)] and ~t 14 and 15 be the {O,1}-valued r~dom
variable~ defined in Lemma 15. Let A",k = {a E A",kIX; > t,,(qk)} and T",k =
T",k n A",k' Set

16 = ~ 1(q - }.L(S,,(t,,(qk))) < }.L(S,,(X;) n A",k) < q - }.L(S,,(t,,(qk))) + }.L(a)).
a E Tn, k

Setting Ya" = [X; - t ,,( qk)]l[1 - tn( qk)] we note that conditionally to ff,,( qk)' the
random variables Y", a E A k are i.i.d. uniformly distributed on (0,1), and thata n,

~

16 = ~ l(q - }.L(S,,(tn(qk))) < }.L(Sn(X;) n A",k)
a E Tn, k

< q - }.L(Sn(t,,(qk))) + }.L(a)).

Therefore, on 11 = 1, E(16!..%;.(qk)) = (1/;V)(Tn,k) where v is the weighted majority
game [q - }.L(Sn(tn(qk)))' (}.L(a))a EA ]. Applying (28) to the weighted majority game

n, k

V we deduce that on 11 = 1, k ~ k2 and n sufficiently large

(31) E(161..%;.(qk)) ~ }.L(Tn, k)/}.L (A",k) - �/4.

Note that Fn(Tn, k) ~ 11 ' 14 ' 15 . 16 ~ 11 .12 . 13 . 14 . 15 . 16, As 11>12, 13 are {O, 1}-
valued random variables that are measurable with respect to ..%;.(qk) we deduce that

(32) E(Fn(Tn,k)I..%;.(qJ) ~ 11 .12 .13E(14 .15
,

161ff,,(qk))'

As 14 . 15 and 16 are {O,1}-valued we deduce that

E(14' 15
,

16I,,%;,(qk)) ~ E(161ff,,(qk)) + E(14 .lslff,,(qk)) - 1

which by (31) and (18) is on 11 = 12 = 13 = 1, k ~ k2 and n sufficiently large

(- ) ( - )
p(}.L,An,k)

~ JL Tn k /JL An k - �/4 -
"

q - qk

8k(q-qk)

j32JL(An,k)

and therefore using (32) we have

E (Fn (Tn, k) J..%;.(qk))
,'; ,;

( - ) ( --:- )
p(JL,A",k)

~ 11 ,12 .13JL Tn, k /JL An, k - �/4 - q - qk
8k(q - qk)

. Q2 (A ) .
I-'JL n,k

Let k4 be such that ak/(q - qk) + 8k(q - qk)/[j32JLNA(1))] < �/4. Then for k ~ kd"

Ii
p(JL, An,k) 8k(q - qk)

m,,-+oo q - qk +
j32JL(An,k)

< aJ(q - qk) + 8k(q - qk)/[j32JLNA(I)] < �/4,
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and therefore for k. ~ k4 V k2, for sufficiently large n we have

(33) E(Fn(Tn,k)I~(qk)) ~ 11.12, I3J-t(fn,k)/J-t(An,k) - (/2.

By Lemma 14,

Prob(J-t(f",k) < (1 - tn(qk))J-t(T",k) - 8J-t(An,k))

~ 8p(J-t,Tn,k)/(83J-t(An,k)) and

Prob(fL(A",k) > (1 - tn(qk) + 8)J-t(An,k)) ~ 8p(J-t, An,k)/(83fL(An,k))'

As Prob(tll(qk) > 1 - /3) < (/8 we deduce that

(

J-t(T",k) J-t(T",k) 28

)
( ) "3 ( )Prob ( ) < (A ) - 7I ~16p J-t,An,k 18J-t An,k +(/8

J-t An,k J-t II, k

and as 11 . 12 . 13 is a CO,1}-valued random variable we deduce that

(34)

E(I1' 12, I3fL(7~n,k)lfL(~,k))

> E(71 . 12, IJJ-t(Tn,k)/J-t(An;k)

-281/3 - 16p(J-t, AII,k)/83J-t(Ai"k) - (/8.

Setting 8 = E/3/16, observing that limsuPn-->oop(J-t, An k)/J-t(An,k) ~ ale/a and there-
fore if 16ak/83a < (/8 (i.e., k > k5 where 16ak < (83a/8), then, fbr sufficiently large

3
5

n, 16p(J-t, An, k)18 J-t(An,k) ~ (/8 and

(35) E(I1' 12, I3J-t(f",k)/J-t(An,k)) > E(I1' 12.13" J-t(Tn,k)/fL(An,k))

-(/8 - (18 - (/8.

If also k ~ k3, then by (30), EU1 . 12 . 13) ~ E(11) - (/8 and therefore using (35),
(33) if k ~ k3 V k5 V k2 V k4, we have for sufficiently large n, "

E(P"(T,,,k)) > E(71 .12, I3)(J-t(Tn,k)/J-t(An,k)) - (/2 - (/8 - (/8 - (/8

\> E(71)(J-t(Tn,k)/J-t(An,k)) - (,

>"

which complete~ the proof of the Lemma 21. '.
Let ( > O. Let k1 be sufficiently large so that for all k > k1,

for n sufficiently large J-t(Tn,k)/J-t(An,k) ~ J-tNA(T)/a - E,(36)

(37) for n sufficiently large E(71) ~ E(Fnk(An,k)) > E(Fn(An,k)) - (

00

> 1 - L E(i) - 2(, and
i=l
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(38) for n sufficiently large E(Fn(Tn,k))?: E(11)I-L(Tn,k)/J-L(An,k) - Eo

To show that such kl exists, note that limn-+ooJ-L(An,k) ~ Ci.+ Li>kCi.i and that

limn-+ooJ-L(Tnk) ?: /lNA(T) and therefore for k sufficiently large (36) holds. That (37)
holds for k s~fficiently large, recall that II ?: F}(An,k) whenever p(J-L,An,k) < q - qk>
use Lemma 21 and for the right inequality use Lemma 6 which implies that
limn -+ooE(Fn(An k» = 1 - L7~lE(i) > 1 - L~lE(i) - Eo Using (36), (37) and (38)
we obtain that f~r sufficiently large n,

(39) E(F.(T.,k))
;;,

(1 - ;~/(i»)I'NAT)/a - 4<,
~

If n is sufficiently large, so that 1 ~ i ~ j ~ k ~ an(i) =1=an(j), then

k

.f;(fqo/l)nn(T) = L t/;(fqo/l)n,,(an(i)) + E(Fn(Tn,k))
i=l

YjET

"
and therefore by applying Lemma 6 and (39) we conclude that for k sufficiently large,

,

l~"'.~fo/(fq 0 ~) n.cT);,
;t,

E(i) + (1 - ;~/(i) )~NAT)/a - 4,
YjET

):cf>(fq°J-L)(T)-4E- LE(i).
i>k

As this holds for all E > 0,

hm inf.f; (fq ° J-L)n,,( T) ): cf>(fq ° J-L) (T) - L E (i),
n-oo i>k

and as this holds for all k sufficiently large we conclude that

lim inf.f; (fq ° J-L)nn (T) ): cf>(fq ° J.L)(T).
n-oo

As this holds for all T E ill we have in particular that

)f
liminft/;(fq ° J-L)n,,(TC) ): cf>(fq °J-L)(TC)
n-oo

and as .f;(fq o J-L)n,,(T) + .f;(fq°J.L)(TC) = 1 = cf>(fq o J-L)(T) + cf>(fqo.J-L)(TC) we deduce

that limn-oo.f;(fq ° J-LhI,,(T) = cf>(fq° J-L)(T) which completes the proof of Theorem 1.

PROOF OF THEOREM A. As ASYMP is a closed linear subspace of BV and bu'M is
the closed subspace of B V generated by games that have the form f

° J.Lwhere f E bv'
and J.Lis a probability measure in M, it is enough to show that each one of these
generators is in ASYMP. Let J-Lbe a fixed probability measure in M. Any f E bu' is
the sum of two functions fL and fR in bv' where fL is left continuous and fR is right
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continuous. If f = fL + fR' fv fR E bv' then f 0 fL = fL
0 fL + fR 0 fL and therefore it is

enough to prove that each one of the summands, fL 0 p, and fR 0
p" is in ASYMP. Also

the dual game of fL 0 fL, (fL 0 fL)* equals fl 0 fL where fL* E bu' and is right continuous.
Therefore it is enough to prove that f O"fLE ASYMP whenever f E bv' and is right
continuous.

Let f E bv' be right continuous. By Lemma 3.4 of [17],

lj;(fofL)n,,(T) = ~llj;(fqofL)n,,(T) df(q).

As for each q E (0,1), Ij;'(fq 0 P,)nfT) ~ n-->ooCP(fq0 fL)(T), 0 ~ Ij;(fq 0 fLhr,,(T) ~ 1
and Ij;(fq 0 fL)n"CT) is measurable (in q), we deduce that q,(fq ofL)(T) is measurable
and by the bounded convergence theorem we conclude that

Ij; (f 0 fL) nJ T) ~ 1\1>(fq 0 fL) (T) df (q),
0

which completes the proof of Theorem A. .

5. Weakening of assumption? The existence of an asymptotic value on bu'M is
equivalent to the existence of an asymptotic value on all scalar measure games f 0 fL

where fL is a probability measure and f: [0, 1] ~ R is continuous at 0 and 1 with
f(O) = 0 and of bounded variation. We have already seen in [17] that the continuity of
f at 0 and 1 can be replaced by the weaker condition that f(O + ) = f(1 - ) - f(l) and
that the bounded variation of the function f is essential for the existence of an
asymptotic value. Here, we consider weakening the assumptions on the measure fL. Our
fast concern is the positivity of fL.

We investigate games of the form f 0 fL where fL is a measure that takes negative as
well as positive values and f is a real valued function defined on the range R(fL) =
{fL(T): T E ~} of p, with f(O) = O. One case that is (relatively) easy to handle is when
the non atomic part of the measure fL is positive (negative) and there are only finitely
many atoms of fLwith negative (positive) measure. In that case, for any function f with
f(O) = 0 that is continuous at 0 and fL(I) that is of bounded variation on the convex
hull of R(fL), f 0 fL has an asymptotic value. '

The next result shows that when the nonatomic part of the measure fL takes both
negative as well as positive values the situation is more delicate.

THEOREM 5.1. Let fL be a nonatomic measure with total mass 1 and 0 < q < 1. Then

fq 0 fL has an asymptotic value if and only if fL is positive. .

PROOF. The main theorem asserts that fq 0 fL has an asymptotic value whenever fLis

I positive. Thus, it suffices to show that if fL-(I) > 0 then fq 0 fL does not have an
asymptoti~ value. Assume that P,- (1) > 0 where fL- is the negative part of the measure
fL. Let 11,12,13 be a partition of I, so that fL-(I) = fL-(I3) = fL+(I2) and fL+(I1) = 1.
Let (TIII)~=1 be a sequence of finite subfields of ~ with Ii E TIll' i = 1,2,3. Denote
the set of all atoms of TIll that are included 'in Ii, i = 1,2,3, by A~. We assume that
fL+(a) = n-4fL+(I2) if a E A~, and that fLea) = n-4fL(I3) if a E A~. A~ consists of
211 atoms each having measure 1/(211 + 1), one atom denoted "by ~ of size q-"-
[(211 + 1)q]/(2n + 1), where [x] denotes the integer part of x and one denoted by a of
size 1 - fL(~) - 2n/(2n + 1).

Let (Xa) a E A' All = A~I U A~ UA~, be i.i.d random variables that are uniformly
distributed on (0,1). Let Xl"", X211 be defined by:

'.'.

Xl = min { Xa: a E A~I\ {~, a} } , XH I = min { Xa: a E A~I\ {~) a} j Xa > Xk },
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Let b be an element of A~. We will show below that If;(fq 0 IL)TIn (b) is at least of the

order of magnitude of n-3. Therefore, limn->oolf;(fq 0 IL)TI"CA~)= co. As it is possible
to generate such a sequence of finite subfields for which there is a subsequence which is
increasing and generating the a-field rt', it follows that fq 0 IL does not have an
asymptotic value. Thus, all that we have to prove is that 1/;(fq 0 lL)nn(b) is ~ en-3 for

some constant e (that might depend on q and IL-(I)). Denote a = IL-(I) = 1L+(I2)=
1L-(I3) and k = ken, q) = [(2n + l)q]. Then lL(b) = an-4 and

>f(Jq 0 ~ )rr.cb) ~ tEl {£.~(a)I(Xo
<; t) E [q - an-4, q)))

. dt.

a*b

'l/

E( {£.Jl(a)J(x, <; t) E[q - an-4,q)))

a*b

~ E E

H
"~.~(a)I(X"" t) E [q - an-', q)) IX" X" x""" X2")

)
a*b

~ E

(

E
(

I
(

L~(a)I(X" ~ t) E[-an-4,O)
)

IXg, XCi' Xl,..., X2n

)aEA;UA~
a*b

I(X, <;
Xk < t < Xk+l < X,»)

= E
(

I
(

L lL(a)I(Xa ~ t) E[ -an-4,o)
)aEA;UA~

a*b

.I (X. <; Xk < t < XH 1 < X.)
)

.,
)/

For each fixed n-4 ~ t ~ 1,

(*) E

(

I
(

L lL(a)I(Xa~t)E[-an-4,o)
)J

~e.n-2
aEA;UA~

a*b

for some universal constant e, and Xa, a E A~ u A~ are independent of Xa, a E A~
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and, therefore,

cn-6 + 1/;(lqofl)ilJb) ~ ~\n-2E(I(Xg < Xk < t < Xk+1 < Xa))' dt

= E((Xk+1 - Xk)I(Xq < Xk < Xk+1 < Xa))cn-2

~ c1n-1cn-2

which completes the praof that Iq ° fl does nat have an asymptatic value. -
It is of interest to characterize all games .of the form 1° fl where fl is a signed

measure, that have an asymptotic value. Let fl be a nanatamic measure with range
{fl(S)IS E C} = [-a, b) with -b < -a < 0 < b, and let I be a monotonic function
on [- a, b) with 1(0) = O.Our conjecture is that a necessary condition for 1° fl to have
an asymptatic value is that 1° fl has bounded variation, i.e., (see [3, Propositian 9.1])
that the function gtCx, y) = (x + a)(b - y)(/(y) - I(x»j(y - x) is bounded in the
domain - a < x < y < b. Moreover, if I is piecewise continuously differentiable we
conjecture that this candition is sufficient for 1° fl to have an asymptatic value.
Another, sufficient condition for 1° fl to have an asymptotic value is concavity of f.

In the following example we demonstrate an example .of a signed purely atomic
measure fl with fl(1) = 1 for which 11/2 ° fl does not have an asymptotic value.

EXAMPLE5.2. Let (n k)1:=1 be an increasing sequence of positive integers with

(5.3) r;;- 4 -4Li<kni ~ 00.
VTtk n-+ 00

Let fl be a purely atomic signed measure on (1, ~) having countably many atoms: two
atoms, y(l) and y(2) of measure Ij2 each; for each k ~ 1, 2nk atoms, y+(k, i),
1 ~j ~ 2nk each having measure 2-kjnk and 2nk'atoms, y-(k, i), 1 ~j ~ 2nk each
one of measure - 2 -k jnk' Let 1+, 1- be the Hahn decomposition of I with respect to
fl. We will prove that 11/2 ° fl does not have an asymptotic value, by demanstrating an
increasing sequence of finite subfields (TIk)k=l with I+E TI1 and Uk;;dTIk generates ~
for which

hm 1/;(/1/2 ° fl)il (At) =
'(x)

k-+oo k

. where A/~ are all atoms of ITk that are subsets of 1+. Let (ITk)k=l be an increasing
sequence .of finite sub fields with Uk ;;dITk generating ~, 1+ E IT1 and ,the set .of atoms

Ak of the finite field ITk satisfies:

k

Ak:2 {a(1),a(2)} U UA{(+) UA{(-) U {b1(+),b2(+),b1(-),b2(-)}
)=1

where a(l) =1=a(2), y(l) E a(l), y(2) E a(2), IA{( +)1 = 2nj = IA{( -)1 and

a E A{( +) ~ fl(a) ,;, 2-jjnj

while a E A{(-) ~ flea) = -2-jjni'

fl(b1( +)) = fl(b2( +)) = L (2-/ni)ni = 2-k = -fl(b1( -)) = -fl(b2( - )).
i>k

I/; (/1/2 0 fl) TIk
( At) ~ I/; (/1/2 ° fl) ilk

(A Z ( + )) = 2nkI/;(/1/2 ° fl) ilk ( a )
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where a E A1(+). Let Xb, bEAk be i.i.d. random variables that are uniformly
distributed on (0,1). Set Ale = A~( +) U A{( -).

tf; (/1/2 0 fl) IIk
(a)

= E
(

1( L u(b)1(Xb ~ XJ E[1/2,1/2 + flea»))
)bEAk

~ E
(

1(1/4 < Xa < 3/4) n1
( L 1(Xb ~ 1/4) = nj )J<k bEAi(+)

o1
( L 1(Xb ~ 3/4) = ni)

bEA£(+)

~

o1
( L 1(Xb ~ 1/4) = ni)1( L 1(Xb ~ 3/4) = ni)

bEAi( -) , bEAi( -)

o1( Xa(l) < 1/4, Xa(2) > 3/4, Xb2(+) > 3/4, Xbl(+) < 1/4,

Xbj(-) < 1/4, Xb2(-) > 3/4)1 ( L 1(Xb ~ XJ E [0, fiCa») ))
0

- bEAZ

As (Xa)aEAZ are independent of (Xb)b~AZ' we deduce that for a E A1( +),

tf;(/1/20fi)II/a)~E
([

I11( L 1(Xb~1/4)=ni )J<k bEA£(+)

o1( L 1(Xb~3/4)=ni)
bEA:U+)

o1
( L 1(Xb ~ 1/4) = ni )

1
( L 1(Xb ~ 3/4) = ni)

]bEA£(-) - bEA£(-)

o1(Xa(l) < 1/4, Xa(2) > 3/4,

X"c+) < 1/4, X"C-) > 1/4, X"c+) > 3/4, Xb,c-) > 3/4))

,> -E( {~/(Xb '" X.)~(b) E [0, ~(a ))) - I~1/4 < X. <.~f4))
k

-. .
.'

"

~ 4-4L'<kn,. 4-6 0 j3/4E

(

1
(

'
L 1(4, "'Mb) E [~JL(a),o)

))
dt

1/4 bEAZ
. b*-a

~ Co 4-4Li<kn'/F;
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for some positive constant c. Therefore

If (/1/20 IL) Uk (At) ~ If (/1/20 IL) Uk (AZ( +)) ~ 2~ c . 4 -4L;<kn;
~ 00.

It is of interest to characterize those games of the form loll where IL is a purely
atomic signed measure that have an asymptotic value. Examples of specific questions
in this direction are: (1) for fixed - a < 0 < b, characterize the monotonic functions

I: [ - a, b] ~ R for which any game of the form loll where IL is purely atomic with
{IL(S)IS E (t&') c [-a, b], has an asymptotic value; (2) for a fixed purely atomic
measure IL, characterize all monotonic functions 1 for which loll has an asymptotic
value.

Next we would like to weaken the assumption of countable additivity of the measure
IL. Under the standard definition of an asymptotic value, even pFA (i.e., the space
generated by powers of finitely additive measures) is not contained in ASYMP. Th,e
essential reason is that for a finitely additive measure IL, the measures IL on (1, TIn)
where TIll is an increasing sequence of finite fields that generates ~ do not disclose
enough information regarding IL.

PROPOSITION. pFA ct. ASYMP.

PROOF. Let IL be a non atomic finitely additive probability measure. If the finitely,
additive measure J.tis not countably additive there exists a decreasing sequence (Si)ro=1
of coalitions with Si \a 0 and IL(SJ ~i->oo a> 0 and a =1=1. We show that the game
u = 1L3does not have an asymptotic value. First note that by the nonatomicity of IL (a
finitely additive probability measure J.tis non atomic iff for every measurable set S with
IL(S) > 0 there is a partition of S into measurable sets SI and S2 such that IL(SJ >
IL(S)/3), there exists an increasing sequence of finite subfields TIi with Si an atom of
TIi and max{IL(A)IA an atom of TIi with A =1=S;} ~ 0 as i ~ 00. Then, for the game
u = 1L3,we have

i~~
IfUU;(Si) = ~\(t(l - a) + a)3 - (t(l - a)):) dt = a ,- a2/2 + a3/2

and therefore for each fixed k,

lim If Un (S,J = a - a2/2 + a3/2 + (1 - a + a2/2 - a3/3)(IL(Sk) - a)/(l - a).,
I

1-> 00

As the right-hand side converges as k ~ 00 to a - a2/2 + a3/3 which diff~rs from
a = limk->oolL(Sk)' it follows that there is k for which limi->oolfuu/Sk) =1=IL(Sk)'
There exists an increasin.g sequence of finite subfields TI} with Sk E TI} and U~ITI}
generates ~, for which max{ IL(A)jA an atom of TID ~ 0 as i ~ 00. For such a

sequence, limi->oolfUn1(Sk) = IL(Sk)' Altogether we deduce that U = 1L3does not have
an asymptotic value.

I
~

The arguments show actually that if IL is a finitely additive nonatomic probability
measure then J.t3has an asymptotic value if and only if IL is countably additive.

We introduce now a slight modification of the definition of an asymptotic value.

DEFINITION. Let u: (t&'~ R with u( 0) = 0 be a game. A game <fluis said to be
the weak asymptotic value' of u if: for every S E ~ and every � > 0, there is
a finite sub field TI with S E TI such that for any finite subfield TI' with TI' ::) TI,
IlfUTI'(S) - cpu(S)1 < L

,,



WEIGHTED lvLo\JORITY GkvfES HAVE ASYMPTOTIC VALUE 579

REMARKS. (1) Let v: C{!~ R with v(0) be a game. The game v has a weak
asymptotic value if and only if for every S in Ct and E > 0 there exists a finite subfield
II with S E II, such that for any finite subfield III with III:) II, K1/;vn1)(S)-
(1/;vn)(S)1 < E.

(2) A game v has at most one weak: asymptotic value.
(3) The weak: asymptotic value is a finitely additive game.
(4) If v is a finitely additive game then v has a weak asymptotic value c{>v = v.
(5) If v has an asymptotic value C{>Vthen v has a weak asymptotic value (= c{>v).
Remarks (1)-(4) are obvious. For completeness we present a proof of Remark (5):

assume that a game v does not have a weak asymptotic value. Then, there exists S in C{!
and E > 0 such that for any finite subfield II with S E II there exists a finite subfield
III with III :) II and l1/;vn1(S) - 1/;vn(S)1 > Eo Let (IIk)k=1 be an increasing se-

quence of finite subfields such that S E III and Uf~IIIi generates Ct. Define an
increasing sequence of finite subfields (IIUk=1 inductively by: IIi:) IIk U IIi-1 is
such that l1/;vn1(S) - 1/;vn *(S)1 > E where IIt is-the finite field generated by IIk U

k k

IIi-I' Note that both (IIDk=1 and (IIt)k=1 are increasing sequences of finite
subfields and as IIt :) IIk and IIi :) IIk both Uf=IIIt and Uf=III7 generate Ct. As
limi >aol1/;vn\(S) - 1/;vn:(S)I): E> 0 it follows that the game v does not have an
asymptotic value.

The following is an almost direct consequence of this definition and our main result.

THEOREM. The set of all games having a weak asymptotic value is a linear symmetric
space of games and the operator mapping each game to its weak asymptotic value is a
value on that space. If ASYMP* denotes all games with bounded variation having a weak
asymptotic value then ASYMP* is a closed subspace of BVwith bv'FA c ASYMP*.

"

PROOF. The only part that might need some explanation is the one that asserts that
bv'FA c ASYMP*. For that, it is enough to verify that for every /l EFAi (where
FAt denotes all positive finitely additive games v with total mass 1, i.e., with
v(I) = 1) and f E bv', f 0 /l has a weak asymptotic value. For that it suffices to show
that for every S in C, there is a sequence of finite subfields (IIk)k~=1 with S E Ilk> such
that for every sequence of finite sub fields (IIt)k=l with II: :) IIk'

(*) 1im I1/;( f 0 /l) nk (S) - 1/; (f 0 /l) n: (S) I= O.
k > ao

Any /l in F A\ has a decomposition as a countable sum /l = Ii;;. oai/l i where Ii;;, Oai = 1,
(Xi): 0 and /lo is a nonatomic element of FAt and for every i ): 1, /li is a {a, 1}-val-
ued measure in FAt with /li =I-/lj wherever i =I-j. Let IIk be a sequence of finite
sub field with S E IIk' such that for any atom A of IIk and 1::::;;i < j ::::;;k,
/li(A)/lj(A) ~ 0 and max{/lo(B)IB an atom of IId < Ilk (~ 0 as k ~ 00) (one of
the equivalenl dennitions of a nonatomic finitely additive positive measure /lo is that
for every E > 0 there is a finite sub field II with max{/lo(B)IB an atom of II} < E).
Our proof showed that in this case for every sequence of finite fields II: with
IIt :) IIk both limits limk >ao1/;(f 0 /l)nk(S) and limk >ao1/;(f 0 /l)n:(S) exist and are
equal and therefore (*) follows which proves that f 0 /l E ASYMP*.
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