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WEIGHTED MAJORITY GAMES HAVE ASYMPTOTIC VALUE*T

ABRAHAM NEYMAN
State University of New York and Hebrew University of Jerusalem

The asymptotic value of a game v with a continuum set of players, 7, is defined whenever all
the sequences of the Shapley values of finite games that “approximate” v have the same limit.
A weighted majority game is a game of the form fop where p is a positive measure and
f(x)=11if x> ¢q and f(x) = O otherwise, and ¢ is a real number, 0 < g < (7). In this
paper we prove that all weighted majority. games have asymptotic values. This resuit is then
used further to show that if v is of the form v = f o u, where p is a probability measure and f
is a function of bounded variation on [0,1] that is continuous at 0 and at 1, then v has an
asymptotic value. This had previously been known only when f is absolutely continuous, or
when p has at most finitely many atoms or when p is purely atomic. Thus, the essential
novelty is that even when p has countably many atoms and a nonatomic part, fep has an
asymptotic value. We also show that f o u does not necessarily have an asymptotic value when
p 1s a signed measure.

1. Introduction. The Shapley value is one of the basic solution concepts of
cooperative game theory. It measures the payoff that each player can expect to obtain,
“on the average,” by playing the game. The Shapley value for games with finitely many
players was introduced by Shapley (1953), as an operator that associates to each game
a corresponding vector of payoffs to the players; this operator 1s uniquely determined
by a number of plausible axioms. _

Starting in the late fiftie., one of the main lines of study of the behavior of the value
has been in the context of “large games” - where there are “many players”, some of
which are almost insignificant.! This models situations that frequently occur in
economic and political institutions. A class of such games, called “oceanic” games, has
been studied by Milnor and Shapley (1961), Shapiro and Shapley (1960), Shapley
(1961) and Hart (1973). These are weighted majority games in which a sizeable fraction
of the total vote is controlled by a few large (“major”) players, and the rest is
distributed among a large number of small (“minor”) voters. Shapiro and Shapley
(1960), Milnor and Shapley (1961), and Shapley (1961) presented asymptotic results for
the values of the major players, when the minor ones become smaller and smaller. A
more difficult task turned out to be finding the limit of the values of the minor players.
Even in the case where there are no major players at all (thus, each player controls a
negligible fraction of the total vote), this was an open problem for many years. This
first case was solved by Neyman (1981). It was then extended to the case of fimtely
many major players in a later paper Neyman (1979).
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A parallel direction of investigation was the extension of the value to weighted
majority games with countably many players. Such a game is given as an ordered pair
(g, W), where g is a real number and W is a measure on the nonnegative integers N
such that 0 < ¢ < W(N). The set of players is N; a coalition § € N is winning if and
only if W(S) > ¢. If the voting measure W has finite support then the weighted
majority game (g, W) becomes a finite game, and the value , of player i is just the
probability of i being a pivot in a random order of the players. In the general case
(when the voting measure does not have finite support), the value y, of player i is
defined similarly, as the probability of i being a pivot in a random order? of the
countable set of players N. It turns out (Shapiro and Shapley 1971, Theorem 16, or
Artstein 1971) that ¢, is the limit of the values {* of i in the truncated games (g, W),
where W5(j) = W(j) if j <k and W¥*(j)= 0 otherwise. However, whether the
resulting ¢ is efficient (i.e.,, 22.,¢,; = 1) for all such games was an open problem for
may years; it was recently answered in the affirmative by Berbee (1981).

The analysis of the behavior of the value in the n-person games as n becomes large
finds a natural and more general setting in the framework of values of games with a
continuum of players. Such games are functions v from % to the reals, with v(&) = 0,
where (I, €) is a measurable space isomorphic to ([0,1], &) (where & is the o-field of
Borel sets on [0, 1]. Here, I is interpreted as the set of players, and ¢ as the family of
possible coalitions. The value for such games is a generalization of the Shapley value
for finite games due to Aumann and Shapley (1974). Of special interest are values that
are obtained as limits of values of finite approximants. The asymptotic value is the
“strongest” possible such value in the sense that, if it exists for a particular game v,
then any limiting value® will exist for that game and will equal the asymptotic one.
Briefly, the asymptotic value is defined on each game v for which all the sequences of
Shapley values, corresponding to sequences of finite games that “approximate” v, have
the same limit. Any result asserting that a given game has an asymptotic value is
essentially a result about the limit behavior of the values of (finite) games with many
players.

The asymptotic value has been studied extensively (Aumann and Shapley 1974,
Dubey 1980, Fogelman and Quinzii 1980, Hart, 1977, Kannai 1966, Neyman 1979,
1981, 1982). Let p be a probability measure on the measurable space of players (7, %)
and let f be a monotonic function on [0,1] with f(0) = 0. It has long been known
(Kannai 1966 and Aumann and Shapley 1974) that when p is nonatomic and f is
absolutely continuous, fop has an asymptotic value. Fogelman and Quinzii (1980)
showed that whenever f is absolutely continuous and p has at most finitely many
atoms, f o has an asymptotic value. Neyman (1979, 1981) showed that fop has an
asymptotic value whenever f is continuous at 0 and 1 and g has at most finitely many
atoms. Berbee’s result (1981) implies that f o p has an asymptotic value whenever f is
a jump function and p is purely atomic. The present paper asserts that feop has an
asymptotic value for every probability measure p and all monotonic functions f that
are continudus at 0 and 1. :

The set of all games having an asymptotic value is a linear space and thus the result
implies that f could be any function in bv’ where bv” denotes all functions from [0, 1]
to the reals with f(0) = O that are continuous at 0 and 1 and are of bounded variation.
Moreover, the space, ASYMP, of all games that are of bounded variation (equivalently,
that are the difference of two monotonic games) and have an asymptotic value is a
closed (in the bounded variation norm) subspace of BV - the space of all games having

- 'An order of a finite set is usually identified with a permutation; this is not so in the countable case.
*Like the p-value [2], [10], [15] and the partition value [19].
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bounded variation. Thus, if M stands for all measures on (7, ¥), and bv'M ‘is the
. closed subspace of BV generated by games of the form f oy where f € bv" and p is a
probability measure in M, then our main result is

THEOREM A. bv'M C ASYMP.

In §2, the formal definitions and statement of results are given. §3 contains formulas
for the value for finite games and the formal statement of two previously known results
that are essential for our proof. §4 contains the proof of Theorem A. In §5, we show by
means of counterexamples that there is no hope to extend our result to signed
measures as well, and indicate other possible extensions.

2. Statement of results. We begin by recalling that a coalitional game, or game
for short, is a real valued function v on_the o-field € of a measurable space (I, ¥ )
with v(®) = 0. It is monotonic if S, T € € and T c.§ imply that v(S) < v(T); it is
of bounded variation if it is the difference between 1wo. monotonic games. The game v
is finite if % is finite. The Shapley value for a. ﬁmte game v is the measure on € given
by S :

(v0)(a) = %g[ (220 a) - o(22)]

where the sum runs over all orders # of the players (atoms of €) and P2 is the union
of all atoms preceding a (an atom of %) in the order #. Given T € €, a T-admissible
sequence is an increasing sequence (II, IT,,...,) of finite fields such that 7 € II, and
U,II, generates €. Given a finite subfield I of €, the restriction of v to II, vy, is a-
ﬁmte game (on (I, I1)). A game ¢v is said to be the asymptotic value of v, if for every
T € ¥ and every T-admissible sequence (11, ),,1, the following limit and equality
exists:

klim Yo (T) = ¢u(T).

The set of all games v (on (I, ¢)) of bounded variation and having an asymptotic
value 1s denoted by ASYMP.

The essential part of the main result (of the present paper) is that whenever f € b,
where bv’ is the space of all functions f of bounded variation from [0,1] to the reals
with f(0) = 0 and f continuous at 0 and 1, and p is a probability measure on (I, €),
then fou is in ASYMP. There are properties of the set ASYMP that enable to deduce
a stronger result. The space of all games of bounded variation is denoted BV. The
variation norm of v is defined by ||v|| = inf(u(I) + w(7I)), where the inf ranges over all
monotonic functions u and w such that v = u — w. The set of all measures on (I, €)
is denoted by M. The closed (in the bounded variations norm) linear subspace of BV
that is generated by games of the form feop, f € bu” and p is a probability measure in
M is denoted bv’M. Our main result is

THEOREM A. bv'M C ASYMP.

There are various subspaces of bv’M which were known to be included in ASYMP
Let pNA be the closed subspace of BV that is generated by powers of nonatomic
measures and pFL stands for the closed space generated by powers of positive:
measures with at most finitely many atoms. Let N4 denote all nonatomic measures,
FL all measures with at most finitely many atoms and M, all purely atomic measures.
Each of the spaces, bu’NA, bv'FL and bu'M, is defined as the closed subspace of BV
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that 1s generated by games of the form fop where f € by’ and p is a probability
measure In N4, FL, or M, respectively.

Kannai (1966) and Aumann and Shapley (1974) show that pNA C ASYMP.
Fogelman and Quinzu (1980) show that pFL € ASYMP. Neyman (1981) and (1979)
show that bv'NA C ASYMP and bv'FL C ASYMP respectively. Berbee (1981) to-
gether with Shapiro and Shapley (1971, Theorem 14) and the proof of [17, Lemma 8
and Theorem A] imply that bv'M, C ASYMP. It was further announced in [16] that
Berbee’s result implies the existence of a partition value on bv'M. However, whether
bv’M 1s contained in ASYMP was an open problem.

3. Preliminaries. This section recalls formulas for the Shapley value of finite
games, two theorems that are basic for our present proof, and few well-known
properties of the value.

Let (4, v) be a finite game, i.e, 4 is finite set and v:2* — R with v(@) = 0. The
Shapley value of the game v to player a € 4 1s given by

(3.1) yo(a) = (1/lAl!)%v(g"fU {a}) = o(2])

where |A4| stands for the number of elements in 4, the summation ranges over all
. orders & of the player set 4 and % denotes the set of all players that precede a in
the order #. An alternative formula for Yv(a) could be given by means of a family
X,, a € A, of i.1.d random variables that are uniformly distributed on (0, 1). The values
of X,, a € A, induce with probability one an order % on A; a precedes b if and only
if X, > X,. As X,, a € 4, are 1.1.d and nonatomic, all orders are equally likely. Thus,

(3:2)
yo(a) = E(o({be4: X, < X,}) —o({be4: X, < X,)))

= folE(U({bEA: X,<t}u{a))—v({bed: X, <t}\{a}))ad.

When the game v is a weighted majority game, it is described by a pair (g, W) where
g is a real number and W is a measure on A with 0 < g < X, M (a). For S C 4,
v(S)Y=1if X, W(a) > q and v(S) = 0 otherwise. In that case formula (3.2) could.
be rewritten as

(33)  (vo)(a) =E(z(q< S W(b)I(X, < X,) < q+ W<a>))

beA

F :flE [(‘J—W(GK )y W(b)I(Xb<t)<q) dt.

be A
b#a

For a subset B of A the Shapley value yv(B)is given by yv(B) = X, z¥v(a) and if
v-is a weighted majority game then formula (3.3) yields

64 (B = Ti{o< T W@IX < %) <q+ W)

beB as A )

The proof of the main result of the paper will make use of two previously known
results in value theory, which for completeness will be now stated. The first one is the
main theorem of [18]. :
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THEOREM 3.5.  For every € > 0 there exists K = K(e) such thatifv = (q,(W(a)),ec 1)
is a weighted majority game with

K max,. W(a) <qg< Y W(b)— K max,. W(a),
beA
then

Y |yo(a) - W(a)\ Y wb)|<e

a€A beAd

The second is the main theorem of [4].

THEOREM 3.6. Let (a,)%, be a countable sequence with o, >0 and Ya;= 1.
Assume that (X,)?, is a sequence of i.i.d random variables that are uniformly distributed
on [0,1]. Then for every 0 < g < 1, X2 ,E(i) = 1 where

E(i)=E

I(q—a, iaI(X <X)<q)

j=1

_ /OlE.(](q —a < Yo l(X <1) < q)) dt.

J#*i

The dual of a finite game (A4, v) is-a game (A, v*) where v*(S) =: v(4) — v(4\ S).
It is well known that v = Jov*. Also if v is an arbitrary game, i.e., v: ¥ —> R with
v(Z) =0 then the dual of v, v* is given by v*(S) = v(l) —v(I\ S) for every
S € €. The game v has an asymptotic value if and only if its dual has, and then the
asymptotic values coincide. If f: [0,1] = R, f(0) = 0 and p is a probability measure
then it is easily verified that (f o u)* = f*ou where f*(x) = f(1) — f(1 — x).

4. The asymptotic value on bv’M. In this section we will prove the main result of
this paper, namely, that bv’M < ASYMP.

For 0 < ¢ < 1 we denote by f, the real valued function on [0, 1] that is given by
f(x)=Tif x > qandf(x)~01fx<q

THEOREM 1. For any probability measure p on (I, %) and for any 0 < q <1,
foou € ASYMP. '

Proor. We have to show the existence of a finitely additive set function d(f,on)
such that for any increasing sequence (1I,)%_; of finite subfields of € such that U 11,
generates ¥, and T € II, we have

() Tim y(f, o), (T) = (£, m)(T),

where { denotes the Shapley value for finite games.

We will start by introducing a formula for 'ip(fqou). Let u=p,  + py, be the
decomposition of g into a purely atomic measure p, and a nonatomic one jt,,. Let
(¥,)72, be the atoms of the measure p, with1 < i <j < 00 =y, # yi-Set a; = pu({y})
=p,{y}) a=1-2X2a,. Let (X;)2, be a sequence of i.i.d random variables that
are uniformly distributed on (0,1). For i € Nand 0 < ¢ < 1, let E(i, t) be defined by

J#EI

(3) E(i,t)=E(1(q~ai< Zajf()(jgt)+ta<q))‘
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and let E(7) be defined by

(4) E(i) = /1E<f, £) dr.
0

Then ¢(f,op)is given by: for T € &

Y E() if a =0,

{i: y€T}
(5) o(fyen)(T)= %
) }E(i) + 11— ZE(i))uNA(T)/a if @ > 0.
{i: yeT i=1

LeMMA 6. Ler (I1,)7_, be an increasing sequence of finite subfields of € for which
U,IL, generates €. For any i € N let a™(i) be the atom of 11, that contains y,. Then, for
each fixed i € N,

(7) Tim ¢ (f, o )q (a"(1)) = E(i).

Prook. If py, = 0 and p has only finitely many atoms, ¢ (f, o u) (a™(i)) = E(i)
for sufficiently large n, e.g. by (3.3). Therefore we assume that either « > 0 or that p
has infinitely many atoms. As (II,)%_; is increasing it follows that for any i € N,
(a”(i))>_, is decreasing, and as U, I, generates € it follows that N_,a”(i) = y, and
therefore for any i € N, lim,_, u(a”(i)) = a,. If there are countably many atoms,
then for every ¢ in (0,1) :

=0’

(8) E(I(q—ai= ZajI(XjSt)—f—ta)

J#Fi

and if a > 0, (8) holds for all but finitely many values of ¢. Therefore, E(i, 1) =
E(I(qg— a; < Zj¢;aj1()(} < 1) + ta < q)), for all but finitely many values of . As
I(g—a;+ <X, l(X;<1t)+ ta <gq—m)increases as 1 = 0 + to I(g — a; <
Y;.0I(X; < t) + ta < q), we deduce from Lebesgue monotone convergence theo-
rem that for all but finitely many values of ¢,

s

E(i,t) = lLm E(I(q—ai+n< ZajI(Xj<l‘>+l‘a<q_ﬂ))

noot ji

and therefore’ for all but finitely many values of ¢, for every € > 0 there exists 1 > 0
such that ~ )

\E(I(q~ai+n< ZajI(X'j.st)+ta<q-—n))>E(i,t)—€.

JFi

There is k € N s.t. k > i and X% 410, < 1/4, and there is n, such that for n > n,,
l<sm<j<k=a"(m)#+a"(j)and1l <j< k= p(a"(j)) —a; <n/4k. Let 4, be
all atoms of II, and let X, a € 4,, be ii.d random variables that are uniformly
distributed on (0,1) and we assume without loss of generality that for each fixed

n>ny Xb =X for each 1<i<k Let 4, ,=4,\{a"(d),...,a"(k)}. Then,
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recalling that p,, is the nonatomic part of p,

k
O<s Y wla)l(XI<t)— Y ad(X,<t)<mn/4 and
aEA,,\A""k j=1
a#a"(i) JEi
0< X pla)l(Xy<t)— X pyla)I(X7<t) <nm/4 and

aeA,,'k aEA,,_k

0< X pna@)I(X7<t) = 2 py(a)I(X] <t) <n/4.

a€A, A€, g

Therefore
k
—n/4 < Z N(G)I(X: < t) - 2 ajI(Xj < t) + Z ‘XNA(‘J)I(X: < t)
" a€d, Jj=1 a€A,
a#a"(i) JFi
< n/2.
Thus

\

Ilg—a,< ) pla)l(X)<t)<g

aéA,,
a#a"(i)
k
>Ilq—o,+n/4< L ol(X <1)
=1

+ Z #NA(a)I(X:gt) <gqg-mn/2|.

a€A,

As L, eq Pna(a@)I(X] < 1) converges in distribution to ta we deduce that for suffi-

ciently large n,

X .
E\Ilg— o +1/4< Zaj[(ngt)+ Z HNA(G)I(X£'<f)<q—n/2
/jz% a€4, |
>E|Ilg—a;+n< Lal(X,<t)+ta<qg—n||—c | ’i
j=1 |

JEi
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As pu(a™(i) > «

(q—u( ") < X p(a V(X <1) < q)

a€4,
a#a"(z)

>I(q—a,~< Y or(a)I(X;<1) <q)-

a€4d,
a#a’(i)

Altogether, we conclude that

im E} I\ g-p(a(i)) < X u(a)I(XZ<t)<q)
n— oo a€A,
a+a’(i)
> lim E I(q—ai< )> #(a)I(X:<f)<Q)
n— oo acAd,
ca#a’(i)
k
> lim E\I|g—a,+n/4< ) o J(X,<1)
n— oo J=1
J#*Fi

DY NNA(“)I((X: <t)<g- 71/2) > E(i, 1) — 2e.

acA,

\l/(fq°u)nn(a"(i))=folE Ilg—p(a())< X pla)(Xf<t)<q||d

acA,
a+a”(i)

we obtain by applying Fatou’s Lemma that hmn—»oo‘l’(f p)(a™(1) = E(z) - 2e A
similar argument; shows that
e

lim Y(fom) g (a7(i)) < E() + 26

n—oo

As this holds for any € > 0 the lemma is proved.  m B
The next lemma uses the previous one together with a result of Berbee to prove
Theorem 1 in the case that p is purely atomic. :

LEMMA 9. If iy, = O, then (2) holds with ¢(f,* p)XT) =Ly, ey EG).

The Lemma is an almost dlrect corollary of [4] and [21, Theorem 14}; for complete-
ness a proof is included here. , - : ‘
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Proor. Let (IT,)%.; be an increasing sequence of subfields of ¥ with T € II; and
U, I1, generating ¥. Given € > 0 there is k s.t. X1 qicpyeryE(D) 2 Ly ey E(D)
— ¢ Thereis nyst.forn>ny, l<i<j<k= a"(l) %a"(J) As Y(fpem)m (+) is
finitely additive and monotonic, the inclusion U,%; yera"(iycT 1mp11es that

V(f, oW T) = (o (Uk , era™(i)) and as for n > n, 1 < i <j < k, a"(i)
#* a"(]) we deduce from the finite additivity of ¢ (f, o p)(-) that for n > n,

V(fem)n (M) > X w(fyon)y (a"(i)

(i<k: yeT} *

and therefore by Lemma 6, that

im y(for) (1) > L E()

n— o0 {i<k: €T}

which by the selection of k is > (X, ), e7} £(i)) — €. As this holds for all € > 0, we
conclude that for any T € Il '

(10) lim ¥ (f,on)n (T) > ¥ E()

n-» oo {i: y€T}

and similarly that

fim 9 (f,0) (1) > X E().

n—o (it yeT})

By the efficiency of ¥, Y (fye )y (T) =1 — ¥ (f,°op)p (T°) and therefore

im ¢ (fyo ) (T) =1— lm y(f,on)q (T <1— ¥ E().

, H~>00 n— oh (i: y€T°}

By Berbee’s result X2, E(i) = 1 and therefore 1 — X ) cqe) E(i) = X(i1y, ey EQ),
which implies that lim, , J(f,°op)n(T) < E(,.: yeryE(i) which together with (10)
implies that

im 4 (f,on)y (T) = L E()

n—eo (it yeT)

which completes the proof of Lemma 9. =
~ Recall that (II,)°; is an increasing sequence of subfields such that U,II; generates
%, and that A4, denotes the set of atoms of the subfield II,. For each n € N, let X,
a € A, be 1.i.d random variables that are uniformly distributed on (0,1), and let
S,(1)={aed, X]<t},0<1t<1 Note that §,(¢) is a stochastic process on [0, 1]
with values in the power set of A4, such that S, (0)= & and S,(1) = 4,. Note that the
restriction of any measure v on % to II, is a measure on (7, II,) and thus induces a
measure vy on (4,,2%). No confusion should result if we denote this induced
measure also by v, i.e., for any B.C 4,, v(B) = X, gv(b). Using these notations we
observe that v(S,(?)) is a real valued (nondecreasing if v > 0) stochastic. process on
[0, 1] with v(S, (O)) = 0 and v(S,(1)) = v(1).

We will derlve now some general inequalities for the process v(S,(t)). The present
paper will apply these inequalities only when v is nonnegative., As there is almost no
extra cost to drive the inequalities for a signed measure v, we have chosen to state and



WEIGHTED MAJORITY GAMES HAVE ASYMPTOTIC VALUE 565

prove the mequalities for signed measures. If v is a signed measure, we denote by ||
the measure which is the sum of the positive v and negative v~ parts of the mea-
sure v. '

LeMMA 11.  For any measure von (I, €) withv + 0, andany 0 < t <t < 1 and any
¢ >0, :

Prob(|o(S,(5)) = o(8,(1)) = (F = o ()] > epi(1))

(- t)max{|jv(a)|:a € 4,}

c*(Jol(1))

Proor. It is a direct application of Chebyschev’s inequality to the random variable
v(S, (1)) — v(S,(?) = YoeaV(a)I(t < X} < {) which is a sum of the independent
random variables v(a)I(t < X’ <), a€ A,. E(v(a)I(t < X7 < 1) = (1 — t)v(a)
and thus

E(o($,(2) = v(8,() = L (i~ )v(a) = (i — 1)u(J),

a€Ai,

while Var(v(a)I(t < X? < 1)) =(f — t)[l — (f — )}(v(a))?* and therefore using the
independence of the summands

Var( v (S(t))—v(S(z‘)))—(t—t)(l—(l‘—f)) Y (v(a))?

acA,

<(1-1t) 2 max{v(b)|: b€ 4,}|v(a)]

a€A,

< (Z—t)( zA |U(a)1)max{lv(b)| be 4 }
< (- t_)max{[v(a)]: a€d,)} -|v|(1,).
Theréfore by Chebyshev’s inequality,
Prob(lv(S (B) ~ o(8,(1) = (F = 1) ()1 > C(IvI(I)))

(t—t)max{lv( a4 }(|v|(I)) (t—t)max{|v a)la€4,)

;. ey T )

COROLLARY 12. Forany € > 0 and 0 < g < 1 there exists B > 0 such that for any
probabzlzty measure i on (I, €) and any finite subﬁeld H of €,

Prob(u(Sn(l — B)) < 9+ 3 1) + Prob(p(Sn.(B).),?_q/2),< e‘/‘2.

PrOOF. Apply the previous lemma to v=p, t—t=
(1 — q)/2] — B and deduce that each of summands is < 8/c
zero as 8 — 0. : :

B and ¢ =[q/2 A
2 Wthh converges to
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COROLLARY 13.  For any probability measure p-on (1, €) and ¢ > 0 and.any ,81 >0,
there exist 0 < 8 < By and ny such that for all n >.n,,

Prob(p (1) = ppu(S,(1 = B)) < Buna(1)/2)

< dmax{py(a):a€d,}/B(pyI)).

" PROOF. Apply Lemma 11 to the measure v = Py L—B=t<t=1, c=
B/2 to bound the left-hand side by max{uNA(a) a€ A },B/(uNA(I),Bz/4)

dmax{py(a) a €A,}/[B(py I}
LemMA 14.  Let v be a positive measure on (I, €). Then

Prob( max {|v(S,(¢)) - w(I)| > c(u(I))) < 8max{v(a):ac4,}/((I)).

Okl

PROOF. There exists 0 =, <, <1, < - <t,=1withk—-1<2/e¢ such that
t,—t,_y <¢/2. By Lemma 11, forevery 1 < i < k

4max{v(a):a€ 4 }

Prob(|v(Sn(t,.))\— to(l)] > %U(I)) € u(I)

Therefore
Prob(31 < i < k s.t.|u(S,(¢,)) — t,o(I)] > ev(1)/2)

4max{v(a):a€d,} 8max{v(a):a€A4,)
<(k-1) (1) ) o (1)

As v(S,(t)) is nondecreasing, if f,_; <t <t and |v(S,(¢)) — w(l)| > ev(])
then either ov(S,(¢,)) > t,v(I) + (e/2)v(I) or v(S,(t,_1) < t;,_v(I) —
(e/2)v([1). Therefore, ,

Prob( sup |v(S,(¢)) — w(1)| > ev(I))

0<<1
< Prob(31 < i < k, ju(S,(2,)) — t,o (1) > (e/2)v(1))

- 8max{v(a):a€ 4,)}
h (1) '

We turn now to the essential preparauon for the proof that f op & ASYMP
wherever 0 < ¢ <'1 and p is a probability measure on (I, €) with p NA(I ) > O Recall
that we denoted the sequence of atoms of the probability measure p by ()%, (with
i#j=y + yj) We assume without loss of generality that a, = p({ y,}) is monotonic
nonincreasing, i.e., a;_; > «, > 0. In what follows 0 < ¢ < 1, the probability measure
p and the increasing sequence of partitions (II,)%2., that generates ¢ are held fixed.

‘Let (g,)%-, be a sequence such that g, <.q, g, > gask - o0, a,/(qg - q,) =+, .0
and k(g — q;) — ,_ 0. To show that such a sequence exists one has. to verify that

koy = .0 which follows from Za, < oo and the monotonicity of the a,s. For
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instance, take ¢, = ¢ — o, /k if there are infinitely many values of k with a, > 0,
and g, = g — 1/k?* otherwise. For 0 < x < 1 we define the random variable ¢, (x) =
mf{z: p(S,(¢)) > x}, and the o-field % (x) is the o-field generated by the random
variables XI( X < t,(x)). For any subset B of 4, and a measure v on (I, %) we
denote by p(v, B) = max{|v(a)|: a € B}. Recall that 4, , = {a€ 4, V]l <i<k,
Y, € a}l.

Note that for each 8 > 0, each one of the following random variables is measurable
with respect to %, (gq,)-

L= 1(p(S,(t,(q0) — ax < p(#: 4, 0) A (4 40)),
L= 1(p(4, 0\ 5,(1,(a))) > (B/2)n(4, 1))
L=1(1,(q,) <1-B8) = I{p(5,(1 = B)) > 4,)-

For every U C 4, we denote by F,(U) the random variable

F(U)= X I{(g<p(S,(X1) < g+ p(a)).

acsU

As Prob( X7 = X') = 0 for a # b, we may as well assume that for a # b, X} # X
Therefore, at most one of the summands defining F, is nonzero and thus F, is a
{0, 1}-valued random variable.

LemMa 15. For any B> 0, if 6 =8(q — q,)/[Bu(A, ;)] and if I, Is are the
random variables,

I = I(p( 4, 0 S,(1,(g0) + )\ Su(1,(20))) > 4 — i),
Is = I(Vl Si<k, Xgng é\(%(‘]k% t.(q,) + 0)),

then, on I, = 1,

(16) E(I4|'9‘~n(qk)) >1- P(.“‘: An,k)/(q "Qk):
andon I, =1,
(17) “‘ ,&E(Islg‘_n(%)) 9‘1 - 8k(q - Qk)/(ﬁzf"‘(An,k))z

andonl,= I, =1,

E(I4 ) 15!-9‘;(‘11())

(18) .
> (1—p(p,4,,)/(q—4))1 - 81§(q — q.)/B%(4, )

__Proor. We apply Lemma 11, conditidnallz to #.(q,), to the measure p on
A, r={a<€ 4, . X >1,q,)} Noting that 4, , is measurable w.r.t. %#(q,) and
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that the random variables Y = (X — ¢,(q.)) /(1 — t,(q,), a € A_n’k, are condition-
ally to #,(q,) i.i.d, uniformly distributed on (0, 1) and that

- 1( Y I(Yr<0/(1~1,(q)))n(a) > q - qk)

ae’—(n.k

which 1s -

€4,

4 L 1 <Ou(@) > g g

=1( > I(Ya"gﬂ)p(a)>0Bu(Anyk)/8).
a€Ad,

On I, =1, Bp(4, ;) < 2#(14_”,/() and therefore on I, = 1,

( Y I(Y" )p,(a)>0p,(/rn’k)/4).

aEA" &
By Lemma 11,
g
E\Il Y I(Y)<6)p(a) > zu(4, ) (qk)
a€A,
_ Op(m 4, )
(36/4)u(4,,)
whichon I, = 1is
S 11— _]:E p(u"An,k)
T 90 (B/)e(4,,)
=1 — 32 p(“’A",k) - i 32.B.,“"(An,k).p("“,An’k)
98 p(4,) 9B - 8(q — q)n(4, )
> 1 — P(Pa, An,k) '
, (‘] - Qk)
Altogether, we deduce thaton I, = 1, E(1,|%,(q,)) > 1 — p(p, 4 , «)/(q — q,) which

proves (16). Let A, = {a€ A, X" >t «(q)} and note that A4, is measurable w.r.t.

Z.(q,). To prove (17), note that the random variables Y" = (X7 — t,(q.))/
(1 1,(4x)), a € A,\ 4, 4, are conditionally to #,(q,), L.1.d. umformly distributed on
(0,1) and that on Iy =1, the random variable Is = I(Va € A,\4,,, Y, >
8/(0 —t,(q))is >INVa€ A, 2\, 0 Y = 0/B). Therefore on I; =1,

E(L|#,(4,)) > 1(8 < B)(1 — 8/B) sl

>1~k8/B=1-8k(q—q.)/(B%(4, ),
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which completes the proof of (17). As I, and I; are {0, 1}-valued random variables
that are measurable w.r.t. % (g,), (18) is an immediate corollary of (16) and (17). Note
that 7, and /5 are independent conditionally to #,(g,)-

Lemma 20.  For any B > 0 and any probability measure .,

P([J», An,k)

E<Fn(An,k)"/n(qk)) = Il I2 I3 1 q-— qk

— 8k(gq - qk)/(Bfu(An,k))

PrOOF. As I, i=1,2,3 are {0,1}-valued random variables that are measurable
w.rt. %,(4q,), it is enough to prove thaton I, = I, = [; = 1,

E(E(4, )1%(a)) 21— e(p 4, ) /(a~ a0) — 8k(q — 9.)/(B(4, 1)).

On I, =1, F (A4, ) > 1, Isand therefore on I, = I, = I; = 1, E(F, (4, )|%.(4.)
> E(l, - I|#,(q,)) which by Lemma 15 is > 1 — p(g, 4, )/(q — q) —
8k(q — q.)/(B*m(4,,0)).

Lemva 21 Let FX(A,,) = Z,c. I(q < B(S,(X2) < q¢ + u(a)). Then for
every € > 0, there exists k, such that for all k > k, :

lim sup bj(

n—oo

Fnk(An,k) - F

n

(4,,4)]) < 2¢ and

lmlsup‘lE(Fnk(An,k)) - E(Fn(An,k))' S &

n-—»oo

PrOOE. Let € > 0. Choose 8 > 0 such that Prob(l; =1) > 1 — ¢/3 for all n and
k. The existence of such B > 0 follows from Corollary 12. Note that I, - I, > I, -
I(p(A,  \S,(1~B)>(B/2r(4, ), and that the right-hand side of the inequal-
ity is a product of two {0,1}-valued random variables. By Lemma 11,

E(I(p(4, \ S, = B) > (B/Dp(A4,, ) > 1 ~ 4p(n, 4, )/(Bp(4, ) and
therefore E(I; - ,) > 1 — ¢/3 — 4p(p, 4, )/(Bu(A,, ). As

lim Supnaogp(p" An,k)/[J‘(An,k) < ak/a
we deduce that if k is such that «, < ¢Ba/12 then for sufficiently large n,

(22) E(L,-1,)>1—2¢/3.

As lim sup, , o(f, 4, x) = ¢4 < @ = 0(gq — q;) as k > o, we deduce that for
sufficiently large k, Lim sup,_, o(1, 4, +)/(9 — 4) < €¢/6. Also k(g — g;) = 0 as
k — co and<lim ,;_:;f"cou(An’ .) = a and therefore, for sufficiently large k,

limsup8k (g — )/ [ B (4, )] < /6.

n—ow

The two last strict inequalities imply that for sufficiently large &,

(23)
timinf (1 — [p(p, 4,4)/(q = q)] = 8%k(q — a.)/[B%(4, )]) > 1 - /3.

n— oo
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By Lemma 20, (22) and (23), using the fact that [, and I, - I, are {0,1}-valued
random variables, we deduce that for sufficiently large k,

lim sup E((‘Il - Fn(An, k)) +>

= limsup E(1,(1, — E,(4, ,)))
(24) e |
= hmsupE(E((Il - Fn(An,k))Iﬂg(’;(qk)))
= thllpE( [E(Il/ (qk)) - (Fn(An,k)lgz;l(qn))]) <E
Recall that limsup, ,,p(it, 4, ») < &, = 0(q — g) as k — oo, and. observe  that

when p(p, A, ) <q— q, 1, > F, k(A,, «)- Therefore we conclude that for suﬁicmntly
large k, .

(25) limsupE((EF(4,,4) = F(4,4) ) <«

n— o0

In all the above computations that were leading to (25), there was no essential use
(aside for notational convenience) to the fact that ¢ was held fixed and g, was varying.
Therefore in a similar way we obtain that for sufficiently large k,

(26) limsupE((Fn(Amk) — Fk(An,k))Jr) < e

h— 00
The two inequalities, (25) and (26), complete the proof of Lemma 21. For any T in II;,
we denote by T, , = {a €4, ;rac T}
LeMMA 27. For any € > 0, there is ky, s.t. for every k > Ik,

fimint [£(£,(7,,)) ~ En(T, ) /n(4,,)] > —.

n— 00

ProoOF. By the renewal theory for sampling without replacement ([18] or Theorem
3.5), there is K = K(€) > 1 such that for every finite weighted majority game v =
[r,(W)ieq,. .., m) if K(e)maxilw, <r < X7 w, — K(e)maxjLw, then I|yv(i) -

.....

w,/ LT w| < e/2 which in particular 1mphes that for any subset Q of the set of
players {1 mj},

(28) 40(0) > w(Q@)/ X w, ~ /4.

=1
Let k, be such that for k > k,,
(29) (K(e) +Da,<g—¢q, and K(e)a, <1—gq.

Choose 8 > 0 such that Prob(l; = 1) > 1 — ¢/16 for all n and k. As in the proof of
Lemma 21, there is k4 such that for k > k,, and for sufficiently large n,

(30) E(L,- L) >1—¢/16 —4p(p, 4, )/[Bu(4, )] =1 —¢/8.
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Choose 6 = 8(q — q,)/1Br(4, )] and let I, and I be the {0,1}-valued random
variables defined in Lemma 15. Let 4, ,={a€ 4, X >1,(q)} and T, , =
T, N A, - Set

Ig= ) I(‘]“!L(Sn(fn(%)))<#<Sn(X:)mA—n,k)<9"H<Sn(tn(4k)))+ﬂ(a))~

a€T, i

Setting Y = [X] —1,(q)]/11 — t,(g,)] we note that conditionally to #,(q,), the
random variables Y, a € 4, , are ii.d. uniformly distributed on (0,1), and that

I;= ). I(‘] - p(S,(1.(q))) < .“'(Sn(X:) mA‘—n,k)

aeT, ,
< q—p(8,(1,(q))) + n(a)).
Therefore, on I; = 1, E(I4%,(qy)) = (4/0)(3—:.,1() where v is the weighted majority

game [g — pn(S,(¢,(q)) (£(a)) . 1 |- APplying (28) to the weighted majority game
v we deduce that on I, = 1, k > k, and n sufficiently large

(31) E(Iewrn(Qk)) > P'(Tnk)/ﬂ(fznk) —e/4.

Note that F(T, ) > L - I, Is - Ig> 1, - I, - I; - I - Is - I¢. As I, I, I, are {0,1}-
valued random variables that are measurable with respect to %#,(g,) we deduce that

(32) E(Fn(Tn,k)“gn(qk)) >1,- I, - LE(IL,- I - I\ %,(4q,)).

As I, - I and I, are {0,1}-valued we deduce that
E(L - I - I #(q.)) > E(16|f9"’71(4/<)) + E(1,- I #(q)) — 1

which by (31) and (18)ison I, = I, = I, = 1, k > k, and n sufficiently large

_ _ plp, 4, 8k(q —
> M(Tn,k)_/u(An,k) —¢/4 - (;L_ q/;k) B Blqu(A,,q:))

and therefore using (32) we have

E(E:(Z;k)l%:(‘]k))

®

T 1 ’An 8k —
911'12‘13F(Tn,k)/}1(14',,,k) —e/4 — p(u ’k) _ (¢ — i)

9= 9 B4, )’

Let k, be such that a,/(q — ;) + 8k(q — q4)/[B*kna(I)] < €/4. Then for k > kj,

P(“’An,k) 8k(q — q,)

I
Pree Ty, Bu(4, )

< /(g q0) + 8k(q — 4.) /[ Brwa(I)] < /4,
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and thereforévfor k> k4 V k,, for éufﬁciéntly large n we have ..

(3 E(B)IFG) > b L tw(T)/e(4,) - o2

By Lemma 14,

, PfOb( ( " k) (1 - tn(Qk))ﬂ\(@:,k) - 5#(An,k))
<80 (1 7, /(0(4,.))

Prob( ( ", k) > (1 —t,(q) + S)P‘(An,k)) < SP(N» An,k)/(83l""(An,k))'

As Prob(t,(q,) > 1 — B) < ¢/8 we deduce that

L) w(T) 28 .
Prob i (4, ) < vl <16p(p, 4, 1) /8% (4,,0) +¢/8 -

and as [, - I, - I is a {0,1}-valued random variable we deduce that

E(L - Iy (T, ) /04, 10))
(34) >E(IlI2IB)H‘(Tn,k)/p’(An,k)
—28/8 = 16p(p, A, )/ 4, ) — ¢/8.
Setting & = ¢B,/16, observing that limsup, , ,0(p, 4, ()/B(A4, ) < a;/a and there-
fore if 16a, /8% < ¢/8 (i.e., k > ks where 16a, < 683a/8), then, for sufficiently large
n, 16:0(”" An,k)/83""(An,k) < €/8 and
(35) E(I1 Ay Ia“( n, k)/ﬂ( n, k)) > E(I1 " I - Iy ”(T;t,k)/p‘(An,k))
—¢/8 —¢/8 — ¢/8.

If also k > ks, then by (30), E(L, - I, - I;) > E(I;) — ¢/8 and therefore usmg (35),'
(B3)if k> kyV ksVk,V k, we have for sufficiently large n, .

E(E(T, ) = E(L - 1 - B)(0(T, ) /8(4,.0)) = €/2 = /8 — ¢/8 ~ e/é
> E(L)(1(T,,10)/6(4,,1)) — ¢,

wh1ch completes the proof of the Lemma 27. m
Let € > 0. Let k, be sufficiently large 50 that for all k > ky,

(36)  for n sufficiently large (7T, )/B(4, ) = ppa(T)/a — €,

(37)  for n sufficiently large E(I;) > E(Fnk(A,,,k)) > E(F,(A, ) — ¢

>1— ) E(i) — 2, and
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(38)  for n sufficiently large  E(E,(7, ,)) > E(1)p(T, ) /n(4, ) — ¢

To show that such k, exists, note that lim, , u(4, ,)=a+ X, .« and that
hm, _, (7, ) > pp(T) and therefore for k sufficiently large (36) holds. That (37)
holds for % sufficiently large, recall that 7; > F,‘zk(An,k) whenever p(p, 4, ) < g — gy,
use Lemma 21 and for the right inequality use Lemma 6 which implies that

lim, , E(F,(4, ) =1—TE() > 1 — 2, E(i) — e. Using (36), (37) and (38)
we obtain that for sufficiently large n,

(39) B(E(T,) > 1= £ B us(1)/a — de.

i=1
If n is sufficiently large, so that 1 < i <j < k = a”(i) # a”(j), then
' k
9w (T) = L 4(f,om)n (a"(D) + E(E(T, )
e
. and therefore by applying Lemma 6 and (39) we conclude that for k sufficiently large,

1o §E<f>)uNA<T>/aé e

i=1

iminfy (fop)y (T) > X E(G) +

n— o0 i=1
ijT

> ¢(fon)(T) —4e— X E(i).

i>k

As this holds for all € > O,

iminfy (fop)y (T) = o(f,ou)(T) — X E(i),

n-—00 i>k

and as this holds for all k sufficiently large we conclude that

iminfy (f,ou)g (T) > ¢(f, o )(T).

n— oo

As this holds for all T € II; we have in particular that

#,

]iminfx[/'(fq%u)n"‘(Tc) > ¢(fq°ﬂ)(Tc) :

n—co

and as $(f, ° W), (T) + Y(f,* pXT) = 1 = 6(f,° n)T) + 6(f,° uXT) we deduce
that lim, _, 4 (f, o p)n(T) = ¢(f, o u)T) which completes the proof of Theorem 1.

PROOF OF THEOREM A. As ASYMP is a closed linear subspace of BV and bv'M is
the closed subspace of BV generated by games that have the form f oy where f € bv’
and p is a probability measure in M, it is enough to show that each one of these
generators is in ASYMP. Let 4 be a fixed probability measure in M. Any fe b is
the sum of two functions f; and f in bv’ where f; is left continuous and f is right
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continuous. If f=f, + fr, fr, fr € bv’ then fopu = f, ou + fropn and therefore it is
enough to prove that each one of the summands, f; o p and fr o p, is in ASYMP. Also
the dual game of f; o, (f, o u)* equals f;* o u where f;* € bv" and is right continuous.
Therefore it is enough to prove that fou € ASYMP whenever f € bv’ and is right
continuous.

Let f & bv’ be right continuous. By Lemma 3.4 of [17],

y(fom)m, f¢ fyom)u, (T) df(q).

As for each ¢ € (0,1), ¥(fop)u(T) = 4o o®(fyouXT), 0 <Y (fop)n(T) <1
and Y(f, o p)py (T) is measurable (in ¢), we deduce that ¢(f, > p)(T) is measurable
and by the bounded convergence theorem we conclude that

V(f o) (T) —ms [olsyon)() ar(a),

which completes the proof of Theorem A. . u

5. Weakening of assumption? The existence of an asymptotic value on bv'M is
equivalent to the existence of an asymptotic value on all scalar measure games fopu
where p is a probability measure and f: [0,1] = R is continuous at 0 and 1 with
f(0) = 0 and of bounded variation. We have already seen in [17] that the continuity of
/ at 0 and 1 can be replaced by the weaker condition that f(0+) = f(1 —) — f(1) and
that the bounded variation of the function f is essential for the existence of an
asymptotic value. Here, we consider weakening the assumptions on the measure p. Our
first concern is the positivity of p.

We investigate games of the form fopu where p is a measure that takes negative as
well as positive values and f 18 a real valued function defined on the range R(p) =
{(u(T): T € €} of pwith f(0) = 0. One case that is (relatively) easy to handle is when
the nonatomic part of the measure p is positive (negative) and there are only finitely
. many atoms of p with negative (positive) measure. In that case, for any function f with
f(0) = 0 that is continuous at 0 and p(7) that is of bounded variation on the convex
hull of R(p), f°p has an asymptotic value. :

The next result shows that when the nonatomic part of the measure p takes both
negative as well as positive values the situation is more delicate.

THEOREM 5.1. Let pu be a nonatomic measure with total mass 1 and 0 < q < 1. Then

f, o i has an asymptotic value if and only if p is positive.

Proor. The main theorem asserts that f, o i has an asymptotic value whenever p is
positive. Thus, it suffices to show that if p~(7) > O then f oy does not have an
asymptotic value. Assume that u=(I) > 0 where p™ is the negative part of the measure
p. Let I, 12, I, be a partition of I, so that p=(I) = p~(I3) = p*(I,) and p* () = 1.
Let (II,)%_, be a sequence of finite subfields of ¥ with I, € II,, i = 1,2, 3. Denote
the set of all atoms of II, that are includedin I,, i = 1,2,3, by 4). We assume that
pt(a) = n"%" (1)) if a € A%, and that p(a) = n~*u(l,) if a € A3. 4% conmsists of
2n atoms each having measure 1/(2n + 1), one atom denoted by a of size g —
[((2n + 1)q]/(2n + 1), where [ x] denotes the integer part of x and one denoted by a of
size 1l — pu(a) — 2n/(2n + 1). i

Let (Xa>aEA’ n
distributed on (6, 1). Let Xi,..., X,, be defined by:

X, =min{ X,;ae A4\ ({a,a}}, X, =min{X; a4\ {aa}, X,>X,}

= A, U A2 U 43, be iid random variables that are uniformly.



WEIGHTED MAJORITY GAMES HAVE ASYMPTOTIC VALUE 575

Let b be an element of 42. We will show below that Y(f o), (b)1s at least of the
order of magnitude of n~3. Therefore, lim,,_, _y( fe° ,u)H"(A,zI) = 0. As 1t 1s possible
to generate such a sequence of finite subfields for which there is a subsequence which is
increasing and generating the o-field ¥, it follows that f ou does not have an
asymptotic value. Thus, all that we have to prove is that Y(f, op) (b)1s > cn~3 for
some constant ¢ (that might depend on g and p~(7)). Denote a = p~(I) = u¥ (1)) =
(1) and k = k(n, q) = [2n + 1)g]. Then p(b) = an™* and

S ou(a)I(X,<t)€lg—an"* q)|]| - dr.

acA,
a+b

Y(fen)y (b) = fOIE I

E\I| X u(a)I(Xa<t)€[q—an“‘,q))

acEA

ae;&b"

=E E I Z nu‘(a)I(Xa<t) E[q_an_4’Q))|Xg’ XE’ Xl"":XZn
acA
a#b"

>E|E|{I| ¥ ‘u(a)I(Xagt)E[—an_“,O))ng,Xa, X,.. ., X,
ac A U4z

a*b

I(X,< X, <t<X,.,<X;)

~eli| T sarnen l-ao)
acA3u4?
a# b
'I(Xa<Xk<t<Xk+1<Xa) .
L | _ '

For each fixed n % <t <1,

(*) E{Il ) plaI(X,<t) E'[—an_“,O) >c-n?
ac Al A2
a#b

for some universal constant ¢, and X,, a € 43 U 42 are independent of X, a € 4
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and, therefore,

cn~® + \P(fq”L)n (b) > flcn_zE(I(Xa <X <t <Xy < X)) dt
n 0 =

= E((Xk+1 - Xk)I(Xt_z <X < Xpy1 < Xa))cn_z

> clnien™?
which completes the proof that f o p does not have an asymptotic value. =

It is of interest to characterize all games of the form fop where p is a signed
measure, that have an asymptotic value. Let p be a nonatomic measure with range
{(p(SHIS€ C} =[~a,b]with —b < —a <0 < b, and let f be a monotonic function
on [—a, b] with f(0) = 0. Our conjecture is that a necessary condition for f o u to have
an asymptotic value is that f o u has bounded variation, i.e., (see [3, Proposition 9.1])
that the function g,(x, y) = (x + a)(b — y)(f(¥) — f(x))/(y — x) is bounded in the
domain —a < x <y < b. Moreover, if f is piecewise continuously differentiable we
conjecture that this condition is sufficient for fopu to have an asymptotic value.
Another sufficient condition for f o u to have an asymptotic value is concavity of f.

In the following example we demonstrate an example of a .signed purely atomic
measure p with u(/) = 1 for which f; ,, o p does not have an asymptotic value.

ExampLE 5.2. Let (n,)%., be an increasing sequence of positive integers with
(5.3) Jr 4= Ean —— oo,
Let pu be a purely atomic signed measure on (I, ) having countably many atoms: two
atoms, y(1) and y(2) of measure 1/2 each; for each k > 1, 2n, atoms, y*(k, j),
1 <j < 2n,, each having measure 27%/n, and 2n, atoms, y~(k, j),1 <j < 2n, each
one of measure —2 7 %/n,. Let I, I~ be the Hahn decomposition of I with respect to
pu. We will prove that f; ,, e u does not have an asymptotic value, by demonstrating an
increasing sequence of finite subfields (IT,)¥.; with I*e II, and U, ,,II, generates ¥
for which

kh_’nioll/(fuz ° .“)Hk(A/j) =0
" where A;" are all atoms of II, that are subsets of I*. Let (IT,)?_; be an increasing

sequence of finite subfields with U, .1l generating %, I* & II, and the set of atoms
A, of the finite field II, satisfies:

4,2 {a(1),a(2)} U jL=JlA,{(+) U AL(=) U {Ba(+), by(+), b1(=), b5(—)}

where a(l) # a(), y(1) € a(l), y2) € a(@), |4{(+)] = 2n; = |4{(~)| and
Caef(+) = pla) =27/,

while a € Af(-) = p(a) = =27/ /n,,

H(b1(+)) = H(bz('*‘)) = Z (2_i/”‘i)”i =27F= _N(bl(_)) = _M(bz(_))-

i>k

H’/(fl/z °ﬂ)nk(A/:r) 2 1P(fl/z °l‘)nk(A1/§(+)) = 2nk‘l/(f1/2 °H)Hk(a)
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where a € A%(+). Let X,, b € A, be iid. random variables that are uniformly
distributed on (0,1). Set 4] = Ai(+) U AL(—).
¢(f1/2°“)nk(a)

= E(I( Y ou(b)I(X, < X,)€[1/2,1/2 + H(@)))

> F

I<1/4<Xa<3/4>HI( ) I(Xb<1/4>=nj)

J<k \ped(+)

.1( Y I(Xb>3/4)=n,~)

beAL(+)
-I( Y I(Xb<1/4)=ni)l( > I(Xb>3/4)=ni)
beAl(—) , bedi(—)

'1<Xa(1) < 1/4’ Xa(z) > 3/4’ Xb2(+) > 3/47 Xb1(+) < 1/4>

X <14 X > 3/4)1( Y I(x, < X,) €0, ,u(a)))).

beA’,ﬁ

As (X,),c 4 are independent of (X,); ¢ 4, we deduce that for a € Ak(+),

\P(f1/2°#)nk(a)>E[HI( )Y I(Xb<1/4)=ni)
J<k \peal(+) |

.1( 5 I.(Xbi>3/4)=ni)‘

beAi(+)

.I( Y, I(X,<1/4) = n,.)I( Y, I(X,>3/4) = ni”
beA{(~) v beai(—)

I( X,y < 1/4, X0 > 3/4,

o <1/ = U = /8, > /)

£l ¥ 106 < X)u(6) =

beAX

0. 0(a) - 10/4 <5< 4))

>4~ 4. [E| 1L T I(szr,w))e[,—u(a)ﬁ)) d
174 bedk I
b+a T ‘

>c- 4—4):i<k"i/ /nk
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for some positive constant c. Therefore

¢(f1/2°vﬂ)nk(A/j) (fl/z P‘)nk(Ak ) 2‘/'C 47w e P

It is of interest to characterize those games of the form fop where p is a purely
atomic signed measure that have an asymptotic value. Examples of specific questions
in this direction are: (1) for fixed —a < 0 < b, characterize the monotonic functions
f:[—a, b] = R for which any game of the form f o p where p is purely atomic with
{(u(S)|S € €} C[—a,b)], has an asymptotic value; (2) for a fixed purely atomic
measure pu, characterize all monotonic functions f for which f o p has an asymptotic
value. |

Next we would like to weaken the assumption of countable additivity of the measure
p. Under the standard definition of an asymptotic value, even pFA (i.e., the space
generated by powers of finitely additive measures) is not contained in ASYMP. The
essential reason is that for a finitely additive measure p, the measures u on (7, II,)
where II, is an increasing sequence of finite fields that generates ¥ do not disclose
enough information regarding u.

ProrosiTION. pFA ¢ ASYMP.

Proor. Let p be a nonatomic finitely additive probability measure. If the finitely .
additive measure p is not countably additive there exists a decreasing sequence (S;)% ;
of coalmons with S; v & and u(S;) —;,,,, @ > 0 and a # 1. We show that the game
v = p® does not have an asymptotic value. First note that by the nonatomicity of u (a
finitely additive probability measure p is nonatomic iff for every measurable set .S with
p(S) > 0 there is a partition of S into measurable sets S; and S, such that p(S;) >
1(S)/3), there exists an increasing sequence of finite subfields IT, with S, an atom of
II; and max{u(A4)|4 an atom of 1I, with 4 # §;} — 0 as i - co. Then, for the game
v = u®, we have \

lim Yo (S;) = fl((t(l —a)+a)’ - (t(1-a))dt=a—a®/2+ a2
i— 00 ! } 0 ) S
and therefore for each fixed k,.
lm Yoy (S,) =a—a*/2+a’/2+ (1 —a+a®/2 - a’/3)(p(S,) — a)/(1 — a).

As the right-hand side converges as k — oo to a — a?/2 + /3 which differs from
a = lim, _, ,pu(S,), it follows that there is k for which lim,_, vy (Sy) # p(Sy).
There exists an increasing sequence of finite subfields II! with S, € II! and Ue 11}
generates ¢, for which max{p(A4)]4 an atom of II}} - 0 as i —» oo For such a
sequence, lim, _, . Yorp(S,) = p(S,). Altogether we deduce that v = u® does not have
an asymptotic value.

The arguments show actually that if p is a finitely add1t1ve nonatomic probability
measure then p3 has an asymptotic value if and only if p is countably additive.

We introduce now a slight modification of the definition of an asymptotic value.

DEFINITION. Let v: ¥— R with v(@) = 0 be a game. A game ¢v is said to be
the weak asymptotic value' of v if: for every S € € and every € > 0, there is
a finite subfield II with S € II such that for any finite subfield II’ with II’ D II,

[orp(S) = du(S)] <e
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ReMARks. (1) Let v: ¥— R with v(@) be a game. The game v has a weak
asymptotic value if and only if for every S in 4 and € > O there exists a finite subfield
IT with S € TII, such that for any finite subfield II' with II' D II, (yop)(S) —
(Yo S)| < e.

(2) A game v has at most one weak asymptotlc value.

(3) The weak asymptotic value is a finitely additive game.

(4) If v is a finitely additive game then v has a weak asymptotic value ¢pv = v.

(5) If v has an asymptotic value ¢v then v has a weak asymptotic value (= ¢v).

Remarks (1)—(4) are obvious. For completeness we present a proof of Remark (5):
assume that a game v does not have a weak asymptotic value. Then, there exists S in %
and € > 0 such that for any finite subfield IT with S € II there exists a finite subfield
IT' with II' © 11 and |[Yop(S) — ¢og(S)] > e Let (II,)?., be an increasing se-
quence of finite subfields such that S € II; and U ,II. generates ¥. Define an
increasing sequence of finite subfields (I13)%_, mductlvely by: II}; DI, UTLL_, is
such that |Jop(S) — xpvn*(S )| > € where II} is the finite field generated by I, U~
I} _,. Note that both (H _, and (H*)°° , are increasing sequences of ﬁnite
subfields and as IT} D I, and I} © 11, both UL I1* and U® 11} generate %. As
lim,_, lyom(S) — zva;(S)l > ¢ > 0 1t follows that the game v does not have an
asymptotic value.

The following is an almost direct consequence of this definition and our main result. -

THEOREM. The set of all games having a weak asymptotic value is a linear symmetric
space of games and the operator mapping each game to its weak asymptotic value is a
value on that space. If ASYMP* denotes all games with bounded variation having a weak
asymptotic value then ASYMP* is a closed subspace of BV with b'FA C ASYMP*.

PrROOF. The only part that might need some explanation is the one that asserts that
bv'FA € ASYMP*. For that, it is enough to verify that for every u € FA[ (where
FA[ denotes all positive finitely additive games v with total mass 1, ie., with
v(l) =1)and f € bV, fopu has a weak asymptotic value. For that it suffices to show
that for every S in C, there is a sequence of finite subfields (II,)?_, with § € II,, such
that for every sequence of finite subfields (I1})%_, with II} o II,.

(*) kﬁ_{l;!‘l/(f°ﬂ)nk(5)—\P(f°#)n;:(5)|=0-

Any u in FA!, has a decomposition as a countable sum p = L, qa;p; Where &, g, = 1,

> 0 and p, is a nonatomic element of FA] and for every i > 1, u; is a {0,1}-val-
ued measure in FA] with g, # [y Wherever i #j. Let II, be a sequence of finite
subfield with S € H o such that for any atom A4 of II, and I <i<j<k,
p(A)p(A4) = 0 and max{py(B)|B an atom of IT,} <1/k (— 0 as k — co) (one of
the equlvalent definitions of a nonatomic finitely additive positive measure p is that
for every € > 0 there is a finite subfield IT with max{ po(B)|B an atom of II} < e).
Our proof showed that in this case for every sequence of finite fields II} with
IIF o 11, both limits im, _, ¢ (f o p),(S) and im, _, ¢ (f ° p)y(S) exist and are
equal and therefore (*) follows which proves that f o p € ASYMP*,
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