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do/d&. a&ET) =P(-@+) : (9 

where ET is the final relative translational energy .and 
g(Q) is, approximateiy, the equilibrium density of 
translational states, &ET) a Eq2. Also, when a long- 
living process is farmed during the collision, it is natu- 
ral to expect i&16,17] that the energy will be equi- 
partitioned between the different degrees of freedom 
(as in a stable molecule). 

The points made in this paper are 
(a) that for a finite system, at a constant total ener_q 

E, the definition of a temperature shouId be modi- 
fied compared to the usual definition, appropriate 
for an infinite heat bath, and 

(b) that the concept of temperature is useful for all de- 
grees of freedom, even away from statistical equi- 
librium. 

For the latter case (direct reactions), even though the 
equipartition of energy does not apply, one can sti!! 
introduce a temperature for each degree of freedom. 
These temperatures all become equal at equilibrium. 

2. Analysis of experimental results 

The currently available distributions of product en- 
er,y states are not absolute cross sections, bl;t only 
the relative probabilities of the different final states, 
at a specified total energy E. In this note we examine 
the distributions in either translation (T) or vibration 
(v). The final product state is identified by the frac- 
tion,_fX, of the rotal energy in that mode, 

j?< = Ex/E. (61 

The relative probabilities of the products are normal- 
ized at each energy 

PP(Iy) = 1 

and 

(7) 

w 

where we have explicitly distinguished between the vi- 
brational distribution (where E, is discrete) and the 
translationaI distribution. The absolute cross sections 
are related to the relative distributions? by a factor 
that depends on the total energy only [i.e., the total 

reaction cross section, uR(E’)J _ Thus, for the transla- 
tion 

do, /dET = ~&WW+i 

and similarly for the vibration. 

(9 

As was argued in detail elsewhere [ 1 1] , it is conve- 
nient to characterize the product distributions by 
their information (i.e , entropy) content. In particular, 
we defied [ 1 l] the surprisal associated with the dis. 
tribution of products in the mode X by 

‘(Rx IE) = - lrl IP(E,W(E,)l - (10) 

where Po(Ex) is the equilibrium (microcanonical) dis- 
tribution, where all quantum states of the products 
have the same weight. It should be explicitly noted 
that Po(Ex> [like &‘(I!?~)] is the relative (i.e., condi- 
tional) distribution at a given total energy. The appen- 
dix outhnes the derivation of these PO(Ex) factors. 
The tinal results are: 
(a) for the translation, assuming that the product di- 

atomic molecuIe is a rigid rotor,-harmonic oscilla- 
tor 

PO(&) = $#I( I --&I ; ‘,I 1) 

(b) for the vibration, assuming that the rotation can 
be described by a rigid rotor level scheme 

wherefy4 < 1 (or El,* G E).. 
It is important to note that (13-j does not assume a 
harmonic oscillator level scheme. 

We define the apparent temperature hX by the 
slope of I(EXJE) versus EX. We find it convenient to 
work in reduced units and hence define 

X, = -d In Z(Exl.E)/df, . 

With this definition 

(L;(fx) = exp(+&) , 
Or 

(13) 

(141 

P(Ex) = P”(E,) b$f,j = P”(Exi exp (-XxfxI 

= PO(Ex) esp(---EX/kTX) , (19 

i In the hngngc of probability theory, P(E,yJ is the condition- 
al probability, while dcr/dEu is proportionrll to the joint pro- 
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where 

TX = (i/X& . (lf9 

The total energy E appears explicitly in the definition 
of TX since h, was defined in reduced units, (13). Of 
course, XX may well (and does fl2]) depend on E, 
even though, as will be seen below, it does not depend 
on EX. 

The most probable foal value offx is the solution 
of 

d !nPQ(EX)fdfX = XX . 

OR examining (1 I) and (12), we obtain 

(17) 

XT = (1 - 3&)Df,(I --&I t 081 

so that hi > 0 when fFq3-< $ and X,, > 0 only when 
the most probable final vibrational state is the ~7 G 0 
state. It should however be clear that XX < 0 does not 
imply that fT.p-= 1 since P"(Ex) is a strongly de- 
creasing function offx for fx --f 1 and hence counter- 
acts the exponential factor. 
Figs. l-3 show the plots of -I(EXiEj = Inw(fX) ver- 
sus&, for the reactions (l)--(?). It is clear that the 
temperature hX is essentially independent of EX and 
that for the case of the isotopic variants of the same 
products, the reduced tzmpernture is the same. It 
shouId also be noted that the chemiluminescence data 
are not at a sharply defined total ener,7 E, but repre- 
sent reactants in thermal equilibrium. However, due 
to the large exothermicily, the uncertainty in the to- 
tal energy is small, 

E= -q i-E reac.’ (191 
Here -Af@ is th e zero point to zero point exotherm- 
icity (i.e., -Ai$ = 31.7 kcal mole-’ for CI + Hf) and 

J%ac is the initial energy of the reactants. 
T&e one exception to the constancy of XX are the 

results fcr 1~ of K i- 1, where two (rather than one) 
linear regimes are evident. We would like to argue that 
this should serve as a diagnostic of this reaction rather 
than as a defect of the concept of translational temper- 
ature. An.examination of the experimental data, and 
in particular of d3cr,/d2,dE, (figs. 17 and 18 of ref. 
(41) clearly indicates two mechanisms. A fonvard 
(stripping) component with a very low Q (and hence 
high XT) and a (somewhat smaller) backward (re- 
bound?) componen’i with a much higher Q (and hence 
a lower +). 
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Fii. 1. The tnnshtional energy distritiution in the reaction 
K + 12” KI + 1. Shown is hI W(fT) versus fi- using the xesults 
of Giilen et al. f4]. E = 44.5 kul/mote arxl P(fT) was ob- 
tained by an analytial fit (using least xpare-s) to the observed 
distribution. cihe two reduad temperatures are hT a 14.8 nnd 

kT’ = 4.4, or TT = 15OO”R and T, = 5000°K. 
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Fig. 2. Vibrational state distribution in the reactions Cl f HI 
-+ I + Ha awl Cl c DI -+ I + DCl. Shown is Inw(fv) \ersus~~ 
tising the results of hlaylotte et al. [2] at E = 34 kcal/moIe. 

For both reactions A, = -8;3, or TV = -2050°K. 
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Fig. 3. Vibrational stare distribution in the reactions F + Hz 
+ H + HF and F i Dz -t D + DF. Shown is inw(fr) vcrs~,~~,, 

using the results of Polanyi and Woodr?U [3] at E(HF) = 34.7 
kcal/mole and E(DF) = 34.4 kul/mole. X,(W) 2: -6.5, 
h,(DF) = -6.0, or T,(HF) = -2700”K, TJDF) = -2350°K. 

3. Discussion 

The concept of temperature introduced in this note 
provides a convenient measure of the deviation of the 
products energy state distribution from the distribu- 
tion predicted on the basis of a simple statistical theo- 
ry. In the statistical limit, w(fX) = 1 or P(Ex) = 
P”(EX) and so XX = 0 for all three modes and the 
available energy is equipartitionedf. 

The identification of XX as an (inverse) tempera- 
ture is based on its definition as the ener,T derivative 
of the information (i.e., the entropy [ II] ), as is the 
definition appropriate for non-equilibrium situation 
in a finite system. The usual definition [ 17,181 ap- 
plies only to a small system in equilibrium with an (in- 
fmite) heat bath, at a given total energy. Here one de- 
fies 

t In thestatistic timit,( 3/7,Cf,)= 2/7 and (fRt=2/7 
where the angular brackets denote an awraee OCR the dis- 
tributicn PO<fx). 

Px = 4 lnIP”(~-&oql /q 9 w9 

where pX(Ex) is the density of states of the subsys- 
tem. If the heat bath is indeed very large, /3x is inde- 
pendent of E, [ 17,181. Thus, if we write 

-d h [fl&)I~~($$l ldJ& = PX - AX/E , (21) 

we see that (21) can be used to define temperature on- 
ly when the remainder of the system (i.e., the number 
of the other degrees of freedom) is large, so that pX is 
EX-independent. 

4n extensive report on the chaiacterization of pro- 
duct state distributions by their information content 
and their temperature, is in preparation [ 121 . A com- 
panion paper [20] considers the possible dynamic ori- 
sins of the non-equilibrium features manifested by X, 
being non-zero. 

4. Summary 

The representation of the distribution of product 
energy states in the form P(EX) = 
Po(EX) exp(-EX/kTX) has been considered and illus- 
trated by the experimental results for different reac- 
tions. Here P”(ZX) is the equilibrium (microcanoni- 
cal) distribution, at a total energy E, where all final 
states are equiprobable. At statistical equilibrium 
P(E,) = P”(fTX) and the available energy is equipar- 
titioned among the different modes. 

Appendix 

We derive the (conditional) density of states for 
E, at a given total energy. 

(a) VibraGorz. The joint density of states p(l’,E) 
is defined so that p(v,E)dE is the number of states of 
an atom-diatom system with a total energy in the in- 
terval E to E f dE and a vibrational quantum number 
Y. Thus [IO] 

‘* J 

p(v.E) =,, (3+ 1)+@‘-E,.-B#+ 1)). (A.0 

Here p&Z) is the translational density of states and 
B, is the rotational constant for the vibraticnal level u. 
In practice we found that using a common B,, ap- 
propriate for a Morse oscillator is sufficient for our 
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analysis. j* (which is a function of V) is the maximal 
value of j, 

B~(/*+l)(i*+2)~i?‘-Ey~Bc.l”(l*+1). (A-2) 

It should.be realized that (A. I) does take into account 
the conservation of the totaI energy but disregards the 
conservation of the total angular momentum. For cer- 
tain reactions (involving a large change in the reduced 
mass) the failure to conserve the total angular momen- 
tum is an unwarranted approximation_ (This approsi- 
mation ma>’ account for our failure with reaction (4).) 

The conditional density p(v1.E) G Pu(E,) is given 

by 

PGJY.9 = P(CWP(E) , (A.3) 

where 
u* 

Using the known results 

(A-4) 

W9 
where A T = ~~~~~~~~~~~~~~ and replacing the summa- 
tion over j in (A. 1) by an integration over Ej= Bj(j f I), 
we obtain eq. (12) of the text. 

(b) Translation. Here the joint density of states is 
defined so that p(ET,E)dE.@ is the number of states 
when the total energy is in the inte_ val E to E f dE 
and the translational energy is in the interval ET to 
ET t SET. Thus [lo] 

V,i 

where EI(y,j) is the internal energy for a given 1’ andi. 
In the limit of high density of internal states [IO] we 

obtain 

P”(ET) = p(IETIE) = P(+~-)IP(EI = ?f;$ -fT) 3 
(A.7) 

where 
E 

P(E) = j- &+EWT . (A.9 

0 
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