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The product siate distribution in exoergic chemical reactions with respect to any one degree of freedom (transla-
tion, rotation or vihration) can be characterized by a temperature. The detailed experiments on the reactions of
K +1z, {3+ HIDD and F + Hy(D3) are used as examples. For the latter two systers the products have well-<defined
{negative} vibrational temperatures, essentinlly Isotopically-invariant.

i. Introduction

Detailed ¢xperimental results on the distribution
of product energy states resuylting from reactive mo-
lecular collisions are rapidly becoming available from
chemiluminescence [1~3], molecular beams [4—8]
and chemical lasers [9] studies, The optimal means of
characterizing the distribution of products has recent-
ly been considered {10,11}, and the concept of infor
mation conient of such a distribution has been put on
a quantitative basis [11]. In the course of a detailed.
study of the application of these concepts to specific
systems [12] it has become clear that a very useful
parameter is the apparent temperature of the produet
distribution in any one particular mode (translational,
vibrational or rotational). The aim of the present note
is to outline the way in which the concept of a “tem-
_perature” can be introduced, with particular stress on
distributions which are far removed from statistical
equilibrium. In particular, it will become evident that
the concept is useful even in the extreme case of pop-
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ulation-inverting reactions. The three types of reacs
tions chosen here as illusiration are
(a) the translational energy distribution for [4]

K+, +KI+1; {H
(b) the vibrational state distribution for [2]
Cl+HI-> [+ HC,

Cl+DI-»[+DCI {2)
and (¢} the vibrational state distribution for {3}
F+H, > H+HF,

F+D,>D+DF. (3)

Several other systems, including rotational state dis-
tributions, have been examined. The only exception
to the simplicity of the description afforded by the
introduction of a temperature, which we found, is she
reaction [13}

H+Cl, -~ Cl + HCL. {4)

Even for this reaction, the results of classical trajectory
caleulations [14] are however in good accord with our
suggested analysis.

The main featuras of the observed translational en-
ergy distributions have been reported for some time
[15] as a fit to a distribution of a canonical type,
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dO‘_/dET Olg(ET) exD(—ﬁET) > (5)

where Ep is the final relative translational energy and
g(£y) is, approximately, the equilibrium density of
transiational states, g(E) = E42. Also, when a long-
living process is formed during the collision, it is natu-
1al to expect [8,16,17] that the energy will be equi-
partitioned between the different degrees of freedom
(as in a stable molecule).
The points made in this paper are
(2) that for a finite system, at a constant total energy
£, the definition of a temperature should be modi-
fied compared to the usual definition, appropriate
for an infinite heat bath, and
(b) that the concept of temperature is useful for all de-
grees of freedom, even away from statistical equi-
fibrium.
For the latter case (direct reactions), even though the
equipartition of energy does not apply, one can stil
introduce a temperature for each degree of freedom.
These temperatures all become equal at equilibrium.

2. Analysis of experimental results

The currently available distributions of product en-
ergy states are not absolute cross sections, but only
the relative probabilities of the different final states,
at a specified total energy £. In this note we examine
the distributions in either translation (T) or vibration
(v). The final product state is identified by the frac-
tion, fy, of the total energy in that mode,

Ix = Ex/E- (6)

The relative probabilities of the products are normal-
ized at each energy

ZP(f)=1 (7)
and
Jarp(r=1, ()

where we have explicitly distinguished between the vi-
brational distribution (where £, is discrete) and the
translational distribution. The absolute cross sections
are related to the relative distributions? by a factor
that depends on the total energy only [i.e., the total
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reaction cross section, og (£)]. Thus, for the transla-
tion

dog [dE._ = 0 (E)P(Ey) (9)

and similarly for the vibration.

As was argued in detail elsewhere [11], it is conve-
nient to characterize the product distributions by
their information (i.e , entropy) content. In particular,
we defined [11] the surprisal associated with the dis-
tribution of products in the mode X by

HERIE) = —In[P(EQIPUEL)] . (10)

where PO(£'+) is the equilibrium (microcanonical) dis-
tribution, where all quantum states of the products
have the same weight. It should be explicitly noted
that PO(Ey) (like P(Ex)] is the relative (i.e., condi-
tional} distribution at a given total energy. The appen-
dix outlines the derivation of these PU(£) factors.
The final results are:
(a) for the translation, assuming that the product di-
atomic molecule is a rigid rotor—harmonic oscilla-
tor

POfY = AP0 - 1) s (11)

{(b) for the vibration, assuming that the rotation can
be described by a rigid rotor level scheme

vt
PO == £ )P0 - £ (12)
=

where f .« <1 (or £« <E)..
It is important to note that (12) does not assume a
harmonic oscillator level scheme.

We define the apparent temperature Ay by the
slope of [{Ex|E) versus £x. We find it convenient to
work in reduced units and hence define

I\X =-d lnI(EXIE)/de . (13)
With this definition

U-’(fx) = exp(-‘;\xfx) ’ (14)
or

P(E ) = PUE el fy) = PUE ) exp (=2 )

= POE) exp(—E /ATy) , (15)

t In the language of probability theory, P(Ex) is the condition-
al probability, while do/dE y is proportional to the joint pro-
bability, P(Ex.E). PEX) = P(ExE) and P(E gIE) =
P(EX,E)/P(E).
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where
Ty = (Ef0)My (16)

‘The total energy £ appears explicitly in the definition
of Ty since Ay was defined in reduced units, (13). Of
* course, Ay may well {and does [12]) depend on £,
even though, as will be seen below, it does not depend
on Ey. '
The most probable final value of fy is the solution
of

dinPOE Ay = Ay (a7
On examining (11) and (12), we obtain

Ap = (L =3F)/2fp 1 ~fp) (18)
so that Ap > O when P < § and A,, > 0 only when
the most probable final vibrational state is the v = 0
state. It should however be clear that Ax < 0 does not
imply that fP-= 1 since po (Ex) is a strongly de-
creasing function of fy for fy — 1 and hence counter-
acts the exponential factor.

Figs. 13 show the plots of ~/(Ex|E} = Incw(fy) ver-
sus fy, for the reactions (1)—(3). It is clear that the
temperature Ay is essentially independent of £ and
that for the case of the isotopic variants of the same
products, the reduced temperature is the same. It
should also be noted that the chemiluminescence data
are not at a sharply defined total energy £, but repre-
sent reactants in thermal equilibrium. However, due
to the large exothennicity, the uncertainty in the to-
tal energy is small,

E=-MHYE (19)

‘Here —AHO is the zero point to zero pomt exotherm-
icity (i.e., —AHg = 31.7 keal mole™ Lforci+ HI) and
Enc 15 the initial energy of the reactants.

The one excepticn to the constancy of Ay are the
results for Ay of K + 1, where two (rather than one).
linear regimes are evident. We would like to argue that
this should serve as a diagnostic of this reaction rather
than as a defect of the concept of translational temper-
ature. An examination of the exparimental data, and
in particular of d3oy /d2codE (figs. 17 and 18 of ref.
{4]) clearly indicates two mechanisms. A forward

‘(stripping) component with a very low Q (and hence
high A1) and a {(somewhat smaller) backward (re-
bound?) component with a much higher @ (and hence
a lower Ap).
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Fig. 1. The translational energy distribution in the reaction

K + I~ KI + I. Shown is In w(f7) versus fp using the results

of Gillen et al. {4]. E = 44.5 kcal/mole and P{ f) was ob-

tained by an analytical fit (using least squares) to the observed

distribution. The two reduced temperatures are Ay = 14.8and
At~ 4.4, 0r Ty =~ 1500°K and Tt~ 5000°K.
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Fig. 2. Vibrational state distribution in the reactions C1 + HI -

-+ I+ HCland Ct + DI— [ + DCL Shown is Inw (f,) versus f,

using the results of Maylotte et al. {2] at £ = 34 kcal/mole.
For both reactions A, = ~8.3, or 7, ~ —2050°K.
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Fig. 3. Vibrational state distribution in the reactions F + H»
— H+ HF and F + D, — D + DF. Shown is Inw( f},) versus f,
using the results of Polanyi and Woodall [3] at E(HF) = 34.7
kcalfmole and E(DF) = 34.4 kcal/mole. A . (HF) = —6.5,

A {DF) = 6.0, or T,,(HF) = —2700°K, T,.(DF) ~ —2350°K.

3. Discussion

The concept of temperature introduced in this note
provides a convenient measure of the deviation of the
products energy state distribution from the distribu-
tion predicted on the basis of a simple statistical theo-
ry. In the statistical limit, w(fx) =1 or P(Ex) =
PO(Ex) and so Ax = O for all three modes and the
available energy is equipartitioned T.

The identification of Ay as an (inverse) tempera-

* ture is based on its definition as the energy derivative
of the information (i.e., the entropy {111), as is the
definition appropriate for non-equilibrium situation
in a finite system. The usual definition {17,18] ap-

_plies only to a small system in equilibrium with an (in-
finite) heat bath, at a given total energy. Here one de-
fines

i In the statistical limit, (fyp) = 3/7,4f,) = 2/7 and (fR¥=2/7
- where the angular brackets denote an average over the dis-
tributicn P°(fx).
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By = —dn[PYE ) ay(Ex)] 4y (20)

where py(£'x) is the density of states of the subsys-
tem. If the heat bath is indeed very large, 8y is inde-
pendent of Ex [17,18]. Thus, if we write

~dn[PE ) oy Ex) [AEy =By — N /E (21

we see that (21) can be used to define temperature on-
ly when the remainder of the system (i.c., the aumber
of the other degrees of freedom) is large, so that fy is
Ex-independent.

An extensive report on the characterization of pro-
duct state distributions by their informaticn content
and their temperature, is in preparation [12]. A com-
panion paper [20] considers the possible dynamic ori-
gins of the non-equilibrium features manifested by A,
being non-zero.

4. Summary

The representation of the distribution of product
energy states in the form P(E'x) =
PO(Ey) exp(—FEx/kTy) has been considered and illus-
trated by the experimental results for different reac-
tions. Here PO(£y) is the equilibrium (microcanoni-
cal) distribution, at a total energy E, where all final
states are equiprobable. At statistical equilibrium
P(Ey) = PO(E£y) and the available energy is equipar-
titioned among the different modes.

Appendix

We derive the (conditional) density of states for
Ey at a given total energy.

(a) Vibration. The joint density of states p(v, E)
is defined so that p(»,£)dE is the number of states of
an atom—diatom system with a total energy in the in-
terval £ to £ +dFE and a vibrational quantum number
v. Thus [10]

.3

J
p(v,E) = ZE) 2+ DpE—E,—~Bji+D). (A1)
]:
Here pp(£) is the translational density of states and
B, is the rotational constant for the vibraticnal levelv.

In practice we found that using a common B, ap-
propriate for a Morse oscillator is sufficient for our
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analysis: j* (which is a function of v) is the maximal
value of j,

B(*+D)(*+D>E-E, 2B *(G*+1). (A2

It should be realized that {(A.1) does take into account
the conservation of the total energy but disregards the
conservation of the total angular momentum. For cer-
tain reactions (involving a large change in the reduced
mass) the failure to conserve the total angular momen-
tum is an unwarranted approximation. (This approxi-
mation may account {or our failure with reaction (4).)
The conditional density p(v|E) = PY(E,) is given

by

p(WEY=p(n.E)/p(E), (A.3)
where

p(E) = Ep(v,E) : (A.9)
Using the known results

p(Ep)=ALENZ (A.5)

where Ap = u3/2/24272%2 and replacing the summa-
tion overj in (A.1) by an integration over E}-=Bj(j+ 1,
we obtain eq. (12) of the text.

(b) Translation. Here the joint density of states is
defined so that p(E, E)dETdE is the number of states
when the total energy is in the'inte_val £ to £ +dF
and the translational energy is in the interval E¢ to
Er +¢E. Thus [10]

p(Eq.8) = pr(Ep) T2+ DOE ~ By = Ei(.1) » (A.0)

where Ey(v, f) is the internal energy for a given v and j,
In the limit of high density of internal states [10] we
obtain

PUEL) = p(ErIE) = p(E1. E)p(E) = 1201 -,;&) :

where
E

p(E)= [ p(Ey,E)dE, . (A-8)
]
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