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Detailed experimental and theoretical information on the distribution of product energy states resulting 
from reactive molecular collisions are characterized by their entropy deficiency and temperature. Explicit 
algorithms are developed both for the case of ultimate resolution (both angular and internal state distribu­
tion) which provides the intrinsic (Le., maximal) entropy deficiency and for the more realistic situations 
(e.g., chemiluminescence, molecular beam velocity analysis) where only averaged distributions are available 
and the entropy deficiency is therefore smaller. Twelve "known" product distributions are analyzed. 
The largest values of the entropy deficiency are found for reactions where there is significant deviation 
from a simple equilibrium distribution of products. A temperature parameter is introduced as a measure 
of the deviation from equilibrium. Inverted populations are characterized by a negative value of this tem­
perature. Consideration of a number of isotopic reactions indicate that this temperature is essentially 
invariant under isotopic substitution. The new temperature parameter introduced in this work 
is the one appropriate for a finite system and differs from the more familiar (but special) form appropriate 
for a system coupled to an infinite heat bath. Two new tools are thus proposed for characterizing the devia­
tion of an observed product state distribution (or a computational simulation thereof) from an equilib­
rium, microcanonical one. These are the temperature parameter (a differential measure) and the entropy 
deficiency (an integral one). They measure, respectively, the local and the average deviation between observed 
and equilibrium distributions. 

I. INTRODUCTION reactions 
CI+HI~I+HCI(v, J), 

CI+DI~I+DCI(v, J), 

F+HrH+HF(v, J), 

F+D2~D+DF(v, J), 

H+ClrHCI(v)+CI. 

(I) 

(II) 

(III) 

(IV) 

(V) 

On the microscopic level, chemical reactions are 
characterized not only by their rates (or cross sections) 
but also by the distribution of the internal energy 
states of the products. These distributions are not 
usually measured in conventional bulk experiments due 
to the rapid relaxation, by subsequent collisions, to 
the equilibrium distribution of internal states. Indeed, 
it is required that such relaxation processes be fast 
compared to the progress of the chemical reaction in 
order that a conventional reaction rate constant can 
be well defined. 

The distribution of the products' (relative) kinetic 
energy is considered for 

Detailed experimental information on the distribu­
tion of the products energy states is currently becom­
ing available from techniques which arrest the second­
ary relaxation1•2 (to a greater or lesser extent). These 
include the chemiluminescence,1·3-6 molecular beam7- 10 

and chemical laserll •12 methods. Such studies provide 
not only information on the dynamics of reactive colli­
sions but are also of interest from a technological point 
of view.I3-IS 

In Paper I of this series2 we have considered the 

D+BrrBr+DBr, 

D+IrI+DI, 

D+ICI~DI+CI, 

D+ IBr~DBr+ I 

~DI+Br. 

(VI) 

(VII) 

(VIII) 

(IX) 

(X) 

(XI) 

general problem of the characterization of the product For the Reactions (I)-(IV) [and the classical trajectory 
distribution in terms of its information contentl6-20 and calculations intended to simulate Reaction (V) ] it is 
have introduced the entropy deficiency as a measure shown that the product distribution in anyone energy 
of the deviation of the observed product distribution mode (rotational, vibrational, or translational) can be 
from that expected at equilibrium. In the present paper characterized by a temperature.21 •22 

we illustrate the practical implementation of our ap- One problem not explicitly considered in this paper 
proach. We develop the explicit algorithms used in is the role of the reactant energy distribution. Work 
handling realistic experimental data and illustrate the is in progress on this and on several other aspects of 
method by applications to specific reactions. The dis- our original formulation, including entropy cycles. 
tribution of internal energy states is analyzed for the We restrict our attention in this paper to bimolecular 

5427 
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atom-diatom exchange reactions, at a constant total 
energy E in the center-of-mass (c.m.) system. Experi­
mentally, it is, of course, difficult to have a very well 
defined reactants' energy and so we consider here exo­
ergic reactions for which (due to the energy release) 
the uncertainty in the products' total energy is small. 
This problem does not exist, of course, in the analysis 
of results of classical trajectory calculations. The other 
points which require attention are the lack of absolute 
cross section measurements for most reactions under 
consideration and the limitations on the product specifi­
cation. At a given total energy, one can, in principle, 
specify the final product state not just in terms of the 
internal state but also in terms of the angular distribu­
tion. At the moment, no technique can provide that 
much detail.· The chemiluminescence method that can 
provide, in favorable cases, complete resolution of 
product internal states does not provide any angular 
distribution. The molecular beam approach can, in 
principle, provide both angular and energy resolution. 
At the moment however the translational energy resolu­
tion is seldom sufficient to resolve the different internal 
state of the products and all that is usually available23 

is a continuous distribution of the relative translational 
energy, at any angle. 

The discussion begins, in Sec. II with a short sum­
mary of our approach with particular emphasis on the 
concept of entropy deficiency and the degradation of 
information by lack of resolution. Section III intro­
duces the conditional distribution and the conditional 
entropy deficiency and considers the intrinsic value of 
the entropy deficiency, obtained for complete resolu­
tion of the final states. The entropy deficiency when 
only a resolution of the product internal energy states 
is available is considered in Sec. IV and computed for 
the Reactions (I)-(V) in Sec. V. The concept of a 
temperature of a distribution, introduced on empirical 
grounds in Sec. V, is discussed in Sec. VI. The results 
of molecular beam velocity analysis are considered in 
Sec. VII and analyzed for Reactions (VI)-(XI) in 
Sec. VIII. A discussion of the present approach and a 
summary (Sec. IX) conclude this paper. 

II. INFORMATION AND ENTROPY DEFICIENCY 
OF A FINAL STATE DISTRIBUTION 

In an ultimate experiment the products of the bi­
molecular reaction 

are characterized,in the center-of-mass system, by their 
internal state n and the momentum fik of their relative 
motion.24 With j=n, k being a label for a particular 
final state the (missing) information of the product 
state distribution has been defined2 as 

I[f]=- L,P(f) IgP(f) , (1) 
f 

where P( j) is the probability (i.e., relative frequency 
of observation) of a particular final state j, 

L P(f) = 1. (2) 
f 

We have written the sum (1) (which is a dimensionless 
positive number) as I[f] as a reminder that the sum~ 
mation has been over all possible final states. If we 
take the logarithm in (1) to base e, then (1) defines 
also the entropy (in units of k per one distribution or 
R per mole26) of the distribution of final states,26 

S[f]=-kL,P(f) 10gP(f). (3) 
f 

The maximal value of S[f] is the equilibrium value, 
Seq. Needless to say, the particular value of Seq depends 
on the constraints imposed upon the system. In the 
applications below we shall be mainly concerned with 
equilibrium subject to a specified total energy. Here, as 
elsewhere, total energy refers to the total energy per 
individual collision. 

The observed product distribution can deviate from 
the distribution expected at equilibrium. We charac­
terize this deviation by the entropy deficiency AS[f] , 

AS[f]=Seq-S[f]~O. (4) 

The larger the entropy deficiency, the greater is the 
deviation of the experimental product distribution from 
the equilibrium value. Given the experimental product 
distribution (or a theoretical-computational prediction) 
we can compute S[f] and then, subject to the known 
experimental constraints, obtain Seq and hence AS[f]. 
In the following sections we demonstrate the imple­
mentation of this procedure. 

In practice, experimental limitations are such that 
the final states cannot be fully resolved. Rather, what 
is measured is the distribution of products among 
groups of states, P( 'Y), where'Y is a set of states which 
are, in principle, indistinguishable under the experi­
mental arrangement. Thus, in the absence of a field 
the set 'Y might include all the (degenerate) states 
which differ only in the value of mJ, the orientation 
(or magnetic) quantum number for the rotational 
angular momentum, J, of the diatomic product. In 
chemiluminescence studies the set 'Y might include all 
the final states that differ only in their angular distri­
bution, etc. In general, the poorer is the experimental 
resolution, the larger is the number of states in the 
set 'Y. As shown below, this necessarily implies that 
with a lower resolution we obtain distributions that 
are closer to equilibrium. 

To obtain S[ 'Y] we need to state explicitly our funda­
mental postulate, which, in fact, was already used 
implicitly in writing down (1) or (3). This fundamen­
tal postulate defines our reference state, or in other 
words, defines the product state distribution that we 
would guess in the absence of any experimental evi­
dence. We thus assume that: In the absence of informa­
tion to the contrary all possible final (quantum) states 
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are equally probable. In applications, it is necessary to 
properly identify the existing constraints on the system 
in order to apply the principle correctly. When all 
states within the group 'Y have the same energy we 
take them as equiprobable and hence, if g ( 'Y) is the 
number of such states, we assign to each state within 
the group the probability P(j) [also denoted w(j)], 

P(j) =P( 'Y) jg( 'Y). (5) 

Here P ( 'Y) is the probability of the group 'Y. The repre­
sentation of the deviation from equilibrium in this 
fashion was first lucidly discussed by Kinsey.27 

The entropy associated with the distribution 'Y IS 

then 

the dependence on the total energy. This division, 
which, in a sense, parallels the experimental approach 
to this problem, leads us to the concept of conditional 
entropy, as is discussed later in this section. 

To begin with, it is realistic to recognize explicitly 
that the translational energy for the relative motion 
of the products is a continuous variable. The final state 
distribution should thus be characterized by a prob­
ability density function (pdf) Pen, k) such that 
pen, k)dk is the probability for observing products in 
the internal state n with the relative wave vector k 
in the range k to k+dk 

dk=k2dkdQ, (9) 

S['Y]=-kL:P(j) 10gP(j) 
I 

= -k L: P( 'Y) 10g[P( 'Y) j g( 'Y)]' 
'Y 

where Q is the polar angle specifying the direction of 
k (dQ=sin8d8d¢). Alternatively, the relative transla­

(6) tional motion can be discussed in terms of groups of 
states where the translational energy 

To obtain the second equality we have broken the 
summation over f to sums over all states within a given 
group 'Y and have used the assumption that all states 
within the group are equiprobable.28 

It follows from the basic principles of information 
theory that29 

S['Y]~S[j] (7) 
and so 

~S[ 'Y]= Seq-S['Y]~ Seq-S[j]= ~S[j]. (8) 

The computed entropy deficiency with the experimen­
tal distribution P( 'Y) is thus a lower bound to the 
intrinsic value, ~S[f]. Any loss in experimental reso­
lution makes the entropy deficiency smaller, i.e., makes 
the distribution closer to an equilibrium distribution. 
In what follows we shall see this principle in operation 
when we compare high and low resolution distributions 
for the Reactions (I), (II) and (V)-(VIII). 

An important point which will not be considered in 
this paper is the characterization of the reactants. A 
preliminary discussion of this point was given in Part I 
where it was shown that ~S increases as we sharpen 
the resolution for selecting the reactants. The con­
siderations of this paper are restricted to a given initial 
reactants distribution as prepared in the experiment 
under discussion. The question of inclusive vs detailed 
experiments2 will be taken up in another study which 
is currently in progress. 

III. CONDITIONAL DISTRIBUTIONS AND 
CONDITIONAL ENTROPY 

The discussion in Sec. II was very general and has 
failed to explicitly consider the physical content of the 
label f used to specify the final states or the nature of 
the set of states 'Y. Explicit expressions for the general 
final state distribution are obtained in this section 
where we also consider one additional aspect, namely 
the special role of the total energy. Essentially, we 
divide the problem into two parts. One is the product 
distribution at a given total energy and the other is 

(10) 

is in the range ET to ET+dET and the angle of scatter­
ing is in the range Q to Q+dQ. 

In the absence of a preferred direction in space30 the 
degenerate internal states of the products differing 
only in orientation quantum numbers (mJ) are in­
distinguishable, and other limitations may exist on the 
ability to resolve the internal states completely. Using 
n to designate the internal level of the products, we 
can measure the pdf pen, ET, Q) such that pen, ET, 
Q)dETdQ is the probability of observing the products 
in the indicated energy and angular range and with an 
internal state within the (degenerate) group of states 
n. In the notation of Eq. (5) 

P(j)=P(n, k) =P(n, ET , Q)jp(n, ET, Q), (11) 

where pen, ET, Q) is the density of states [i.e., pen, 
ET, Q)dETdQ is the number of final states in the indi­
cated energy and angular range and in the group n]. 

It is also convenient to change the energy variable 
from ET to the total energy E, 

(12) 

where E(n) is the internal energy of the (degenerate) 
states in the group n. We can then consider the pdf 
pen, E, Q) where, in view of (12), 

pen, ET, Q)dET=P(n, E, Q)dE. (13) 

At this point we can explicitly write [d. Eq. (6)] 

sen, E, Q]=-kfdEfdQL:P(n, E, Q) 
n 

Xlog[P(n, E, Q)jp(n, E, Q)]. (14) 

It is possible to show that the standard expressions for 
the entropy of the canonical ensemble can be derived 
from this expression. The present application is, how­
ever, to situations where the observed distribution is 
not the equilibrium one. Moreover, we are often con-
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cerned with situations where the total energy is con­
strained to be in a narrow interval DE about E. It is 
therefore convenient to carry out the evaluation of 
Sen, E, a] in two stages. First, the entropy at a given 
total energy is computed and then, if necessary, an 
average over the distribution in E is performed. 

The product distribution at a given total energy, 
pen, a I E), is defined by 

pen, a I E) =P(n, Q, E)/P(E), (15) 

where, for a given reactant distribution 

ii· 

peE) = f dQ 2: pen, Q, E) (16) 
ii 

and the summation over n is constrained to the range 
of n values for which E(n)":;' E. n* is the highest allowed 
value of n subject to conservation of energy and any 
other constraints. With the definition above, 

ii-

fdQ 2: pen, Q I E) = 1. (17) 
ii 

In the language of probability theory pen, Q, E) is 
the joint distribution of states while pen, Q I E) is the 
conditional distribution, i.e., pen, Q I E) is the distri­
bution of states at a given total energy. The introduc­
tion of the conditional distribution is necessary and 
not simply a matter of mathematical elegance. Present 
day experiments on reactive collisions of neutral species 
almost invariably give us just the conditional distribu­
tion of states. In fact, with a few exceptions, most of 
the available results are the conditional distributions 
at one particular energy. The results currently available 
are often not absolute rates (or cross sections) but 
only relative values, which are normalized at each total 
energy. The introduction of a conditional distribution 
is the theoretical equivalence of the experimental "nor­
malized relative distribution" [cf. Eq. (17)]. 

The conditional density of states is introduced by an 
identical procedure 

pen, Q I E) =p(n, Q, E)/p(E), (18) 

where peE) is the total density of states at the energy E 

and 

peE) = f dQ L: pen, a, E) 
ii 

Ii· 

fdQ 2: pen, Q I E) = 1. 
ii 

(19) 

(20) 

The conditional density of states is thus a normalized 
pdf. This normalization is essential in order to prove 
(26) and other inequalities. 

With the definitions (15) and (18) we can rewrite 

Sen, a, EJ as 

ii" 

sen, a, E]= -kfdEP(E)fdQ'L pen, Q I E) 

where 

and 

ii 

P(E)P(n, Q I E) 
Xlog -p"':""(E-')-p-'(n-', -Q-'I-E--'-) 

=S[E]+S[n, Q IE], (21) 

S[E]=-kfdEP(E) 10g[P(E)/p(E)], (22) 

Sen, Q I E]= fdEP(E)S[n, Q I E), (23) 

f ii" - pen, Q I E) 
S[n,QIE)=-k dQ~p(n,QIE)logp(n,QIE). 

(24) 

The right bracket in Sen, Q I E) is a round bracket to 
serve as a reminder that E is yet a variable (i.e., an 
argument of the function) whereas nand Q have been 
summed over. 

The interpretation of the three new entropies intro­
duced in (22), (23), and (24) is as follows: Sen, Q I E) 
is the entropy of the conditional distribution (hence 
"the conditional entropy") at a given total energy E. 
It is this entropy that we shall be concerned with in 
the following sections. Sen, Q I E] is the average value 
of the conditional entropy, weighted by the reaction 
probability at each energy and SeE] is the entropy 
associated with the distribution peE), i.e., with the 
distribution of the probability of reaction as a function 
of the total energy. Currently there is very little in­
formation on peE) and so we are forced to restrict our 
attention to 6S[n, Q I E). In a subsequent paper, when 
we consider the energy distribution of the reactants we 
shall return to the question of averaging over E. 

The entropy of the conditional distribution of the 
products at a given total energy, Sen, Q I E), is the 
quantity with which we shall be concerned throughout 
this paper. The energy dependence of the entropy in 
the microcanonical ensemble is the analog of the tem­
perature dependence of the entropy in the canonical 
ensemble, a dependence which is usually not indicated 
explicitly. Hence we adopt the following definition: the 
conditional entropy in the microcanonical ensemble 
will be denoted from here on as Sen, Q] with an implied 
dependence on the total energy. Equation (24) is now 
rewri tten as 

ii- _ pen, Q I E) 
sen, Q]= - k f dQ ~ Pen, Q I E) log pen, n I E) . 

(24) 

We have defined equilibrium at a given total E as 
the distribution where all possible final states are equi­
probable (a so-called "microcanonical" equilibrium). 
Therefore, the equilibrium (conditional) distribution 
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of states PO(n, n I E) is given by [d. (20) J 
PO(n, n I E) =p(n, n I E). (25) 

For the equilibrium distribution, (24) confirms that 
Sen, n]=o while in generaPl 

Sen, n].::;;o, (26) 

with equality only at equilibrium. It follows from the 
definition of the entropy deficiency, Eq. (4), that at a 
given total energy, 

~S[n, nJ= -Sen, n]. (27) 

Equation (27) is one fundamental result of this section. 
The entropy deficiency at a given total E can be di­
rectly computed as 

_ J ,,* - pen, n I E) 
~S[n, nJ=k dn ~ Pen, n I E) log PO(n, n I E) , 

(28) 

where P and po are the observed and the equilibrium 
distribution of products, when complete resolution of 
final states is carried out, in the absence of a preferred 
direction in space for products' state selection. ~S[ n, nJ 
is the intrinsic value of the entropy deficiency at a 
given total E in any particular experiment (i.e., for 
any particular method of reactants selection provided 
only that no orientation quantum numbers are resolved. 

Our next task is to take cognizance of the fact that 
seldom are experiments performed nowadays with such 
complete resolution of final states. In the following 
section we consider the entropy deficiency for the situ­
ation of "high" and "low" resolution of product internal 
energy states when no angular resolution is attempted. 
We return to the question of angular distribution in 
Sec. VII. 

IV. ENTROPY DEFICIENCY OF A PRODUCT 
STATE DISTRIBUTION 

The distribution of the products' internal energy 
states (without angular resolution) can be determined 
experimentally by a number of techniques, most not­
ably, infrared chemiluminescence, chemical lasers and 
molecular beam product state analysis. Theoretical 
computations for three dimensional reactive collisions 
are currently feasible (for realistic systems) only by 
the use of classical trajectories.32 The entropy deficiency 
obtained from such results is a lower bound to the 
intrinsic value due to the averaging implied by the 
loss of angular information.29 We restrict attention to 
results obtained at (approximately) constant total en­
ergies and consider separately the low resolution results 
(when only the product diatom vibrational distribu­
tion is determined) and the high resolution results 
(both vibrational and rotational distributions of.the 
product known). The latter results represent the opti­
mal resolution possible (in the absence of reactants 
orientation state selection) in such experiments. 

A. Low Resolution: E and v Determined 

In such experiments (or computations) the vibra­
tional distribution is determined for a range of values 
of the total energy. In principle, if absolute measure­
ment were feasible, one could determine P( v, E) dE, 
the probability of observing the vibrational state v 
when the total energy is in the range E to E+dE. In 
practice, as discussed in Sec. III, the probability that 
is actually determined is P (v I E), 

P(v I E) =P(v, E)/P(E) , (29) 

the normalized relative (Le., conditional) probability 
at a given energy.3S 

For an experiment (yet to come, but see Ref. 4) 
over a range of E values we can write as in (21)-(24) 

S[v, EJ= S[EJ+S[v I EJ, (30) 
where S[EJ was defined by (22) and 

S[v I EJ= fdEP(E)S[vJ, (31) 

.* P(v I E) 
S[vJ= -k E P(v I E) log PO(v I E) . (32) 

Here, as usual, v* is the highest allowed vibrational 
quantum number of the product at the total energy E; 
PO(v I E) =p(v I E) is the conditional density of vibra­
tional states [d. (25)]. Explicit results for p(v I E) 
are summarized in the Appendix. 

The entropy deficiency at a given E for the vibra­
tional distribution is given by [d. (27) J 

v* P(vIE) 
~S[vJ= -S[vJ=k E P(v I E) log PO(v I E)' (33) 

where PO(v I E)=p(v I E) is the (conditional) prob­
ability at equilibrium. The ratio27 

w(v I E) =P(v I E)/PO(v I E) =w(v, E)/w(E) (34) 

is a convenient measure of the deviation of the experi­
mental distribution from the reference equilibrium 
value. [Note that while both P(v I E) and PO(v I E) 
are normalized, w(v I E) is not necessarily bounded by 
1.J It is also convenient to introduce the surprisa12 •34 

associated with each v, defined by 

l(v I E) = -logw(v I E) = -log[P(v I E)/PO(v I E)] 

(35) 
such that 

.* 
S[vJ=k L P(v I E)l(v I E). (36) 

.-0 

B. High Resolution: E, v, and J Determined 

The discussion here closely follows that of the pre­
vious case. For an experiment over a range of E values 

S[v, J, E]=S[EJ+S[v, J I E]. (37) 

When results are available only at one particular value 
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of E 

S[v, J]= -k L P(v, J I E) 
•• J 

Xlog[P(v, J I E) / PO(v, J I E)] (38) 
, 

and the entropy deficiency per collision is 

.:1S[v, J]=k L P(v, J I E) 
•• J 

Xlog[P(v, J I E)/PO(v,J I E)]. (39) 

We recall again Shannon's lemma3• which implies that 
.:1S[v, J]~O with equality only when P(v, J I E) = 
poe v, J I E). Similar remarks apply to subsequent ex­
pressions for .:1S since the lemma requires that both P 
and po be normalized distributions. 

We can also define P (J I E) 

.* P(J I E) = L P(v,J I E), (40) 
.-0 

as the (conditional) distribution of rotational states at 
a given E (irrespective of v). The entropy deficiency 
of this distribution is 

.:1S[J] = k L P(J I E) 10g[P(J I E) / po(J I E)]. (41) 
J 

The decrease in entropy deficiency due to averaging 
is conveniently demonstrated by comparing the results 
for the high and low resolution studies. We begin with 
the identity 

P(v, J I E) =P(J I v, E)P(v I E), (42) 

where (with EJ*(v)-:::'E-E.) 
J*(v) 
L P(J I v, E) = 1 (43) 
J 

or, for the surprisal, 

I(v,JIE)=I(Jlv,E)+I(vIE). (44) 

Then, using 

.:1S[v, J]=k L P(v, J I E) [I (v I E)+I(J I v, E)] 
J •• 

= -k L P(v I E)I(v I E) 
• 

- kL P(v I E) L P(J I v, E)I(J I v, E) 
• J 

=.:1S[v]+ L P(v I E).:1S[J I v, E) . 
=.:1S[v]+.:1S[J I v]. (45) 

Since entropy deficiency is always nonnegative, we con­
clude that86 

(46) 

with equality only when .:1S[J I v, E) = 0 for all pos­
sible v, i.e., when the rotational distribution (for given 
v and E) is in equilibrium. Examples of (46) will be 
given in Sec. V (Table I). Similar considerations lead 

to the inequality 

.:1S[v, J]~.:1S[J]. (47) 

V. ANALYSIS OF EXPERIMENTAL RESULTS FOR 
PRODUCT STATE DISTRIBUTIONS 

A. Entropy of the Product State Distribution 

The entropy deficiencies, as defined in the previous 
section were computed for the exothermic reactions 

CI+HI~I+HCI(v, J), (I) 

CI+DI~I+DCI(v, J), (II) 

F+H2~H+HF(v, J), (III) 

F+D2~D+DF(v, J), (IV) 

H + Ch~CI + HCI (v), (V) 

in an attempt to illustrate most of the points that were 
discussed. The experimental results are from the infra­
red chemiluminescence studies of Maylotte et al." [Re­
actions (I) and (II)], and Polanyi and Wooda1l6 

[Reactions (III) and (IV)]. Also considered were the 
classical trajectory computations by Anlauf et al.37 

[Reactions (I) and (II)], Muckerman38 [Reaction 
(III)] and Anlauf et al.39 [Reaction (V)]. 

In analyzing and displaying experimental results it 
is advantageous to work not with the products' quan­
tum numbers but with the fractions of the total energy 
in each classical mode,jx=Ex/E, where 

(48) 

Using the equilibrium reference distributions derived 
in the Appendix (the spectroscopic constants We, WeXe, 

Be, and a. are from HerzbertO), and Eqs. (39), (33), 
(45), and (41), the entropy deficiencies IlS[v, J], 
IlS[v], IlS[J I v], and IlS[J] obtained using the ex­
perimental results are listed (where IlS is given per 
mole, i.e., not per collision) in Table I. The double 
entries correspond to two alternatives for the rotational 
distribution as discussed below. The total (i.e., most 
detailed) entropy deficiency for this type of experi­
ments, IlS[v, J], is about 4 cal/deg·mole (eu) for 
all four examples. The entropy of the vibrational dis­
tribution, .:1S[v], for these reactions which show pro­
nounced vibrational population inversion makes the 
major contribution to the total entropy and is above 
3 cal/deg·mole for all four examples, with the balance 
made up by the rotational contribution [cf. Eq. (45)]. 

B. The Vibrational Temperature 

The experimental product distributions deviate con­
siderably from the reference (equilibrium) distribution, 
which tends to favor translational release of the exo­
t~icity. To see this qualitatively consider the RRHO 
approximation27 [Eq. (A25)],j.=E./E, 

poU.1 E) ex (1_j.)3/2. (49) 
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TABLE I. Chemiluminescence data." 

CI+HI->HCI+I CI+DI->DCI+I F+Hz->HF+H F+Dz->DF+D 
Reaction Ref. 5 Ref. 5 Ref. 6 Ref. 6 

E (kcal/mole) 34.0 34.0 34.7 34.4 
AS[v] (cal/mole· deg) 3.54 3.25 3.25 2.96 
IAS[J! v] (cal/mole·deg) 0.48 0.37 0.75 0.98 
IIAS[J! v] (cal/mole·deg) 0.52 0.49 0.85 1.29 
IAS[J] (cal/mole·deg) 0.89 0.99 1.66 1.64 
IIAS[J] (cal/mole·deg) 1.62 1..'i3 2.18 2.36 
IAS[J, v] (cal/mole.deg) 4.02 3.72 4.00 3.95 
IIAS[J, v] (cal/mole·deg) 4.06 3.84 4.11 4.26 
>0. -8.0 -8.0 -6.5 -6.4 
T.(OK) -2100 -2100 -2700 -2700 
>OR 9.5 
TR(OK) 1800 
(fv) 0.70(0.71) 0.69(0.71) 0.66 0.66 
(fR) 0.13 . 0.13 0.08 0.08 

• The designations I and II distinguish results based on the extrapolated and actual experimental results, as discussed in the text. 

A rather similar functional dependence is found for 
the more precise VR approximation (Appendix) or 
even when the conservation of total angular momentum 
is explicitly taken into account.41 In view of the strong 
deviation from the a priori expected reference distribu-
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FIG. 1. Distribution of final vibrational states in the reaction 
CHHI->HCl(v) +I. P(jv) [=P(j.! E)], solid triangles, and 
po (j.), open triangles are shown vs fv. (Experimental data from 
Ref. 5). E=34 kcal/mole, AS[v]=3.54 cal/mole·deg. The 
extensive population inversion is reflected by the large slope, 
>.v, of logw(j.) (open circles) vs fv. Points in brackets are un­
certain due to a combination of theoretical and experimental 
errors, as discussed in the text. In this and subsequent figures, 
the lower two curves are the normalized experimental and refer­
ence probability distributions (left ordinate scale) and the upper 
curve (s) correspond to the surprisal (right ordinate scale) . 

tion we have chosen to represent the deviation as 

P(J.I E)/PO(J.I E) =w(J.1 E) =Q-l exp( -A.j.), 

(SO) 
where Q is a normalizing factor 

Q= L PO(J.I E) exp( -A.f.) (51) 

so that the experimental distribution 

P(J.I E) =Q-lPO(J. I E) exp( -A. f.) (52) 

remains normalized at every E. The dimensionless pa­
rameter A. is thus defined (as the derivative of the 
surprisal) : 

A.=-[dlogw(J. I E)/df.] (53) 

and the average vibrational energy is E(j.) where 

(j.)= 'L.f.P(J.1 E) = -d 10gQ/dA.. (54) 

Figures 1-4 show the experimental P(J. I E), the 
reference distribution PO(J. I E) and -logw(J.1 E) 
for the Reactions (I)-(IV). The pronounced popula­
tion inversion is indicated by the fact that the most 
probablef. is not that for v=O (or, equivalently by the 
fact that22 (N» 2/7). The same information is im­
parted by the value of Av. As has already been dis­
cussed,22 population inversion corresponds to negative 
values of the "temperature" parameter Av, or of T., 

T.= (E/k)/A •. (55) 

For all four reactions the plot of -logw(J. I E) vs f. is 
linear42 so that A. is essentially independent of f •. It is 
also clear that Av is essentially isotopically invariant. 

In contrast to the usual definition of the vibrational 
temperature, appropriate for an oscillator in equilib­
rium with an infinite heat bath, the present definition 
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FIG. 2. Distribution of final vibrational states for the isotopic 
reaction Cl+DI->DCl(v)+1. (Experimental data from Ref. 5 
and other notation is as in Fig. 1.) Note that hv is essentially the 
same as that of Fig. 1. Other results for this reaction are given 
in Table 1. 

does not imply that P( iv I E) must be a monotonic 
function of i .. It is quite clear from Figs. 1-4, that 
even though P(Jv I E) has a definite maximum, A. is 
essentially constant. This is due to our taking explicit 
account of the fact that we are dealing with a very 
finite system and so have to consider the deviation of 
P(Jv I E) from PO(J.I E) and not from the density of 
states appropriate for an oscillator coupled to an infi­
nite heat bath. This question is further discussed in 
Sec. VI. 

C. The Rotational Distribution 

The rotational distribution for each vibrational level, 
P(J I v, E), was obtained43 by an extrapolation of a 
series of chemiluminescence runs at decreasing wall 
temperatures and gas pressures in order to arrest the 
relaxation of the nascent product state distribution by 
secondary collisions. As shown in Fig. 5 there still is a 
considerable difference, for low J values, between the 
actual experimental (designated II) and the extrapo­
lated (designated I) distributions. For higher J values 
the difference is .more apparent than real, as is indi­
cated by the plots of -logw( iR I E) vs iR for the two 
distributions, which yield an essentially identical rota­
tional temperature (Fig. 5), for Reaction (II). The 
results for the other reactions appear to be qualita­
tively similar but the spread in 10gw(JR I E) is larger 
so that AR could not be quantitatively determined. For 
all cases it is positive, indicating the absence of rota-

tional population inversion (at least for the higher J 
values where the data are more consistent). 

The entropies of the rotational distributions were 
computed for both the extrapolated (0) and actual 
experimental (.6) distributions. Higher IlS values were 
obtained for the unextrapolated results thereby show­
ing that they are further away from the reference 
equilibrium state. [Some care is necessary before one 
draws any final conclusions from this observation. The 
reference distribution used here is the one appropriate 
for a given total energy. When secondary collisions are 
important one should use a reference canonical distri­
bution (i.e., a distribution appropriate for a given 
temperature) .J 

As is also discussed in the Appendix, the reference 
rotational distribution PO(J I E) is quite sensitive to 
the "conservation of the total angular momentum" 
constraint [much more so than PO(v I E)J. It is only 
when this constraint is disregarded that one obtains 
the smooth dependence on J shown in Fig. S. In gen­
eral, for "angular momentum limited" reactions21 the 
reference angular distribution has to be computed from 
a proper formulation of the statistical theory44-46 which 
does impose the conservation of both the energy and 
the total angular momentum.41 

The inequalities (46) and (47) corresponding to the 
loss of entropy deficiency by averaging are evident 
from Table I. Even so, for these highly exothermic 
reactions which produce strongly nonequilibrium dis­
tributions no amount of averaging can reduce the en­
tropy deficiency to a near zero value. Simple quasi-
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FIG. 3. Distribution of final vibrational states for the reaction 
F+H2->HF(v)+H. (Experimental data from Ref. 6; notation 
is as in Fig. 1.) A summary of the analysis is given in Table I. 



ENTROPY AND CHEMICAL CHANGE. II 5435 

TABLE II. Energy dependence for the reaction Cl+HI-+HCl(v)+1. 

Ref. 5 

E kcal/mole 34.0 
X. -8.0 
T.(OK) -2100 
~S[vJ (cal/deg·mole) 3.54 
U.) 0.70 

equilibrium theories44-46 cannot therefore be used to 
describe the distribution of final states, and some dy­
namic constraints are therefore essential.47 

D. The Energy Dependence 

Cowley, Horne, and Polanyi4 have measured the vi­
brational distribution P(v I E) [or P(j.1 E)], at four 
values of the total energy E, for the Reaction (II) . The 
resulting entropy deficiency ~S[fv] is shown vs E in 
Fig. 6 and in Table II. It is clear that the character of 
the vibrational distribution (i.e., the extent of vibra­
tional population inversion) becomes closer to the 
equilibrium limit with the increase in energy. This 
conclusion is reinforced by inspection of the plots of 
-logw(j.1 E) vsfv as shown in Fig. 7. The vibrational 
temperature parameter, Av, is a decreasing function of 
the energy, Fig. 8, and while the (negative) temper­
ature Tv, Eq. (55), does increase with E, the increase 
is slower than linear (indicating that <Iv) is a de-

1.0 

0,8 

t 
~O.6 

3 

F + D2 -+ DF(v)+D 

>.v~- 6.4 V" - 27000K 

4 

+2 

t 
+1 "3 

Ref. 4 Ref. 4 Ref. 4 

37.1 38.4 44.4 
-4.9 -4.3 -4.3 

-3800 -4500 -5300 
2.14 1.90 1.41 
0.58 0.54 0.51 

creasing function of E), and reaches a plateau at the 
highest E value. Clearly, experiments at even higher 
energies would be exceedingly interesting, There are 
theoretical indications48 that <Iv) would continue to 
decline but experimental evidence is clearly required. 

Product state distributions can be determined by 
other experimental techniques such as chemical 
lasersll- 12 or molecular beam velocity analysis49 or 
product state analysis,5()--52 The Reactions (III) and 
(IV) were studied in the chemical laser work of Parker 
and Pimentel and Reaction (IV) was subject to mo­
lecular beam experiments of Schafer et al.8 The result­
ing distributions are however less detailed than those 
previously discussed. The work of Grice et al,52 on the 
rotational distribution of the RbBr from the reaction 
of Rb+ Br2 and of Bennewitz et al.51 and Freund et al.5O 
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FIG. 4. Distribution of final vibrational states for the isotopic 
reaction F + D.-+DF(v)+D. (Experimental data from Ref. 6; 
notation is as in Fig. 1.) A summary of the analysis is given in 
Table I. For this reaction also, ),. is essentially invariant under 
isotopic substitution. 
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0.4 0.5 

FIG. 5. Distribution of final rotational states for the reaction 
Cl + D 1-+ DCl (J) + I. The triangles and circles represent the 
actual and extrapolated experimental distributions· as discussed 
!n the text and in Ref. 5. The equilibrium distribution PO(fR I E) 
IS shown as a broken line and the actual distributions are shown 
as a full line. The upper insert shows logw (f R) vs f R. The negative 
slope indicates no population inversion, i.e., TR>O. 
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TABLE III. Computer simulation of reactive collisions' (classical trajectory calculations). 

CI+HI->HCI+I CI+DI->DCI+I H+Cb->HCI+CI F+H2->HF+H 
Reaction Ref. 37 Ref. 37 Ref. 38 Ref. 39 

E kcal/mole 34 34 46.6 34.7 
AS[V] (cal/deg·mole) 4.28 3.89 2.09 5.23 
X. -8.4 -8.4 -5.7 
T.(OK) -2000 -2000 -4000 
(Iv> 0.74 0.72 0.59 0.78 

• The results of this table may be compared with the results derived from experimental data (Table I). In general, the trajectory 
results appear to be farther removed from equilibrium. 

on the vibrational distributions in the reactions of 
Cs+SF6 and Cs+SF4 have sought to determine the 
temperature of the product state distribution, in a 
manner different from that used here. The definition 
of the temperature of the distribution will be discussed 
in the following section. 

E. Results for Classical Trajectory Computations 

Computational results for the product state distri­
butions can be obtained from classical trajectory calcu­
lations. Table III summarizes the entropy deficiency 
analysis of the vibrational state distributions as com­
puted for the Reactions (I)-(V). The results are also 
shown in Figs. 9-11. For the first two reactions, the 
trajectory results are in good accord with the experi­
mental distributions, not only in terms of the actual 
distribution P(v I E) but also in terms of the derived 
entropy deficiency and vibrational temperature, which 
here also is essentially isotopically invariant. For Reac­
tion (III) there are only three energetically allowed 
vibrational states. Out of these, w(fv I E) is very sensi­
tive at v= 1 to the exact magnitude of P(fv I E) and 
at v=3 to the exact form of p°(fv I E) (since fa is 
nearly unity). One can only draw a tentative conclu­
sion to the effect that the trajectory results show a 
somewhat higher vibrational popUlation inversion (Le., 
larger dS[V] and Av) than the experimental results. 

The results for the Reaction (V) deserve a separate 
discussion. The trajectory calculations for an attractive 
surface39 show a broad vibrational distribution and give 
a linear -logw(fv I E) vs Iv plot. Also the computed 
dS[V] is in the reasonable range for a reaction showing 
vibrational population inversion. Yet, the experimental 
distribution53 is markedly different (it peaks strongly 
at v = 2 or 3 and shows very little products at v = 5 or 6) . 
Thus, in contrast to the computer simulation, the 
experimental distribution does not yield a linear 
-logw(fv I E) vsIv plot. 

There are several reasons that one can offer for this 
behavior and the actual cause is probably a combination 
of the theoretical and the experimental shortcomings. 
On the theoretical side, the PO(fv I E) used here does 
not impose the conservation of total angular momen­
tum. This fault is particularly severe at high Iv values 

(or low iT values). We shall encounter this problem 
again in Sec. VIII when we discuss other reactions 
involving a large change in the reduced mass.54 On the 
experimental side we should note that for this reaction 
[as opposed to (I)-(IV)] the vibrational distribution 
is more sensitive to the external temperature and pres­
sure. Also, the recent molecular beam velocity analysis 
for the reaction9 

D+Ch-~DCI+Cl 

indicates a somewhat broader distribution of internal 
energy (mainly in the region of high fr) than that 
obtained from the chemiluminescence studies. Clearly 
more work (both theoretical and experimental) on this 
reaction is called for. 
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FIG. 6. The energy dependence of the entropy deficiency of 
the vibrational distribution of the reaction CI+HI--+HCI(v)+1. 
Experimental data from Refs. 4 and 5. The decline of AS[~ I E) 
with increasing E indicates an approach to a more uruform 
distribution of vibrational states as E increases, as evident also 
from Figs. 7 and 8. (In this figure we have explicitly indicated 
the energy dependence of the entropy.) 
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VI. TEMPERATURE 

The concept of temperature of a product distribu­
tion22 was employed in the previous section as a con­
venient empirical measure of the deviation of the 
product distribution from the reference distribution 

A dl [P(jxIE)/PO(jxI E )] 
x=- og djx ' 

Tx= (E/k)/AX. (56) 

Figures 1-5 and 9-12 show the empirical utility of 
such a parameter. [So much so that we have already 
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used it as a diagnostic tool in discussing Fig. 8 and 
Reaction (V) and will do so again in Sec. VII!.] 

The essential advantage of the definition (56) from 
an empirical point of view is that it offers a dimension­
less measure of the deviation from the reference state 
which is independent under any change of variables. 
Thus, one can use AX directly as a measure of the devi­
ation of jxm .p • from the equipartition value. As is clear 
from (56) 

dlogP(jx I E)/djx=[dlogPO(jx I E)/djx]-AX (57) 

so that jxm .p • is the solution of 

Ax=[dlogPO(jx I E)/djxJIxm-D" (58) 
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trend toward a more uniform distribution as E increases. 

A positive value of AX thus implies a preferential 
population of the low lying states while a negative 
value corresponds to population inversion or to 
jxm .

p. above the equipartition value. Similar conclu­
sions follow when we compare Ux> with the equi­
partition value Uxo> obtained with AX=O in (58). 
For AX<O, the average energy in the mode X is less 
than the equipartition value and conversely for AX> O. 
The equipartition distribution of energy corresponds 
to A = 0 for all three modes, while the A parameter 
characterizing the distribution of (l-jx) (say jr= l­
iT, etc.) is always of the same magnitude but of oppo­
site sign to AX, say 

AT+Ar=O or I/TT+l/Tr=O. 

The experimental determination of jxm .p • provides, 
using (58), a quick estimate of Ax . This procedure is 
the analog of the usual equilibrium rules for obtaining 
the temperature from a known Exm. p.. Taking the 
translation as an example55 [using (58) and (A22)], 

AT= (1-3j~·P·)/[2fTm·p·(I-fTm.p.)]. (59) 

Thus, for the data of Fig. 12, where j~·p·~0.03 we 
obtain A~15.5 vs 15.0 from Fig. 12 and similar esti­
mates can be applied for the other distributions. 

Similarly, a quick estimate of IlS starts with the 
surprisal I (jx I E), 

w(jx I E) =exp[ -I(jx I E)]. (60) 

Using a Taylor series expansion 

l(jx I E) =/(0 I E) +jxI' (0 I E)+ ••. 

we can make the identification [cf. (50) - (53)] 

Q-l = exp[ -,/(0 I E)] 

(61) 

and 
Ax=[dl(jx I E)/djx1~. (62) 
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FIG. 9. Analysis of the computer simulation (classical tra­
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DCl(v) +1. (Results from Ref. 37; notation as in Fig. 1.) A 
summary of the analysis is given in Table III. 
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It appears that for exoergic reactions the second de­
rivative of the surprisal is small. In this case we can 
simply evaluate S[jx] as 

S[JxJ= -k L P(fx I E) logw(fx I E) 
/x 

=k 10gQ+kXx(jx)=k 10gQ+< Ex)/Tx. (63) 

There is a difference between the temperature pa­
rameter as defined here and the more usual way in 
which it was sometimes employed,4~52,56 i.e., 

'Yx= -d log [P(fx I :~:'x(Jx)] , (64) 

where px( jx) is the usual equilibrium density of states57 

in the mode X. For infinite heat bath58 or, in general, 
when jx-'>O, the two definitions (64) and (56) are in 
agreement. This follows from the expressions (A22), 
(A25), and (A28) or, in general, from the fact that 
PO(fx I E) ex px(fx) PB (l-jx) , where PB(l-jX) is the 
density of states of the rest of the system (i.e., of 
that heat bath). When the heat bath is very large 
PB(l-jx} ex exp( -(3x jx), as is discussed below. The 
two definitions differ for a finite system and (56) has 
the advantage of providing a measure of the deviation 
from the equipartition reference distribution. What 
then is measured by 'Yx? 

In equilibrium statistical mechanics, temperature is 
usually introduced as a measure of the deviation of 
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FIG. 10. Classical trajectory results for the vibrational state 
distribution of the reaction F+Hr+HF(v)+H. (Results from 
Ref. 38 and other notation as in Fig. 1.) The points in brackets 
are uncertain due to a combination of theoretical and computa­
tional errors. The computed AS[v] (Table III) is somewhat 
larger than the value obtained from the experimental results 
(Table I). 

0.8 

t 
:- 0,6 

0,4 

v (HC\)--
4 

H+CI 2 -+ HCt(v)+Cl 

(TRAJECTORIES) 

>"v::w.-5.7 Tv::" -400QoK 

+3 

+2 

> 

+ I 
3 
'" .2 

0 

FIG. 11. Trajectory calculations on an attractive surface for 
the reaction H+Ch-+HCI(v)+CI. (Results from Ref. 39 and 
other notation as in Fig. 1.) The experimental distribution for 
this reaction does not yield a linear logw(j.) vs j. plot, as dis­
cussed in the text. 

PO(Ex I E) from px(Ex) for a small subsystem at equi­
librium with an infinite heat bath,5~61 

{3x=-dlog[PO(Ex I E)/px(Ex )] (65) 
dEx 

so that 
'Yx={3x-Xx/E. (66) 

When a long-lived complex is formed or, in general, 
when the available energy is nearly equipartitioned, 
AX~O [or P (Ex I E) ~PO (Ex I E) J and the definition 
of 'YX reduces to the thermodynamic equilibrium value 
{3x. For direct reactions, the values of Ax as determined 
here imply that 'Yx and {3x can be quite different. 

One should also note that (3x is independent of Ex 
only for the case of a small subsystem coupled to a 
large heat bath. To see this we recall that in the 
RRHO approximation for a polyatomic62 

PO(ET I E)/PT(ET) ex (l_fr)n-r, (67) 

where 2n is the number of square terms in the Hamil­
tonian for the internal degrees of freedom, and similar 
results hold for X = v or R. In the thermodynamic limit, 
where both nand E become very large, but their ratio 
remains constant, say {3= (n-1) / E, we find that 

(l-fr )n-l~exp[ - (n-l)fr J= exp( -(3ET). (68) 

For low values of n, the limiting operation (68) is 
valid for low jT only. [In the present case this is 
equivalen t to replacing 1-fr by exp ( - jT) . J Thus, for 
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FIG. 12. Translational energy distribution for the reaction 
K+It->KI+I. (Experimental results from Ref. 7.) The equilib­
rium distribution, po ( IT), is shown as a broken line while 
the experimental distribution is a full line. The plot of logw ( IT) 
vs iT shows two linear regimes, as discussed in the text. Due to 
the very low translational exoergicity ~S[IT ] is relatively large 
(Table IV). 

a very small finite system /3x is not expected to be inde­
pendent of Ex. 

Our analysis suggests however that, at least for the 
exothermic reactions here examined, Ax is essentially 
independen t of Ex. The reason for this empirical result 
is not immediately obvious, neither should it be com­
pletely general and apply to any scattering situation.53 

On the other hand, the results of three dimensional 
classical trajectory calculations on attractive surfaces 
are also in good accord with the representation 

w(fx / E) =Q-1 exp( -Ax/x)' (69) 

where Q is a normalizing factor [d. Eq. (51)]. Pre­
liminary studies on the interpretation of the vibrational 
temperature have been reported47 and further work is 
in progress. 

The essential difference between the temperature 
parameter Ax as used in this paper [Eq. (56) ] and 
the sometimes used parameter 'Yx should be clearly 
understood. The definition of 'Yx [Eq. (64) ] is appro­
priate only for a small subsystem coupled to an infinite 
heat bath. The more fundamental definition is, in fact, 
(56) and the novelty here is in its application to a sys­
tem far removed from equilibrium. The advantage is 

that Ax is an obvious measure of the deviation from 
equilibrium which, as we have shown, can handle in­
verted populations. Literature results cast in terms of 
'Yx can be easily converted to Ax using (66). 

VII. ENTROPY DEFICIENCY OF A PRODUCT 
TRANSLATIONAL AND ANGULAR DISTRIBUTION 

The angular and/or translational energy distribu­
tions of reaction products are determined using the 
molecular beam technique, with velocity analysis (for 
the translational energy distribution), and are usually 
reported as the differential cross section daUR/ dndET, 

d3uR/dfldET=UR(E)P(ET, fl/ E), (70) 

where uR(E) is the total reaction cross section at the 
energy E. The (conditional) pdf P(ET, fl/ E) is de­
fined so that P(&, fl/ E)dndET is the probability of 
observing products with translational energy and solid 
angle of scattering in the indicated range at a given 
total energy. For an atom-diatom collision 

E=ET+E.+ER, 

(71) 

Strictly speaking, the internal modes of the diatom are 
quantized and hence, at a given E, ET can only assume 
discrete values. However, when the density of internal 
states is high, ET will, for practical purposes, vary 
continuously. The notation P(&, fl/ E) implies an 
average over a small range oET of translational energies, 
such that many internal states fall within that interval 
yet the interval is sufficiently narrow that P(ET , 

fl/ E) hardly varies over the range, 

P(ET, fl/ E) = L Pen, ET, fl/ E) /0&, 
n 

ET~E-En~ET+oET. (72) 

Similar comments apply to P(ET / E), 

P(ET / E) = f dflP(ET, fl/ E). (73) 

The maximal entropy deficiency at a given E is, as 
usual, 

LlS[ET, flJ=kfdETfdflP(ET, fll E) 

Xlog[P(ET, fl/ E)/PO(ET, fl/ E)]. (74) 

To explicitly apply (74) we need to specify the refer­
ence (or equilibrium) distribution PO(ET, fl/ E). Con­
siderations of the transformation from final states 
labeled in terms of k to the specification in terms of 
ET and fl (Sec. II) immediately suggest that, in the 
absence of information to the contrary, the reference 
angular distribution should be taken to be an isotropic 
dis tribu tion 

(75) 

so that 

PO(ET, fl/ E) =PO(fl/ ET, E)PO(ET / E) 

=PO(ET 1 E)/41r. (76) 
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TABLE IV. Molecular beam data. 

K+I2 D+CI2 D+Br2 D+I2 D+IBr D+IBr D+ICI 
....... KI+I ....... DC1+CI ....... DBr+Br ..... DI+I ....... DBr+I ....... DI+Br ..... DI+CI 

Ref. 7 Ref. 9 Ref. 9 Ref. 9 Ref. 9 Ref. 9 Ref. 9 

Ekcal/mole 44.5 55 51 54 44 38 30 
I~S[ET J" cal/deg. mole 1.4 
II~S[ET Jb cal/deg. mole 
I~S[OJ· cal/deg·mole 
II~S[oJd cal/deg·mole 
XT 15" 

"Using the original P(h) distribution. 
b Using a modified P( h) distribution. 
• Using an isotropic reference distribution. 

0.11 
0.034 
0.57 
0.75 

d Using a collision complex reference distribution. 

For certain reactions one may well wish to use alterna­
tive reference angular distributions. An obvious exam­
ple is reactions involving complex formation where, in 
simple cases, 

(77) 

Lower values of the entropy deficiencies correspond 
to more averaged distributions. Thus with 

.6S[&]=kJdETP(ET I E) 10g[P(ET I E)/po(ET I E)] 

(78) 
we have [as in (46)] two inequalities 

and also 
.6S(ET, n]~ .6S[ET] 

.6S[ET, n]~.6S[n], 

(79) 

(80) 

where .6S[n] is obtained from pen I E), the angular 
distribution without absence of velocity analysis 

tJ2uR/dn=UR(E)p(n I E), (81) 

.6s[n] = Jdnp(n I E) log[p(n I E)/po(n I E)]. (82) 

One particular special case deserves an explicit men­
tion. The lowest order kinematic analysis for lab to 
c.m. conversion64 often uses as a starting point the 
"uncoupled" approximation65 

P(ET, n I E) =P(ET I E)p(n I E), (83) 

where the product translational and angular distribu­
tions are assumed independent. In this case, as follows 
immediately from (74), 

VIII. ANALYSIS OF EXPERIMENTAL RESULTS 
FOR PRODUCTS' TRANSLATIONAL AND 

ANGULAR DISTRIBUTIONS 

0.42 0.41 0.60 0.15 0.17 
0.45 0.43 0.61 0.21 0.25 
0.24 0.17 0.13 0.24 0.17 
0.60 0.73 0.52 0.84 0.74 

2.7b 2.6b 

the reaction 
K+k-+KI+I, (VI) 

and measured the translational and angular distribu­
tion P(ET, n I E) at three different values of E. The 
translational distribution P(ET I E) derived for their 
results66 together with the RRHO value of poe iT I E) 
[Eq. (A22)] yield .6S[ET]=1.4 cal/deg·mole at 
E=44.5 kcal/mole. This is somewhat lower than the 
typical values obtained from the chemiluminescence 
studies. However, .6S[ET] is equivalent to .6S[E1], 

i.e., the entropy deficiency of the distribution of in­
ternal energy, irrespective of the manner of partition­
ing of El among E. and ER. As is to be expected29 the 
distribution in El is "nearer to equilibrium" than the 
distribution in both E. and ER (or even in E. or ER 
only) . 

The plot of -logw(iT I E) vs iT (Fig. 12) shows 
two linear regimes. We have speculated22 that this may 
well be due to two different mechanisms. A forward 
(stripping) component with low translational exo­
ergicity (and hence a high AT) and a smaller backward 
(rebound?) component with a much larger transla­
tional exoergicity (and hence a lower AT). This argu­
ment receives further support from the strong 8 de­
pendence of the conditional distribution P( iT I n, E), 
(d. Figs. 17-18 of Ref. 7). In the forward direction 
the large AT component is dominant while for 8,....,,90°, 
the two components are nearly of equal magnitude. 

For the D atom reactions 

D+Cb--+CI+ DCI, (VII) 

D+ Br2--+Br+ DBr, (VIII) 

D+ 12--+1 + DI, (IX) 

D+ I CI--+CI + DI, (X) 

We consider a number of examples of molecular beam 
velocity analysis experiments. Gillen et al,7 have studied 

D+IBr--+I+DBr 

--+Br+DI, (XI) 
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FIG. 13. Distribution of translational energy for the reaction 
D+k .... DI+I. (Experimental results from Ref. 9, notation as in 
Fig. 12.) The deviation of the log", (iT) vs iT plot from linearity 
is discussed in the text. 

McDonald et al.9 have determined an approximate, 
uncoupled angular and translational distribution 

P(ET , Q I E) =P(ET I E)P(Q), (85) 

where the angular part was energy independent.57 From 
such an uncoupled distribution the translational and 
angular contributions to the entropy deficiency are 
additive [d. Eq. (84)], and the results are listed in 
Table IV. There are two entries in each case. For the 
translational distribution the entry I corresponds to 
the use of the experimental distribution as stated. On 
inspection it becomes evident (see Figs. 13-16) that 
P(/T) does not tend to zero as /T---'>1. [The require­
ment that P(jT---'>1)---'>O was first pointed out by 
Kinsey27 as a necessary condition for obtaining a finite 
w (i.e., a finite surprisal).] To rectify the behavior as 
/T---'> 1 we have modified the analytic form of P (/T) by 
an ad hoc addition of the term -jTP(jT= 1). This 
modified distribution yields the entries labeled II for 
.1S[fr]. The effect of this modification is shown in 
Figs. 15-16. It clearly extends the range of the linear 
dependence of -IOgW(jT I E) on/T. The failure of this 
linear dependence for jr---'>O is probably due both to the 
inaccuracy of the RRHO value22 •54 of PO(jT I E) as 
jr---'>O and to the inaccuracy of the analytic (uncoupled) 
fit of P( /T I E) at low jT' values. (See Figs. 5 and 6 of 
Ref. 9.) 

The two entries for .1S[Q] in Table IV correspond 
to the two choices of the reference angular distribution. 
The first entry (I) corresponds to the preferred 

choice of an isotropic reference distribution: PO(Q I E) = 
(47r )-1. The second entry (II) is a result of choosing 
a symmetrical reference distribution [PO(Q I E) = 
(27r2 sin8)-1] which is appropriate for linear complex 
formation. 

The entropy deficiency for all D-atom reaction trans­
lational distributions is markedly below that found for 
the K + 12 reaction. This is obvious upon inspection of 
Figs. 13-16. The P(jT) distributions for the D atom 
reactions are broader and tend to peak at aboutjT"-'1/3 
which is the equilibrium most probable value. In fact, 
the translational distributions for some of these reac­
tions, say D+CI2, are very near the equilibrium value 
as is also indicated by the near independence of 
-logw (jT I E) on /T (Fig. 14). AT = 0 is of course the 
criterion for an equilibrium distribution of the reaction 
exoergicity between the translational and the internal 
modes. The vibrational entropy deficiency of the 
H+CI2 reaction is also atypically low. We reiterate 
our previous remark that the Reactions (V) and (VII) 
deserve a closer examination, both experimentally and 
theoreticall y. 

There are several quantitative regularities that one 
can discern in Table IV. These will be discussed when 
we consider the question of entropy cycles in a future 
paper. At this point it is sufficient to say that the 
entropy deficiency is a compact way of characterizing 
the products' distribution. 

As a final illustration of the importance of the width 

o + Ct2 - OCt + CL 

+1 

3 o 

3 
'" 

2 - i .2 

-2 

00.0 0.2 0.4 0.6 0.8 1,0 

FIG. 14. Translational energy distribution for the reaction 
D+Ch->DCl+CI, as in Fig. 13. Note that :)Ver a wide range 
w(h)~1, indicating an equilibrium distribution; also the 
experimental error leading to an "end effect," as first discussed by 
Kinsey.27 
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of the distribution in determining the entropy defi­
ciency, we have used an artificial distribution 

(86) 

(for different n values) to compute .:lS[/T]. An is a 
normalization constant. As n increases these distribu­
tions, which are all peaked at/T= 1/3, become narrower 
(and hence, due to normalization, of larger maximum). 
Figure 17 shows the increase of .:lS[ /TJ with the 
value of Pm=P(i I E). Another test made (among 
many others) showed the effect of the position of 
the most probable/T by replacing (86) by P(/T I E) = 
A,.[/T(1_/T)1/2Jn for which /Tm·p ·=2/3, Fig. 17. It is 
seen that for a given width (i.e., for a given Pm) the 
entropy deficiency was higher in the latter case, but 
that the dominant effect is the width of the distribu­
tion. When /Tm.p • is arranged to be between i and j, 
the resulting .:lS (for a given Pm) lies between the two 
curves in Fig. 17. 

IX. CONCLUDING REMARKS 

This paper has centered attention on the analysis of 
the distribution of final states of reactive collisions in 
terms of the entropy deficiency and the temperature 
of the distribution. Practical algorithms have been 
developed and applied to representative examples of 
direct, exothermic reactions, where there is consider­
able deviation from simple quasiequilibrium product 
distributions. The highest values for the entropy de-

3 

Cl. 
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I 
I 
I 

,/ 

D • ICt - DI' Ct 
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• l 

o t 

- l 
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FIG. 15. Translational energy distribution for the reaction 
D+ICl-+DI+CI. (Experimental results from Ref. 9, other 
notation as in F~. 12.) The modified (-.-) curves represent a 
modified P (iT) Land hence, Cd (jT) ] distribution, introduced to 
insure that P(jT-+l)-+O, as discussed in the text. Other results 
for Figs. 12-16 are given in Table IV. 

D • IBr - DI t Br 

• l 

3 o 

Cl. 

·2 

0,4 0.6 0,8 l,O 

FIG, 16. Distribution of translational energy for the reaction 
D+IBr-+DI+Br, as in Fig. 15. Here also the modified P(jT) 
distribution leads to a more linear 10gCd(jT) vsiT plot. . 

ficiencies were obtained for the high resolution distri­
butions measured by the chemiluminescence experi­
ments. The major contribution to the entropy deficiency 
was that from the population-inverted vibrational state 
distribution, which could be characterized by a nega­
tive temperature T •. The entropy deficiencies for trans­
lational energy distribution (and for angular distribu­
tion) measured by molecular beam velocity analysis 
were lower, due to the failure to resolve the internal 
states. 

The experiments chosen for analysis in this paper 
are just a sample of the many recent studies of both 
atom-diatom and more complex reactions68--81. Not 
discussed in this paper is the energy parti tioning among 
fragmentation products of energy-rich molecules82-92 

produced photochemically, by electron impact or by 
collision with metastable atoms. Often these distribu­
tions show significant deviations from a simple equi­
librium distribution and the concept of a "restricted 
phase space" has indeed been invoked93 to interpret 
such effects. The entropy deficiency is simply a quan­
titative measure of such deviations from equilibrium; 
the term "diabatic phase space behavior" has been 
coined47 for such distributions that are neither com­
pletely statistical nor entirely adiabatic, 

Future work in this series will consider the analysis 
of "angular momentum limited" reactions,21 the analy­
sis of the reactant state distribution, and the question 
of detailed vs inclusive experiments.2 The use of en­
tropy deficiency in analyzing theoretical and computa­
tional results and the theoretical significance of the 
temperature parameter are also under current study. 
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FIG. 17. The effect of the position and width of P(jT) on 
the magnitude of tJ.S(ET). Pm is the maximal value of P(jT) 
[and hence, since P(jT) is normalized, is roughly inversely 
proportional to the widthJ./Tm. p . is the position of the maximum. 
See text for further details. 
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APPENDIX: DENSITY OF STATES FOR AN 
ATOM-DIATOM COLLISION 

The reference (or equilibrium) distribution of states 
has been introduced as the distribution of maximal 
entropy, subject to given experimental conditions. In 
general, one has to determine the distribution that will 
maximize the entropy, subject to the known, a priori 
constraints. For the particular case of a given total 
energy, it follows immediately from the fundamental 
postulate that in the reference distribution all possible 
final states are equiprobable. In the discussion below 
we shall assume only the constraint of conservation of 
total energy so that the possible states are those having 
a given total energy. Strictly speaking we should also 
impose the conservation of total angular momentum. 
However, unless there is a large change in the reduced 
mass this restriction is of little practical significance. 
Work is in progress to incorporate this restriction in the 
analysis of Reactions (VII)-(XI). 

The discussion here follows closely the derivation, 
by Kinsey,27 of the joint density of states. The only 
essential (albeit, trivial) difference is that we seek the 
conditional rather than the joint density. 

The (joint) density of final states is obtained by 
compounding the contributions of the different degrees 
of freedom. For the translational motion, with an iso­
tropic angular distribution [d. Sec. III, in particular 
Eqs. (9)-(10)] 

p(ET) = 41rp.P/h3= (25/2'/rJJ.3/2/h3)ETI/2 

= (JJ.3/2/2 I/2'/r2f1,3)ET I/2 

=ATETI/2. 

(Al) 

(A2) 

Here AT is a (unit-bearing) constant defined by the 
last line. 

It is possible to modify the angular distribution 
when one selects the reference state to correspond to a 
long-lived complex. When the conservation of total 
angular momentum is neglected,95 

(A3) 

The density of states (or, strictly speaking, the de­
generacy) of the internal states of the diatom depends 
on the model selected to approximate the internal 
motion, as discussed extensively by Kinsey.27 We have 
used both the rigid-rotor harmonic oscillator approxi­
mation96 (RRHO) and the vibrating rotor (VR) ap­
proximation. For the latter case, the level scheme is 

ER = Bvf (f + 1) he, 
where 

B.=Be-ae(v+t) 

and (measuring energy from the ground state) 

Ev= fiwv[l-x.(v+ 1)]. 

(A4) 

(AS) 

(A6) 

Putting ae=Xe=O reduces these expressions to the 
RRHO level scheme.96 In the VR approximation, using 
the notation of Kinsey,27 

PJ(Er, v) = (2f + 1) (af jaEI) v= (Bvhe)-I, (A7) 

where EI = E R + E v, and 

pv(Er, f) = (av/aEr)J= (fiw[1-Xe(2v+l)] 

-a.J(J+l) I-I. (A8) 

The density of internal levels is then given by 
v* 

PI (EI ) = L pJ(Er, v). (A9) 

A different form is 
J* 

pr(Er) = L (2f+1)Pv(EI, f). (AlO) 
J-O 

Both expressions yield a continuous dependence of PI 
on Er and are identical in the RRHO approximation96 

PI (Er) = A rEI, (All) 

where AI= (fiwBe)-I. In general, however, (A9) treats 
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the rotational levels as forming a continuum but treats 
the vibrational states in a discrete fashion and is thus 
superior to (A10) which integrates over E. but sums 
over J. 

For the combined atom-diatom system, we consider 
the four cases corresponding to the different experi­
mental resolutions considered in the paper. 

I. PO(v, J \ E) 

We consider the density of states at the total energy 
E for a given internal level. Here ET is specified im­
plicitly and hence 

p(v, J, E) = (2J+1)PT(E-E.-ER) (A12) 

and the total density of states is 

.* J*(.) 

pee) = I: I: p(v, J, E), (A13) 

where rev) is the maximal value of J, at a given E 
and v, ER(J*, v) -:;'E-E., and E.*-:;'E. The VR energy 
levels (A4) and (AS) were used in the actual analysis. 
In the RRHO approximation 

peE) = (4/1S) AlATE5/2. (A14) 

The conditional density is then 

PO(v, J \ E) =p(v,J, E)/p(E) (A1S) 

and in the RRHO approximation 

PO(v, J \ E) =[(2J+1)/ Al ](IS/4) (E-E.-ER)1/2 

(A16) 
or 

PO(E., ER \ E) =PO(v, J \ E) / e:v' d~R) 
= (1S/4) (E-E.-ER)1/2. (A17) 

It should be stressed that the RRHO results are not 
of sufficient accuracy for careful quantitative work. In 
practice we have computed PO(v, J I E) from (AI2) 
and (A1S) using the VR level scheme with ER=ER(V). 
For the purpose of the comparison between P(v I E) 
and P(v, J \ E) we have used 

PO(v, J I E) =JX'(v I E)PO(J I v, E) (AI8) 

to evaluate PO(v \ E). Less detailed distributions are 
easily derived. Thus 

po(jT \ E) = (1S/4)fTl/2(1-fT). (A22) 

II. po(v \ E) 
In this case 

J*(.) 

p(v,E)= L p(v,J,E) (A23) 
J-o 

and 
po(v \ E) =p(v, E)/p(E), (A24) 

where pee) and p(v, J, E) are given by (AI3) and 
(A12) respectively. In the RRHO approximation 

PO(j.\ E) =!{I_j.)3/2 (A2S) 

while in the VR level scheme (but when the rotations 
are treated as a continuum) 

.* 
PO(j.\ E) = (l-j.)3/2/L (1-j.) 3/2. (A26) 

In the strict VR scheme, one simply proceeds from the 
value of p(v, J, E) and evaluates the required summa­
tions in (A23) and (A26). 

III. pa(J \ E) 

This case is completely analogous to the previous one 
v' 

p(J, E) = L p(v, J, E), (A27) 
.-0 

where E.,-:;'E-ER-:;'E.'+l. In the RRHO approxima­
tion 

POUR I E) =!{1-jR)3/2. (A28) 

Work in progress includes the computational study 
of those reactions involving a large change in the re­
duced mass and/or a small reaction cross section (Le.,s 
F+D2~FD+D) for which the constraint of conserva­
tion of total angular momentum is important. For such 
reactions, PO(J \ E) may show several maxima (cf., 
for example, Ref. 41). 

IV. pa(ET \ E) 

In practice we have already indicated the chain of 
summations leading to pa(ET \ E) [Eq. (A22)]. It is 
perhaps worthwhile to reiterate the nature of the ap­
proximation leading to this density. Strictly speaking 
pa(ET \ E) is not a continuous but a discrete distribu­
tion since at a given E, ET can assume only discrete 
values, 

.* EN-Er-E. or 
po(El I E) = I: po(v I E) L PO(J I v, E) (A19) 

.-0 J-O 

and in the RRHO approximation 

pa(Er I E) = (IS/4)Er(E-Ed1/2~5/2 (A20) 
or 

PO(jrl E) = (1S/4)fr(1-jl)1/2 

and since fr+fT= 1, 

(A21) 

p(ET, E) =PT(ET) I: grfJ(E-ET-Er). (A29) 
r 

To obtain a continuous distribution we need to average 
p(ET, E) over a short interval fJET .33 With the definition 

(A30) 
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we have that 

We thus take 

(A32) 

It should be noted that the averaging in (A31) corre­
sponds to the lack of very high resolution in the 
molecular beam velocity analysis (but see however 
Ref. 8). 
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