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The relations between the entropy (information content) and tempera-
ture parameters characterizing non-relaxed product distributions in chemical
reactions and thermodynamic quantities are demonstrated. Two cases of
initial reactant distributions——state-selected and thermal—are considered.
The entropy change in the passage from non-equilibrium product distribu-
tions to partially relaxed distributions and the connection between the two
kinds of vibrational temperatures characterizing these stages are treated in
detail. An actual ¢ entropy cycle ’ is described.

1. INTRODUCTION

The advantages associated with the use of such quantities as  information
content ’ (or ‘ entropy ') and ‘ surprisal ’ for characterizing reactant and product
energy distributions in chemical reactions were first recognized by Bernstein
and Levine [1]. Since then the approach was extended, new concepts like
‘ temperature parameters ’ [2-9] and ‘ relevance ’ [6, 8] were defined and many
chemical reactions have been analysed. It is now understood that besides
providing quantitative means for analysing distributions the information theoretic
approach may also yield new insights into the processes of chemical reactions.
Obviously, there are many points where refinements and further investigation
are required. We here consider in some detail a few of the simplest of these
points.

In general, our purpose is to correlate entropies and temperatures charac-
terizing the non-equilibrium microscopic system composed of the atoms taking
part in a single reactive collision with corresponding thermodynamic quantities.
To this end we shall consider explicitly some well-defined stages specifying the
passage from equilibrium reactants to equilibrium products in actual experi-
ments. One of these stages, that of the non-relaxed products is interesting from
both theoretical and practical aspects. Thus, for example, when the product
state distribution is known many features of the potential hypersurface can be
resolved. If the reaction ends up with inverted product population, this
knowledge is of primary importance for designing chemical lasers.

+ On leave from the Department of Chemical Physics, Weizmann Institute of Science,
Rehovot, Israel.
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Any product state distribution can be associated with a meaningful entropy
function (information content) and in many cases with temperature parameters
[1-9]. The entropy of the non-equilibrium products can be considered as one
step of an entropy cycle including among others the equilibrium product and
reactant states. A general algorithm for constructing entropy cycles of this type
and a proof that product entropies are state functions were demonstrated very
recently by Levine [8]. We shall therefore confine the corresponding parts in
our discussion to apparently special but actually frequent cases. It seems to
us that an explicit treatment which points out some stages to which attention
must be paid is valuable. We particularly refer to the following points: the
connection between the thermodynamic entropy of reaction and the entropy
functions characterizing various energy distributions in microscopic arrange-
ments of products or reactants; the relation between product state entropies
corresponding to two differently prepared reactant distributions (and the role
of reaction probability); the sign and the relative magnitude of the various
components of the entropy cycle. In addition we shall discuss the connection
between two kinds of vibrational temperatures. The first characterizes the
distribution of energy among the various degrees of freedom of the products
in a single reactive collision. 'The second temperature is that of an equilibrium
ensemble of diatomic oscillators corresponding to a gas in partial equilibrium.
The relation between these two quantities may be of interest for some chemical
laser and relaxation studies.

All stages that we shall consider correspond to situations where the colliding
species are well separated, either as products or reactants. Therefore such
intermediates as ‘ transition complexes ’ which from a dynamical point of view
are more interesting will not be considered.

In § 2 we outline a number of essential definitions and relations. Section 3
deals with the relation between microscopic and macroscopic entropies. In
§ 4 we consider the cases of state-selected and thermal reactant distributions
and in §5 we deal with the resulting product distributions. Section 6 is
concerned with reactions characterized by temperature parameters. Partially
relaxed distributions and the connection between the two vibrational temperatures
is the matter of § 7. In § 8 an actual entropy cycle is demonstrated.

2. ENTROPY

The functions we are intending to investigate in this work are special cases
of the quantity

Sfi}=— ¥, P, log P, (1)

defined for any system, physical or abstract, for which the probability of being
in state 7 is P;. (The logarithm may be taken to any basis ; we shall use only
the basis e. Square brackets simply denote summation variables and do not
involve function arguments). S is called the °information content’, the
‘uncertainty > or the ‘entropy’. It is the most fundamental function in
information theory [10]. For macroscopic physical systems the probability
distribution function (pdf) which maximizes S subject to some initial conditions
(constraints) is the equilibrium pdf and S is the thermodynamic entropy.
The maximization procedure, known also as ‘ Jaynes’ principle ’ is the basis of
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the information theoretic approach to statistical mechanics [11]. In irreversible
thermodynamics the development of a non-equilibrium pdf and consequently
S in time is governed by the ¢ Boltzmann H-theorem ’.

Here, we shall consider the entropies corresponding to some of the stages in
the passage from thermal reactants to thermal products in the reaction A+ BC
—>AB+C. (The extension to other types of reactions is in principle not diffi-
cult.) The system of interest is thus a triatomic one. Disregarding the
dynamically unimportant motion of the centre of mass and assuming electronic
adiabaticity, the asymptotic reactant and product states are specified by six
quantum numbers. One choice is k, v, j, m; specifying the momentum of the
relative motion and the vibrational, rotational and magnetic quantum numbers
of the diatomic, respectively. Instead we may use ¢;; Q=(6, ¢); v; j; my,
where ¢, =#%%k%/21 and Q specify the kinetic energy and orientation of the relative
motion, respectively. In accordance with some experiments (e.g. the chemi-
luminescence method) we assume that only €, v, j or equivalently e=e¢,+¢,+¢;,
n=v, j are determined experimentally. Thus, our treatment is not designed
explicitly for molecular beam experiments where Q (but rarely n) is resolved.
The extension is, however, simple [2, 6, 8]. The appropriate form of S, when
continuous variables like € are included in 7 is [1, 2, 11]

S[e,n]=~{ de X P(e, ) log [P(e, n)/p(e, n)] )

where P(e, n) de is the probability corresponding to the triatomic system with
total energy in the range € to e+ de and with the diatomic in state #. #n* is the
internal state with the highest energy possible which is lower than €; ¢,.<e.
p(e, n) is the density of states (per unit volume), i.e. p(e, #) de is the number of
internal-translational states compatible with 7 and ¢, e+de. Explicitly [2, 12]

P(e’ n)zgnpt(€‘€n)r (3)

where g, is the degeneracy of the internal state and pt is the translational density
of states (e¢,=¢—¢,) [2, 12]

pile)) = WHH(2 Pty e 1 . )
Later we use equation (2) for different pdf’s of reactants and products. We
shall use the subscript R, and unprimed variables like ¢, # for reactants and P

and primed variables €', n’ for products. A useful decomposition of .S results
from the following definitions and relations [2] :

P(Ey n):P(€)P(n’€), (5)

p(e, n)=p(e)p(n|e), (6)
Fdap(o=fde ¥ plem= 3 pnl)=1, )
. SZ"* ple, m)=p(e) n;n*p(ﬂIE) =1. (8)

Thus
Sle, n] = S[e]+ S[nle] = — [ de p(e) log [p(e)/p(e)]
—§dep(e) X plnle)log [p(n]e)/p(n]e)].  (9)

The joint entropy Sle, #] and the quantity S[e] are always non-negative. The
conditional entropy S[n|e] is always non-positive and vanishes only when
S5e2
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P(n]e)=p(n]e). The physical significance of the last equality is that for a given
total energy e the occupation probability of the internal state # is proportional
to the density of translational states conjugated to it [2]. (From equations (3),
(6), (8) we see that the conditional density of states p(ne) is proportional to
gnpt(e—€,)). In other words, this case corresponds to a situation where all
the quantum states consistent with # and e, €+ 8¢ are equally probable or equiva-
lently a microcanonical or statistical distribution. (Note that e and 7 alone
do not specify the quantum state ; there is always a manifold of translational
and degenerate internal states compatible with these requirements.) As usual
a microcanonical distribution maximizes the entropy which in the present
case is given by S[n|e]=0. In the general case S[n|e] provides a useful measure
of the deviation from statistical behaviour [1, 2].

3. RELATION TO THERMODYNAMIC ENTROPY

The definition of entropy in the previous section applies to triatomic systems
(excluding the c.m. motion) characterized by pdf’s which are not necessarily
equilibrium ones. Here, with the aid of elementary arguments, we show
briefly that the entropy of reaction is simply related to equilibrium * triatomic
entropies > of the kind as equation (2). Since reaction entropies are usually
expressed as functions of temperature, volume and number of molecules we
shall use the formalism of the canonical ensemble. Using ¢ to denote macro-
scopic equilibrium entropies the entropy of reaction A-+BC—>AB+C is
Aoc=op(N, V, B)—op(N, V, B). op is the entropy of a system containing N
molecules BC in thermal, but not chemical equilibrium with N atoms A in the
volume V at temperature 7= (kB)~t. The definition of oy is similar. Assuming
the products and reactants to be ideal gases obeying Boltzmann statistics, the
product partition function is

Op=(9angc) V(N1) (10)

where ¢ stands for the one-particle partition function per unit volume. g¢,p
can be factorized into its translational and internal parts

qan=qap"qap™t = (m p/27ph?)? g, g™ (11)

go contains only translational contribution. Since mypmo=pM, where
p=m gme/M and M =M, s+ Mg, Op can be factorized into gy involving the
c.m. motion and ¢; containing the contributions from the relative and internal

motions
Op=(gcuqp )" V>V [(N 1), }

gp=(up/2mPh®)* P, 5™".
The entropy of the products (in uni‘ys of k) is
op(N, V, B)= —B(0 log Op/9B) +log Op
= BN(L€ cary + {€'>) + N log gomgp + 2N log (V[N), (13)

where Stirling’s formula has been used. The average energy for a pair of
product molecules in the c.m. system is

(e'y=—10log gp[0B. (14)

(12)
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The c.m. contribution to the entropy is equal for reactants and products. For
reactions preserving the number of molecules the terms due to the identity of
particles log (N/V') are also equal and we find

Ac|N =log (gp/qr) + B({'> — <)), (15)

where the energy levels to be used in ¢, ™ and gp ™t are measured from the
zero-point energy of each molecule respectively. (The difference in zero-point
energies appears in the energy and free energy of reaction but cancels out in
the entropy.)

Although Ao/N is not the difference between ‘ entropies per pair’ (o/N?)
or equivalently the ‘ entropy difference per pair’ (Ag/N?) it can be interpreted
as the average entropy change per reactive collision. More important from
our point of view is that As/N can be expressed as the difference between two
‘ triatomic c.m. entropies ’ of the form of equation (2). Explicitly

Ac/N = Spf[e', n']— Sp’le, n], (16)

where
Spfle, n]=—| de,,gil* PrA(e, n) log [iﬁi—-—f’—nn))} (17)
Pypf(e, n) = qr'pr(e, n) exp (— Be). (18)

We use f as a superscript to denote quantities corresponding to thermal equi-
librium. It should be noted again that Sp#[e, #] is not the entropy for pair of
reactants, and that when the number of molecules is changed by the reaction,
additional terms should appear in equation (17). To show that gy of equation

(18), i.e.
gr={ de Y, pr(e, n) exp (—Pe)={ depg(e) exp (— Be), (19)

is given by equation (12) (for reactants), one has to use equations (3), (4) in
equation (19) and the definition gpc™t= ), g, exp (—Pfe,). Regarding equa-

tions (5)—~(9) we have "
Pp#(e)=pr(c) exp (= Be)lqr; Pri(n|e)=pn(nle) (20)
and consequently
Sw/nle]=0, (21)
Syfle, n) = Sp/le] =log gr+ BLe). (22)

Equation (21) reflects the microcanonical character of internal state distributions
in any given energy interval. Equations (20), (21) are obvious if we remember
that the canonical (thermal) distribution results from the maximization of the
entropy subject to the a priori given (e). Since there is no specific constraint
regarding the internal states they will be populated in such a way that the entropy
is maximal, i.e. S[n|e]=0 and consequently S[e, n] depends on P(c) only.
Equation (22) is complementary to equations (16)-(18). The subject of the
following sections is the variations in Sfe, 7].

4, NON-THERMAL REACTANTS

The amount of kinetic information provided by a reactive scattering experi-
ment is greater if the reactants are ‘ state-selected ’ rather than thermally distri-
buted [1]. In the present context we consider a ‘ detailed ’ experiment to be
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one where the reactants are all prepared with the same internal state 7 and within
the energy range ¢, é+8e. (In principle more detailed experiments can be
performed.) We represent the other extreme, an ‘inclusive ’ [1] experiment,
as one where the reactants are thermal. We assume that product distributions
can be resolved to the same accuracy in both cases. In accord with other works
[1, 2, 6, 8] we use y to denote the specificity of the experiment with respect to
the reactants. Thus by v = f we refer to thermal and by y =¢, 7 to state-selected
reactants. The next section is devoted to the rather common case in which there
is practically no difference between these two specifications.

The expressions for thermal Py and Sy were given in the previous section.
The pdf corresponding to y=¢, 4 is

8, i(1/8e) é<e<é+ e
Prti(e, n)= (23)
: 0

where &, ; is the Kronecker symbol. 'Thus
Pyti(e)=(1/8¢) Pg(nle)=38, ; (24)
for € within ¢ to ¢+ 8¢ and zero everywhere else. The entropy is
Sgle, n] =log [pr(é, 7)3¢]
= log [pr(¢)3¢] +log prlile). (25)

The second line here corresponds to the decomposition as in equation (9).
We note that the first term has the formal appearance of a microcanonical en-
tropy. The second is always negative and describes deviations from ¢ micro-
canonicality ’ in é. 'The whole expression corresponds to a restricted micro-
canonical-like entropy, where all states compatible with &, 7 within 8e are equally
probable. Note that while for macroscopic systems the canonical and micro-
canonical ensembles are effectively equivalent, S#[e] and S®[e] are usually
different. In some cases, however the difference is small (see the next section).

There is a fundamental theorem from information theory stating that any
averaging (doubly stochastic) transformation P;= Y, a,P; (3 a;= Y ay=1;

H

7 7
a;20) implies S > S with S, S defined by equation (1) [1, 10]. It is possible
(not very easily, however) to extend this theorem to the case where i=e, n.
Then with appropriately defined a(e, 7; €'n’) it is possible to identify
P(e, n)=Ppf(e, n); P(e, n)= Pyii(e, n)
and to apply the theorem to entropies defined by equation (2). The resultt
Swlle, n]> Sule, n] (26)

is in agreement with our interpretation of .S as a measure for ‘ disorder’ or
‘uncertainty . The significance of (26) to our case is that state selection of
reagents from thermal distribution is associated with entropy decrease [1] (the
reverse process would be called relaxation or equilibration).

Another fundamental theorem states that the entropy corresponding to a
pdf which is a superposition of other pdf’s is greater than the corresponding

T See note added in proof.
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superposition of the entropies [1, 10]. In the present connection the inequality
is

SR'B[€» 11] 2 <SRﬁﬁ[€a ﬂ] >/91 (27)
where the averaging is over the thermal distribution
(Sgpile, n]d,=§ dé Y, Pph(ét)Spte, n]. (28)

nsn
A more interesting variant of inequality (27) regarding product distributions
will be discussed in the next section.

5. NON-EQUILIBRIUM PRODUCT DISTRIBUTIONS

The pdf corresponding to the products AB+ C prior to any relaxation is
proportional to the rate constant (cross section) into €', #".  This non-equilibrium
pdf depends upon the initial reactant distribution. Using k(¢'n"; y) to denote
the rate constants (normalized according to equation (7)) corresponding to
reactant pdf specified by y, the product distribution entropy is defined by [1, 2]

SEyn's Yl==fde T k(e,n's ) log e w5 ipelen)] (29)

n<n'*

To distinguish from entropies corresponding to other stages we do not use here
any subscript (R or P). Thus even when y is omitted, by non-subscripted k
we refer to completely non-relaxed product pdf’s. The general relations
between the entropies corresponding to different y’s are discussed elsewhere
[1, 2]. We shall here consider in more detail the two cases above. We use
7(e, n) to denote the reaction probability, i.e. in a collision specified initially by
BC in state # and total collision energy e=¢,+ ¢, within € to e+ de (e, n) is the
probability for reactive collision (averaged over all quantum numbers compatible
with €, 7). This quantity is proportional to the total reactive cross section out
of ¢, n. Note that the normalization of (e, n) is only via (e, n)+7(e, n) =1,
where 7 is the probability for a non-reactive collision. 'The relation between
the two product distributions is then

ken's B)=[n(B)] 7 fde B Prfle mymle, mk(en's e n), (30

w(B)={ de T, Pylle, n)m(e, n) (31)

NEN

where

is the average probability for reactive collision in the canonical ensemble. (In
the last equations and other obvious cases, we use ¢, n instead of &, 7). Ppln
is the distribution of ‘ reactive reactants ’.

There is no inequality analogous to (26) relating S[e'n’ ; B] and S[e'n’; éi].
Thus, for instance, the first kind of product entropy will be larger if for the
particular reactant specification é4 the product pdf is a ‘ very non-statistical ’
one compared to other choices of ¢, 7. It will be smaller in the opposite case
i.e. when &4 leads to a statistical distribution. There is, however, an inequality
similar to (27), that is

Sle'n’; B]=<{S[e'n" ;5 € nlDp, (32)
where now

(S[e'n’ ;5 en]ds= [7(B)]f de Z*PRﬂ(e, n)m(e, n)S[e'n’ ; e, n). (33)

n<n
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The physical content of (32) is the following [1]: S[e'n’ ; B] can be computed
with the aid of experimental results for product distributions resulting from
thermal reactants. (S[e'n’; en]), is known when the detailed distributions
k(e'n’ ; €,n) and the reaction probabilities are given. Obviously the second
type of experiment provides more dynamical information and consequently
gives rise to smaller entropy (uncertainty). Therefore the difference

R=S[e'n"; B]—{S[e'n'; e, n])y (34)

is a measure of the information gained when detailed experiments are performed.
Moreover, R is a measure of the influence of reactant specification on the
product distribution. When k(e'n’; ¢, n) is independent of ¢, n, R=0.
Bernstein and Levine have introduced this quantity to the field of chemical
reactions and have given it the name ‘ relevance’ [6]. (In the context of in-
formation theory it is known as ‘ the information processed by a channel’, its
maximum with respect to different initial distributions is the ‘ channel capacity ’
determining the most efficient coding scheme [10].)

6. EXOERGIC REACTIONS, TEMPERATURES

Exothermic reactions are especially interesting for product entropy analysis,
because of the large number of available internal states (open channels). In
some cases, mainly for reactions involving hydrogenic molecules, when the
reactants are at room temperature and the exothermicity is high, there is no
essential difference between the two kinds of y specification [13]. In these
cases it can be assumed that the reactants populate only one (or mostly few)
internal states 7 and that most collisions take place with translational energy
centred in 8¢ around é,=¢—¢, with 6e <D the zero temperature exothermicity.
Thus, one may write

Prf(e, n) ~ Pgti(e, n). (35)
The width 8¢ can be estimated from
qr™ % pr*(é;) exp (— Bé)d¢ (36)

with é,~ 3B8~1. Using equations (4), (12) we find 8¢~28-1. The assumption
above implies also

k(e'n'; B)mk(e'n'; éd) (37)
and
Sle'n"; Bl=S[e'n’; el (S[e'n'; en]), (38)
As in equation (9) we can write
S[e'n"; y]=S[e';s y1+S[n'|e'; v]
=—fde k("5 y)log [k(<'; y)/pp(')]
~[dS K5 v) Rl ) log TR s ) el [€)]
(39)

The sum in the second term measures the deviations from statistical (micro-
canonical) product distribution and has been extensively investigated [2]. For
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many exothermic reactions, where equations (35)~(38) are adequate, k(n'|¢")
was found to be expressible by means of a convenient and meaningful formula.
To write it down, we need some changes in the notation. Remembering that
n'=1"j" and that y is in the present case unimportant, the vib-rotational pdf
for a given €', i.e. k(v'j'|¢) will be denoted as A(v'j’). For a given ¢ it is
common to use the variables f,'=¢, /e, f;=¢;/e (in our case ¢' =& ~é+ D) and
the rate constants k(f,’, f;") or k(f,’, j') where every & is normalized with respect
to its arguments. In this notation the vibrational pdf is

Kf)= X )(Zj'+1)k(f,.', I (40)

7 si™
where ¢;/*¥(v) <€’ —¢,/.  For many exoergic reactions it was found that [2-9]
k(f,") = pe(f,) exp (= Avf,")/ 2y (41)

Here, pp(f,)=3 (27 '+ 1)pp(f,’, j'|€') is a conditional density of states, i.e. a
normalized function. If the diatomic is approximated as a rigid rotor and j is
considered to be continuous then p(f,)oc(1—f,)3% [2, 12]. If in addition it is
assumed that the molecule is a harmonic oscillator and » and f, are continuous
variables (the RRHO approximation) then [2, 12]

pe(f.)=3(1 -1, )™ (42)

In equation (41) Ay is a constant independent of v which, following the analogy
between equation (41) and canonical pdf’s was called ‘ the (reciprocal) vibra-
tional temperature’. 2y is a normalization constant or partition function.
Ay is a measure for deviations from statistical distributions. If A, =0 than
gy=1, S[v'|¢']=0 and the vibrational levels are populated in proportion to the
corresponding density of rotational-translational states. For many exoergic
reactions it was found that — A, ranges between 5 and 10. Such high negative
values indicate a high degree of vibrational population inversion. Some more
properties of Ay and equation (41) will be mentioned in the next section. Ex-
tensive discussions concerning the validity and the theoretical background of
equation (41) are given elsewhere [2-9]. For a number of reactions it was
found that equations similar to equation (41) can be used to describe the more
detailed vib-rotational distribution P(f,’, j'). In some cases, no additional
parameters are required and the distribution corresponds to an equipartion of
the non-vibrational energy among the translational and rotational modes (‘ R-T
microcanonical equilibrium ’) [5, 7].  In general, additional rotational tempera-
ture parameters are useful in describing vib-rotational distributions [4, 6].

The conditional entropy S[v'j’|¢'] can be further decomposed into S[v'|€]
and S[j'[v', €] [2, 6]. The second quantity accounts for deviations from
equipartition of the non-vibrational energy. In the following, we shall assume
for simplicity that such R-T equipartition does exist and consequently that
S[j'|v'€'1~0 or equivalently S[v'j'|e']~ S[+'|¢']. With this assumption and
using equations (35)-(41) we find

S[e'n']=log [pp(é+ D)de] +1og 2y + Ay<f, > (43)

In the derivation of equation (43) the conservation of energy during the
collision was taken into account via k(e'; éi)=Pg¥(e)=(1/3¢) as given by
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equations (23)-(24). The average fraction of the total energy {(f,’) is a measur-
able quantity. With the aid of equation (41) we find

. _ Ologasy
<fu>—_— aAv .

This is the analogue of the thermodynamic identity (E) = —¢log Q/28. The
analogue of k8= 0o/0F (o is the thermodynamic entropy) is

Ay=0S[f," /o<1,
where S[f,']=S[»'|¢') and S[v'|¢']=[ de'k(¢')S[¥' |¢') [2].

(44)

7. PARTIALLY RELAXED DISTRIBUTION, VIBRATIONAL TEMPERATURES

Besides the physical significance of equation (41), the use of a single tempera-
ture parameter to characterize product distributions is practical. One immediate
application of equation (41) is for calculating gain factors in chemical lasers [7].
In the conventional description of chemical lasers, however, a vibrational
temperature of a different kind, 7Y, is used [14]. This section lends itself to
explore the relation between Ty and Ay.

On the basis of experimental observations it is usually assumed that the
relaxation of an excited diatomic gas occurs on two separate time scales. First
the fast V-V (vibration to vibration) and R —T, R transfer processes take
place and only then the slow VT, R exchange establishes the final equi-
librium distribution. This assumption implies that the first relaxation step
leads to a partial equilibrium condition characterized by a vibrational tempera-
ture 7y and a translational-rotational temperature 7. The validity of the
assumption above and the values of Ty and 7" depend on the molecular composi-
tion of the relaxing medium. In general, the V->V process will be an efficient
one if resonant or near-resonant vibrational energy transfer, as in collisions
between harmonic oscillators, can take place [15]. (For a general treatment of
anharmonic effects see [16].)

Consider now the excited AB products immediately after the reaction. In
many cases, mainly if not very high vibrational levels are involved, they can be
approximated as harmonic oscillators. In actual experimental situations the
excited AB molecules are usually surrounded by molecules of other kinds.
Therefore, the efficient V-V exchange which can take place only via collisions
between AB molecules might be appreciably hindered due to collisions with the
host molecules. (In some cases e.g. the F+ H, >HF 4+ H laser where HF and
H, have similar vibrational spacing, efficient energy exchange may also occur
through collision between unlike molecules). This and other considerations,
like the possibility of interfering V —R, T processes set limits on the quantitative
significance of Ty in real conditions.  5till, T is a commonly used and meaning-
ful concept and it is therefore interesting to see how Ay and Ty are related to
each other. For this we assume that vibrational energy exchange can take place
only by collisions between AB molecules and that rotational and translational
energies can be exchanged also with the heat bath. (In the next section we
briefly mention another type of partial equilibrium.) In addition, it is assumed
that AB is a harmonic oscillator. 'The vibrational energy distribution after the
fast relaxation step is

P(v')=exp (—Bve,)/qv (45)
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where ¢y is the ordinary vibrational partition function corresponding to one
oscillator in thermal equilibrium with other oscillators at temperature
Ty=(kBy)~'. (For simplicity we do not write here Ppfr(y'). A remark
concerning P(¢’, v') is given below.)

Prior to evaluating the explicit relation connecting Ay and T it should be
emphasized again that these two quantities have entirely different origin and
meaning. Ay specifies the distribution of the total collision energy among the
states of a single triatomic c.m. system AB + C prior to any deactivation. Conse-
quently Ay is a microscopic non-equilibrium parameter. Sy on the other hand,
is a pure equilibrium parameter characterizing a macroscopic system of oscil-
lators. From the information theoretic point of view both quantities are
Lagrangian multipliers resulting from entropy maximation [11]. Ay is due to
the maximization of S[n'|e’] (the sum in the second term of equation (39))
subject to an a priori given {f,'> [3, 5, 9]. By results from the maximization of
the entropy of the oscillator ensemble subject to a given average energy per
oscillator (¢,’> or, equivalently, a given temperature [11]. In both cases the
resulting distributions have a Boltzmannian form (equations (41), (45)).

According to our assumptions the average vibrational energy per molecule
does not change in the first relaxationstep. Therefore, using obvious notation,
we find (¢,")s, =& {f,Ds,, where & =&+ D and where (f,"),, is given by equa-
tion (44). Since {¢,'D,,= — 0 log gy/0By we have

0 log ™_ 0 log =y

oy By

1f ¢,’ is measured from the ground vibrational state then gy = [1 —exp (— Byfiw)] L,
where w is the vibrational frequency. Unfortunately, &y cannot be expressed
in a simple closed form even in the RRHO approximation. Remembering,
however, the semi-quantitative character of 7, an approximate expression
connecting Ay and 7% will be sufficient.

Using the RRHO expression equation (42) we find

(46)

1
Fv=3 g df,/(L=£,")*" exp (= Mf,")
=§A% R exp (M55 A) (47)
where y(a; b) is the incomplete gamma function. Equation (47) was written
for the more frequent and interesting case of negative Ay, A= —2y. From
equations (46), (47) and the explicit form of g, mentioned above we obtain
Awlexp (Bho) =111 =&l =5+ B2 exp (= A)/(§5 A)]- (48)

We demonstrate the applicability of this equation by two specific examples.
For the reaction Cl+ HI =HCI+ I (and the isotopic analogue with deuterium)
we have & =34 kcal mol™'t [17], —Ay=2A=8-0 [2] and the most populated
vibrational level of HCI after reaction is v,p'=3. For F+H,->HF+H (and
the isotopic reaction) é = 34-7 kcal mol=Y, A=6'5 and v p'=2 {2, 18]. For
such high values y(§; A)~T1'§=34/(n/4) where I" is the gamma function, and
therefore the third term in the square brackets in equation (48) is small. In

T cal=4-184 J.
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order to test the accuracy of equation (48) we may compare the experimental
value {f,">=0-71 for the first reaction above with the right-hand side of equation
(48). When vy is replaced by I' this leads to {f,>=0-70. For the second
reaction the values are 0-66 and 0-64 respectively. Considering the inaccuracy
of the RRHO approximation and the experimental error, we may conclude that
equation (48) is a reasonable approximation.

A quick estimation of Sy is obtained if the high temperature expression for
(g >, 1.e. {&/>=PBy%, is used. This is approximately true even for the two
examples above. (wye; and wyy are large, but v,,,"=3 and 2 for the two reac-
tions respectively, thus (Byfiw)*~3 and 2). If in addition the last term on
the right-hand side of equation (48) is neglected, we find

Ty~ k11— 5. (49)

Using equation (49) we find 7y~13500 K for CI+HI—-HCI+1 and
Ty~15000 K for F+H,->HF+F. A cruder estimate is obtained if we take
G >=f..,. ~1—7% (see equations (41, 42)) and a better one if equation (48)
is used.

In chemical laser studies the necessary lasing conditions are usually ex-
pressed in terms of the ratio between T°, and the gas kinetic temperature T [14].
Some of the shortcomings associated with the use of 7, were mentioned above.
More important is the fact that for an efficient lasing action the vibrational
population must be completely inverted. Unless 7 is negative, such popula-
tions where higher vibrational levels are more populated than lower levels cannot
be described by equation (45). In this case, equation (45) loses its physical
meaning as representing a partially relaxed population. Moreover, one has to
assign different 7’s to different +’s. For these reasons it was suggested that
for chemical lasers based on pumping reactions with well-defined Ay, gain factors
and lasing conditions should be expressed in terms of Ay rather than 7y [7].

The entropy corresponding to the partially relaxed AB+ C gas is given by a
formula similar to equation (13). The only difference is that of using two
temperatures, 7Ty for the vibration and T for the rotation and translation. For
one AB+C pair in the c.m. system, i.e. excluding the c.m. and the mixing
contributions to o, the corresponding expression to Sp of equations (17), (22) is

Spfhle/, v/, j'1=1og [gp*(B)gan™ (B)]+ Be/ + ¢
+log gag"(Bv) + Bvie, Dpv-  (50)

Here, we have used ¢/, v/, j' in the square brackets for emphasizing that, to
distinguish from equation (9), equation (50) corresponds to the decomposition

Sef e/ v 1= Sele/ 1+ SeP v ).

It is clear, however, that summation over ¢/, v, j' is equivalent to summation
over en’ Le. S[e/v'j']=S[en']. We could perform a decomposition similar
to equation (9) by using the explicit form of Ppffv(e', n') in S[e'v']=S[€]
+ S[v'|¢']. The result is that both terms depend upon f and By and due to
lack of energy equipartitioning S[v'|¢']#0. In any case, no new features of
the entropy which are not obvious from equation (50) will result from such a
decomposition.
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8. EXAMPLE OF ENTROPY CYCLE

The entropy change in the reaction—equation (16)—can be decomposed
into any number of steps corresponding to changes in the pdf and the entropy
of the triatomic system. In order to have some idea about these entropy
changes, we consider an almost classical example, namely the reaction
Cl+HI->HCI+1. This is one of the reactions that have been extensively
investigated by Polanyi and his coworkers both by the arrested relaxation-
infra-red chemiluminescence method [17] and by classical trajectory computa-
tions [19]. In addition, this is one of the reactions for which the thermal
reactant distribution can be approximated by equations (35)-(38) [13] and for
which equation (41) is in excellent agreement with experiment [2]. The data
for this reaction are Tx300 K, é~¢,+5RT/2x2-3 kcal mol™!, & =¢+D=34
keal mol=%, (f,'>=0-71, {f/>=0-13, — Ay =80, S[+'|¢']= —3-54 cal mol~! K1
or —1:57 k per reactive collisiont S[j'|v',]~ —0-5 cal mol~* K-t or —0-25 %
[2, 17]. Considering that S[j’|v'¢'] is much smaller than S[+'|¢'] and that the
R-T equilibrium assumption leads within the limits of experimental error to
the observed vib-rotational distribution [4, 5], we may assume S[j'|v'€']=x0.
The overall entropy change in the reaction is given by equation (15). Consider-
ing the high characteristic vibrational temperatures of HI and HCI we find
(>~ {e>~SRT so that Ac/N=log (¢p/qr). Since for the present reaction
pp~ g the entropy change is very small and is mainly due to the rotation

Ac/N = log (Bp/Bp)=0-2 &, (51)

where Bp= By is the rotational constant. We now calculate the entropy
changes for the triatomic c.m. system corresponding to the stages described in
the previous sections (see also the figure).

8.1. Thermal to state-selected reactants

The entropy change is Sy®[e, n]— Sgfle, n]. It was assumed, however,
that equations (35)—(38) are valid, i.e. that this difference is only slightly smaller
than zero. The exact value cannot be accurately determined since 8¢ is not
well defined. In fact, for HI at room temperature several rotational levels
(j ~2-5) rather than one are populated (v#0 are effectively not populated).
However, the contribution to S# is mostly from the translation and if e is
estimated from equation (36) the translational contributions to Sy¥[e, n] and
Sp’[e, n] are identical. The absolute value of the entropy is

SRéﬁ[E’ n] ~ SRﬁ[E, n] = SRﬂ[E] =60-0 k, (52)

where equation (22) was used and S{e) was taken as §, (rotation + translation).

8.2. Thermal (or state-selected) reactants to non-relaxed products

As in the former stage the y specification is redundant and equations (37,
38) can be used. The contribution of S[v'|¢'] to the non-equilibrium product
entropy was calculated previously [2] and was cited above as —1:57 k. The

+ k (Boltzmann constant)a1-380 622 x 10-2 ] K1,
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An entropy cycle for the reaction Cl+HI -HCI+ 1. Experimental data from reference
[17] (see text).

main contribution to S[e'n] is however from S[e’] as given by the first term in
equation (43). Using the explicit formula

pu(e) = upt M2 et Bp) Y€ R [2, 12]

we find
S[e']=67-0%
or (53)
S[e’']— Sg[e']="7 k.

The accuracy of this value should be considered subject to the accuracy of
the experimental values of £ and D. We note that the most significant quantity
from a dynamical point of view, i.e. S[n'|¢']~ —1-6 &, is only a small fraction
of S[e'n’]. The total entropy change in this step is

S[e'n']— Sg[e, n] =54 k. (54)

This is mainly due to the increase in the density of states associated with the
sudden change in the energy from éto ¢ =é+ D. (pp(é+ D)~ pp(é + D) > pr(é)).

8.3. Non-equilibrium products to partially relaxed products with vibrational
temperature Ty =13 500 K and translational-rotational temperature T =300 K

The entropy of one HCl+ I pair (excluding the c.m. motion) of the partially
relaxed products is given by equation (50). The values of the various terms in
this equation are approximately 57-7; 2-5; 1-1 and 1-0 respectively. Thus
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Spfhle'n’] =623 k and
Sph befe'n'] = S[e'n']= —3-1 k. (55)

The negative value of the entropy difference associated with this relaxation
step is due to the ‘ cooling ’ of the rotational and translational degrees of freedom.
Before the relaxation the energy of these modes was (f/+f;/>=1-<f,/>=03 or
{e/ +¢/>=03%x34=10-2 kcal mol~'. After relaxation the energy is

(e/ +¢;'>g~5RT|2~15 kcal mol~".

This energy decrease for one HCI+ I pair is associated with corresponding
entropy decrease. The entropy which increases in the course of the relaxation
is that of the gas and the heat bath together. Obviously there is a positive
contribution to the ‘ triatomic entropy ’ resulting from the vibrational energy
exchange between the molecules (the negative total value shows that, in absolute
value, the vibrational contribution to the change in entropy is smaller than that
due to rotation and translation). The statement that the relaxation from a
vibrational distribution given by equation (41) to one which is given by equation
(45) leads to a positive entropy change does not require an explicit proof.
Adopting the information theoretic approach, for instance, the statement is
understood on the basis of the following arguments. Since we have assumed
that the average vibrational energy per molecule does not change in the first
relaxation stage, the only constraint on the entropy of the oscillator gas is that
{¢,> should be conserved. Equation (45) is exactly the one which maximizes
S[»'] with respect to this constraint. The constraint {f,'>=constant which
leads to equation (41) has a similar form, but the system under consideration
here is the triatomic AB+ C system and not the ensemble of AB molecules.

8.4. Partial to complete relaxation

The only change in entropy here is due to the reduction of the vibrational
temperature from 7y=(kBy)™! to T=(kB)™1. Since for HCl fliw>1 the
vibrational contribution to Spf[e'n'] is negligible and thus there is a net decrease
in the entropy of the triatomic system

Spfle'n']— Spfs Afe'n']=—-2-1k (56)
with Spfe'n']=602 k.

In principle, we could enrich our entropy cycle by considering other inter-
mediate stages. For instance, one may imagine an hypothetical experiment in
which the products AB+ C are collected immediately after the reaction into an
isolating container. Then, due to the exothermicity of the reaction, the rota-
tional and translational modes will first equilibrate at some 7> T and later,
together with the vibration, at 7", Ty > T”> T". The entropies corresponding to
such situations are easily calculable. One only has to include the c.m. motion
in the energy repartitioning. Remembering, however, the general purpose of
this paper, we think that inclusion of such intermediates in the entropy cycle is
of minor interest.

The figure shows an entropy cycle of the form suggested by Levine. In our
case, however, only a few stages are shown. The calculation of other possible
paths from reactants to products requires additional experimental or theoretical
information. The purpose of this diagram is to demonstrate the relative magnitude
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and sign of the various entropy changes and in particular to show where and
how S[n’|€’] is located in the entropy cycle.

9. SUMMARY

We have considered in detail some simple points associated with the in-
formation theoretic approach to chemical reactions. The general purpose was
to investigate the relation between entropies and temperature parameters and
their ordinary thermodynamic analogues. There are still many aspects of the
approach which must be carefully tested. Some of them are: the connection
to other statistical theories; the role of constraints; the development of
entropy along the reaction path and the possibility of extending the approach
beyond the scope of the reaction A+ BC -AB+C.

I would like to thank Professors G. L. Hofacker and M. Ratner for helpful
comments. Special thanks are due to Professor R. D. Levine for many valuable
discussions. A fellowship from the Stiftung Volkswagenwerk is gratefully
acknowledged.

Note added in proof.—A sufficient condition for the existence of inequality
(26) is that 8e (equations (23)—(25)) should be smaller than the width of the thermal
distribution Py# whose () =¢ (equations (14), (23)). A rigorous (and lengthy)
proof of this inequality is given elsewhere [20]. In the same work [20] which
deals, among others, with entropy cycles in a generalized fashion the interpreta-
tion of Pp*(e, n) (equations (23), (24)) and of n(e, n) (§ 5) are somewhat different.
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