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COMMENT 

Prior .expectation distribution functions for energy disposal and 
energy consumption in reactive molecular collisions* 

A. Ben-Shault , R. D. Levinet , and R. B. Bernstein 

Department of Chemistry, The University of Texas, Austin, Texas 78712 
(Received 26 August 1974) 

In a recent series of papers1 we have applied the in­
formation-theoretic method to the analysis of energy 
requirements and energy disposal in reactive molecular 
collisions. The analysis is based on the concept of a 
"prior" expectation distribution which is the reference 
against which the actual observation is to be compared. 
In this Comment we reiterate the basic assumptions used 
in deriving the prior distribution. For utmost general­
ity the prior distribution avoids making dynamical as­
sumptions. Thus the prior distribution is not intended 
to predict the actual distribution of final states (or the 
different reactivities of initial states). The observed 
distributions often deviate markedly from the prior. The 
empirical and theoretical analysiS of such deviations 
(or "surprisals") is an essential part of the method. 

First, one recognizes that there are an infinite num­
ber of distributions, all of which satisfy the following 
two essential conditions: (a) energy disposal and energy 
requirements satisfy the conditions imposed by micro- , 
scopic reversibility and (b) zero relevance, i. e., the 
product state distribution is independent of the different 
possible states of the reactants (at a given value of the 
energy and other good quantum numbers). These two 
conditions alone are only necessary but not sufficient 
to determine a unique "statistical" distribution. We 
have therefore imposed a further condition: The prior 
distribution should be the most random one possible. 
Among all conceivable distributions of quantum states 
(at a given energy) the prior distribution should have the 
least information content (i. e., the maximal entropy). 
We have been guided in this chOice by the similar ap­
proach used in macroscopic statistical mechanics.1 

Hence, it is possible to tie the present results to those 
of conventional statistical thermodynamics. 

For other purposes one may seek alternative defini­
tions of a "statistical" distribution, particularly if the 
distribution is to have a predictive value. The RRKM 
approach2 and the statistical theories of rates and cross 
sections3

-
5 illustrate an alternative choice.6 Note how­

ever, that all of these approaches are really theories; 
theories meant to ~ree with experiment! Toward that 
goal they incorporate as much dynamics as is essential 
and consistent with the first two conditions. These the­
ories have had and will continue to have many useful ap­
plications. They are not in conflict with our prior dis­
tribution in the sense that no distribution is in such con­
flict. The prior distribution simply provides a refer­
ence for all possible distributions (often, however, the 
actual distributions predicted by these statistical the­
ories are not markedly different from the prior). 

The basic assumption used in deriving our prior dis­
tribution implies that, in the absence of information (and 

for a given value of the energy and other good quantum 
numbers), all product quantum states are formed with 
the same rate. 6,7 Invoking microscopic reversibility, 
this conclusion uniquely speCifies the prior energy con­
sumption. 

We turn now to the detailS, consisting only of counting 
states. According to our condition all quantum states 
are formed with the same rate: the rate of formation of 
a group of states is then simply proportional to the num­
ber of states in that group. We illustrate the approach 
by considering energy disposal in an experiment where 
the total energy is in the range E to E+dE. We specify 
a group of product states by their relative translational 
energy being in the range E'1' to ET + dE'1' and the scatter­
ing (solid) angle being in the range 0 to 0 + dO. Since both 
E and ET are specified, the allowed internal states of 
the products are uniquely determined. {All have the 
same (E - ET = En) internal energy.) The set of internal 
quantum states of energy En is the internal level n of 
degeneracy gn' The number of translational states in 
the specified range iS1

•
7 PT(ET)dET(dO/4rr). Here PT(ET) 

= AT E~/2 is the translational density of states. AT is a 
(unit bearing) constant. 

According to our assumption, the rate of formation of 
the previously specified group of product states is 
RgnPT(ET)dET (dO/4rr). R is the rate which we take8 to be 
the same for all product states. The total rate of prod­
uct formation is Rp(E)dE where p(E) is the total density 
of states: peE) = 4, gnPT (E - En) and dE = dET• Hence the 
prior fraction of products in the speCified group is 
pO{nO)dO = gnPT (E - En)(dO/ 4rr)/ peE). We define pO{O I n) 
(the prior angular distribution of products in the inter­
nal level n) by pO(nO) = pO{O I n)pO{n) such that f pO{O I n)dO 
= 1. Then pO{O In) = (4rr)-1, i. e., the prior angular dis­
tribution of the products is isotropic. Also pO(n) 
= gnPT (E - En)/ p(E). This is the prior distribution of the 
products internal levels (at a given total energy E). 

For the case when the products are an atom and a 
diatomiC molecule in a definite electronic state (in the 
absence of fields) n = v, J and gn = 2J + 1. If one collects 
products into wider "bins", say the group of products in 
the ~brational state v, then pO(v) = L,f=~(V) pO(v, J) 
= LJ=o (v) (2J + l)PT(E - E",J)/ peE), where J*(v) is the high­
~st value of J allowed for given v and E. Approximate 
forms for pO(v) and other priors are available,l but the 
exact procedure is to use the summation above. 

The considerations above are evidently limited to the 
distribution of states, i. e., to the relative magnitude of 
the rate constants into (or out of) a specified group of 
states. There is, of course, a more fundamental ques­
tion, namely the absolute magnitude of the rates, and it 
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is this question that is the primary one for the statisti­
cal theories previously mentioned. 

An extensive discussion of the origins and applications 
of the prior distribution is in preparation. 

We thank Professor J. L. Kinsey, Professor J. C. 
Light, Professor R. A. Marcus, Professor W. H. Mil­
ler, and Professor J. Ross for discussions on this topic. 
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Erratum: Calculation of the pressure-broadening of HCI and DCI 
infrared and Raman lines [J. Chem. Phys. 61, 418 (1974)] 

C. G. Gray 

Department of Physics. University of Guelph. Guelph. Ontario. Canada NIG 2WI 

Section II, paragraph 4: The sentence beginning "radiating molecules· .. " should read "radiating molecules with 
J -3 collide most often with perturbing molecules that are in the correct level for a resonant collision to occur." 
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